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We present the Kochen-Specker (KS) theorem in the two-dimensional white noise state. We
consider whether we can simulate the double-slit experiment in the state by a realistic theory of
the KS type. We assume an implementation of the double-slit experiment. There is a detector just
after each slit. Thus interference figure does not appear, and we do not consider such a pattern.
We assume that a source of spin-carrying particles emits them in a state, which can be described as
the two-dimentional white noise state. We consider a single expected value of a Pauli observable σx
in the double-slit experiment. A wave function analysis says that the quantum expected value of it
is zero. However, the realistic theory of the KS type cannot coexist with the value of the expected
value of �σx� = 0. Hence, we cannot simulate the double-slit experiment in the state by the realistic
theory of the KS type.

PACS numbers: 03.65.Ud (Quantum non locality), 03.65.Ta (Quantum measurement theory), 03.65.Ca (For-
malism)

I. INTRODUCTION

The quantum theory (cf. [1—5]) gives accurate and at
times remarkably accurate numerical predictions. Much
experimental data has fit to the quantum predictions for
long time.

Kochen and Specker present the no-hidden-variables
theorem (the KS theorem) [6]. The original KS theorem
says the non-existence of a real-valued function which is
multiplicative and linear on commuting operators. The
proof of the original KS theorem relies on intricate ge-
ometric argument. Greenberger, Horne, and Zeilinger
discover [7, 8] the so-called GHZ theorem for four-partite
GHZ state. And, the KS theorem becomes very simple
form (see also Refs. [9—13]).

It is begun to research the validity of the KS theorem
by using inequalities (see Refs. [14—17]). To find such in-
equalities to test the validity of the KS theorem is partic-
ularly useful for experimental investigation [18]. One of
authors derives an inequality [17] as tests for the validity
of the KS theorem. The quantum predictions violate the
inequality when the system is in an uncorrelated state.
An uncorrelated state is defined in Ref. [19]. The quan-
tum predictions by n-partite uncorrelated state violate
the inequality by an amount that grows exponentially
with n.

The double-slit experiment is an illustration of wave-
particle duality. In it, a beam of particles (such as pho-
tons) travels through a barrier with two slits removed. If
one puts a detector screen on the other side, the pattern
of detected particles shows interference fringes character-
istic of waves; however, the detector screen responds to
particles. The system exhibits behaviour of both waves
(interference patterns) and particles (dots on the screen).

If we modify this experiment so that one slit is closed,

no interference pattern is observed. Thus, the state of
both slits affects the final results. We can also arrange
to have a minimally invasive detector at one of the slits
to detect which slit the particle went through. When
we do that, the interference pattern disappears [20]. An
analysis of a two-atom double-slit experiment based on
environment-induced measurements is reported [21].

We assume an implementation of double-slit experi-
ment. There is a detector just after each slit. Thus in-
terference figure does not appear, and we do not consider
such a pattern. The possible values of the result of mea-
surements are ±1 (in �/2 unit). If a particle passes one
side slit, then the value of the result of measurement is
+1. If a particle passes another slit, then the value of the
result of measurement is −1. This model is easy detector
model for Pauli observable.

Here we consider whether we can simulate the white
noise state by a realistic theory of the KS type. So, we
investigate the relation between easy detector model to
a Pauli observable and the KS theorem.

In this paper, we consider whether we can simulate the
double-slit experiment in the white noise state. We as-
sume an implementation of double-slit experiment. We
assume that a source of spin-carrying particles emits
them in the white noise state. We consider a single ex-
pected value of Pauli observable σx in the double-slit ex-
periment. A wave function analysis says that the quan-
tum expected value of it is zero. However, the realistic
theory of the KS type cannot coexist with the value of
the expected value of �σx� = 0. Hence, we cannot sim-
ulate the white noise state by the realistic theory of the
KS type.
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II. THE DOUBLE-SLIT EXPERIMENT AND

THE KS THEOREM

In this section, by using the double-slit experiment,
we present the KS theorem in the two-dimensional white
noise state. Especially, we systematically describe our
assertion based on more mathematical analysis using raw
data in a thoughtful experiment.
We assume an implementation of the double-slit ex-

periment. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result
of measurements are either 1 or −1 (in �/2 unit). If a
particle passes one side slit, then the value of the result
of measurement is +1. If a particle passes another slit,
then the value of the result of measurement is −1. This
is an easy detector model of a single Pauli observable.

A. A wave function analysis

Let σx be a single Pauli observable. Here,

σx =

�
0 1
1 0

�
. (1)

We assume that a source of a spin-carrying particle emits
them in a state Vnoise. Here,

Vnoise =
1

2

�
1 0
0 1

�
. (2)

We consider a quantum expected value Tr[Vnoiseσx]. If
we consider only a wave function analysis, the possible
values of the square of the quantum expected value are

(Tr[Vnoiseσx])
2 = 0. (3)

We define �EQM�
2 as

�EQM�
2 = (Tr[Vnoiseσx])

2. (4)

�EQM�
2
max and �EQM�

2
min are the maximal and minimal

possible values of the product, respectively. We have

�EQM�
2 ≤ 0 (5)

Thus,

�EQM�
2
max = 0 (6)

We have

�EQM�
2 ≥ 0 (7)

Thus,

�EQM�
2
min = 0 (8)

Hence we have

�EQM�
2
min = 0 and �EQM�

2
max = 0. (9)

B. The realistic theory of the KS type

A mean value E satisfies the realistic theory of the KS
type if it can be written as

E =

�
m

l=1 rl(σx)

m
, (10)

where l denotes a notation and r is the result of the
measurement of the Pauli observable σx. We assume the
values of r are either 1 or −1 (in �/2 unit). Assume the
quantum mean values with the system in a state admits
the realistic theory of the KS type. One has the following
proposition concerning the realistic theory of the KS type

Tr[ρσx](m) =

�
m

l=1 rl(σx)

m
. (11)

We can assume the following by Strong Law of Large
Numbers [22],

Tr[ρσx](+∞) = Tr[ρσx]. (12)

We define �EQM�
2(m) as

�EQM�
2(m) = (Tr[ρσx](m))

2. (13)

We can assume the following by Strong Law of Large
Numbers,

�EQM�
2(+∞) = �EQM�

2 = (Tr[ρσx])
2. (14)

In what follows, we show that we cannot accept the rela-
tion (11) concerning the realistic theory of the KS type.
Assume the proposition (11) is true. By changing the
notation l into l′, we have same quantum mean value as
follows

Tr[ρσx](m) =

�m

l′=1 rl′(σx)

m
. (15)

We introduce an assumption that Sum rule and Prod-
uct rule commute with each other [23]. We do not pursue
the details of the assumption. To pursue the details is
an interesting point. It is suitable to the next step of
researches. We have the following

�EQM�
2(m)

=

�m

l=1 rl(σx)

m
×

�m

l′=1 rl′(σx)

m

≤

�m

l=1

m
·

�m

l′=1

m
|rl(σx)rl′(σx)|

=

�
m

l=1

m
×

�
m

l′=1

m
= 1. (16)

Clearly, the above inequality can have the upper limit
since the following case is possible:

�{l|l ∈ N ∧ rl(σx) = 1}� = �{l′|l′ ∈ N ∧ rl′(σx) = 1}�,

(17)

and

�{l|l ∈ N ∧ rl(σx) = −1}� = �{l
′|l′ ∈ N ∧ rl′(σx) = −1}�.

(18)
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And we have the following

�EQM�
2(m)

=

�m

l=1 rl(σx)

m
×

�m

l′=1 rl′(σx)

m

≥

�m

l=1

m
·

�m

l′=1

m
(−1)

= (−1)

��m

l=1

m
×

�
m

l′=1

m

�
= −1. (19)

Clearly, the above inequality can have the lower limit
since the following case is possible:

�{l|l ∈ N ∧ rl(σx) = 1}� = �{l′|l′ ∈ N ∧ rl′(σx) = −1}�,

(20)

and

�{l|l ∈ N ∧ rl(σx) = −1}� = �{l
′|l′ ∈ N ∧ rl′(σx) = 1}�.

(21)

Thus we derive a proposition concerning the quantum
mean value under the assumption that the realistic the-
ory of the KS type is true (in a spin-1/2 system), that
is

−1 ≤ �EQM�
2(m) ≤ 1. (22)

From Strong Law of Large Numbers, we have

−1 ≤ �EQM�
2 ≤ 1. (23)

Hence we derive the following proposition concerning the
realistic theory of the KS type

�EQM�
2
min = −1 and �EQM�

2
max = 1. (24)

We cannot accept the two relations (9) (concerning a
wave function analysis) and (24) (concerning the realis-
tic theory of the KS type), simultaneously. Hence we are
in the KS contradiction. The realistic theory of the KS
type does not meet the wave function analysis and can-
not measure Pauli observable σx correctly. Similar to the
argumentations, the realistic theory of the KS type can-
not measure Pauli observable σz correctly. In short, the
realistic theory of the KS type cannot meet observability
of σz and σx.

III. CONCLUSIONS

In conclusion, we have considered whether we can sim-
ulate the white noise state by a realistic theory of the KS
type. We have assumed an implementation of double-
slit experiment. There has been a detector just after
each slit. Thus interference figure has not appeared, and
we do not have considered such a pattern. We have as-
sumed that a source of spin-carrying particles emits them
in the white noise state. We have considered a single ex-
pected value of a Pauli observable σx in the double-slit
experiment. A wave function analysis has said that the
quantum expected value of it is zero. However, the re-
alistic theory of the KS type cannot have coexisted with
the value of the expected value of �σx� = 0. Hence, we
cannot have simulated the double-slit experiment by the
realistic theory of the KS type.
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