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Abstract

We extend the language of mathematics by generalizing the logical
implication and negation. As such, our framework serves as an extension
of intuitionistic logic.

1 Introduction

It is true that one’s knowledge depends upon the language one speaks and
the language of mathematics is not a universally given entity. Rather it is a
primitive way of expressing our most basic observations and the art of science
consists in finding out how far one can get with these primates. Changing
the axioms, or irreducible rules, leads to another spectrum of knowledge and
therefore broadens our horizons. The aim of this paper is to deal with such
extensions, motivate them and in the line of the best tradition, start with an
example. In this way, we construct a framework which brings spoken language
closer to mathematics meaning we avoid the usual paradoxes of logic by making
a difference between sentences from which one can establish the truth and those
which do not allow for such verification. In this way, the contradictory sentences
“a spirit exists is true” and “a spirit does not exist is true” can live piecefully
together; in other words, the logical mapping “is true” does have a nontrivial
domain, this statement holds irrespective of wether one considers classical or
intuitionistic logic. Indeed, not only does mathematics require an extension,
logic does too and we shall start this paper by a more humble effort, which is
to give an extension of cohomology theory.

2 An extension of Cohomology Theory and se-
quential reasoning.

Traditional cohomology theory started out by an observation of Cartan in the
context of simplicial complexes or manifolds with a boundary regarding the
“boundary operation” which maps a n + 1-dimensional simplicial complex to
an n-dimensional one or an n + 1 dimensional manifold with boundary to its
n dimensional boundary. This operation turned out to be nilpotent of order
two: that is, taking the boundary of the boundary results in nothing, that
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is, the empty complex. Of course, this result depends heavily on definition of
simplicial complexes or, as a matter of fact, manifolds with a boundary. In
the latter case, there is no good reason why one should restrict the definition
in the way it is framed and it is quite easy to think of non-closed sets whose
interior is an ordinary manifold such that the boundary of the boundary does
not vanish. For such n dimensional spaces, it is nevertheless still true that the
n + 1’th boundary vanishes and what follows has this limitation build in (but
it is easy to generalize). In general, consider a sequence of objects An with a
distinguished “initial” object 0 and mappings δn : An → An−1 which terminates
at A−1 = 0; then, one can define for 0 ≤ k ≤ n+ 1 the k’th terminator set Zk

n

of An which is defined as

Zk
n = (δn)−1 ◦ (δn−1)−1 ◦ . . . ◦ (δn−k+1)−1(0)

where 0 ∈ An−k. Then, it is obvious that Zk
n ⊆ Zk+1

n where the operation ⊆
may have a more general definition as is the case in set theory. Also δn+1 :
Zk+1
n+1 → Zk

n so that we can speak about k-cohomology which is defined as

Hk
n =

Zk
n

δn+1

(
Zk+1
n+1

)
for k ≥ 0 and n ≥ k − 1 where the quotient is defined independently. For
example, in the case of modules, it is the standard module quotient. In tra-
ditional Cohomology theory, the sequence of An and the associated mappings
δn is called a long exact sequence and one can speak about a homomorphism
ζ between two long exact sequences when there exist mappings ζn : An → A′n
such that ζn ◦ δn+1 = δ′n+1 ◦ ζn+1 preserving the initial object, in either when
one can draw a commuting diagram. It is easy to derive that

ζn
(
Zk
n

)
⊆ Z ′kn

and that therefore
ζn

(
Hk

n

)
⊆ H ′kn .

These constitute the usual generalizations of ordinary Cohomology theory where
k = 1 and, as is usual the case,

δn+1 : Hk+1
n+1 → 0 ∈ Hk

n.

The attentive reader may notice that this is not all one can do and one can
introduce a further parameter r ∈ N0, defining the objects:

Hk,r
n =

Zk
n

δn+1 ◦ . . . ◦ δn+r

(
Zk+r
n+r

)
so that our previous objects corresponded to r = 1; one would expect mappings
to exist between Hk,r

n and Hk,s
n with r ≥ s but we shall not go into that matter

here.

3 Higher reasoning and incomplete knowledge.

In spoken language, one has reasons of reasons and the latter are sometimes
infinite and circular. Let us give an example: “an apple falls down on the earth”
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WHY? “because of the gravitational field” WHY? “Because the laws of physics
are background independent and involve a (pre) geometry” WHY? “because you
need to be able to say what a straight line is and because nothing is static in this
world” WHY? “If you could not, then you cannot tell the difference between a
free object and one which is acted upon and because the notion of freedom isn’t
absolute” WHY? . . . Obviously, this sequence is either never ending or ends
with a dogmatic statement we suppose to be true. In mathematics, we have
allowed for such argumentation by means of the logical operator “implies” of
the words “if A then B” and every situation of this kind can be written as a
sequence of such sentences. Also, we have in spoken language the words “by
means of” for example: a chemical substance A changes into B by means of the
catalyst C. Here, a mathematician would try to say that there is an equivalence
with the statement “if A and C react then B and some leftover D remain”.
However, sometimes it is just not known what the leftovers are and neither is
the mechanism by which C serves as a catalyst for A to change. The attitude of
the mathematician is that this imperfect knowledge is just due to a limitation
of our knowledge and is not intrinsic by any means and he would still write

A+ C → B +D.

But what if nature would be such that no precise statements can be made, not
even probabilistically? Then we could not write it down in this way and we
would have to invent a new logical operator in order to accomodate for the
meaning of this sentence; the latter is noted down as

A
C→ B

where we ignore the leftovers. This operation is intended to mean “A evolves
into B by means of the catalyst C” or “A implies B if C amongst others holds”
where we just don’t know the others or perhaps don’t know if others are needed
in the first place. This is the principle of incomplete knowledge which I think
one needs to import into mathematics because as far as I know nature operates
in this way by means of our free will. The reader automatically notices that it
is possible for

A
C→ B andA

C→ ¬B

to hold where ¬ can be interpreted in the classical or intuitionistic sense. A
mistake which is commonly made in science is that A → B is interpreted to
mean that A is a cause for B, or that A is a reason for B to hold. Such
interpretations however are wrong since it is not (experimentally) possible to
verify a reason for something to occur; the only thing we can measure are
coincidences. For example, it is equally possible for angels to move the planets
the way they do than it is for gravity to do the job; the laws of gravity merely
establish the way in which the motion of the earth around the sun occurs but
it provides no reason or cause for it. One expects the following rule to hold(

A
C,D→ B

)
→

(
A

C→ B
)

in either further specification narrows down the implication. One does not have
that

(A→ B)→
(
A

C→ B
)
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is true since for C = ¬B, the right hand side is always false. We call C compatible
or of no influence if this sentence is true. In case also the reverse implication
holds (

A
C→ B

)
→ (A→ B)

we call C redundant or unnecessary. For example, A is H2O and B liquid water
and C is 50 degrees centigrade; since the molecule H2O is always liquid water
at this temperature, this information is redundant. In case C is an influence,
we call the latter maximal or complete if(

A
C→ B

)
→ (A ∧ C → B)

is true while the implication

(A ∧ C → B)→
(
A

C→ B
)

is true by definition. While the sentence

(A ∧ C → B)→ (A ∧ ¬C → B)

is not always true, it can be that(
A

C→ B
)
→

(
A
¬C→ B

)
is true and the reader should give an example of this (for example when C and
¬C are redundant). In the next section, we develop an arithmetic application
of these logical rules.

4 Generalized arithmetic.

As an example, we consider a real measurement of the length of a straight line
segment; the latter is never perfect and in principle it is impossible to know
the probability distribution of the error margin, if such distribution would exist
in the first place. So a number 1.2 could mean exactly that or it might stand
for any real number with further digits following the 2. Hence, 1.2 + 1 could
be equal to 2.2 or 2.3 or . . . or 3.2 and the probabilities for this to happen are
unknown. It could of course be also 2.33 and so on, so we have sentences

(x = 1.2 ∧ y = 1)
+→ x+ y = 2.2

and
(x = 1.2 ∧ y = 1)

+→ x+ y = ¬2.2

where

¬2.2 = any two digit number of the form 2.awith 9 > a > 2.

It is a piece of cake to verify that both are correct and therefore embody the
very essence of our logic. One could develop further, more radical, examples but
we leave this for future work; the work in here merely served as an introduction
to the idea.
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