
Is “Dark Energy” Just an Effect of Gravitational Time Dilation?

Steven Kenneth Kauffmann∗

Abstract

When an expanding uniform-density dust ball’s radius doesn’t sufficiently exceed the Schwarzschild value,
its expansion rate will actually be increasing because the dominant gravitational time dilation effect di-
minishes as the dust ball expands. But such acceleration of expansion is absent in “comoving coordinates”
because the “comoving” fixing of the 00 component of the metric tensor to unity extinguishes gravita-
tional time dilation, as is evidenced in the “comoving” FLRW dust-ball model by the Newtonian form
of its Friedmann equation of motion. Therefore we extend to all dust-ball initial conditions the singu-
lar Oppenheimer-Snyder transformation from “comoving” to “standard” coordinates which they carried
out for a particular initial condition. In “standard” coordinates relativistic time dilation is manifest in
the equations of motion of the dynamical radii of all of the dust ball’s interior shells; the acceleration
of expansion of the surface shell peaks when its radius is only fractionally larger than the dust ball’s
Schwarzschild radius. Even so, for a range of initial conditions a dust ball’s expansion continues acceler-
ating at all “standard” times, although that acceleration asymptotically decreases toward zero. Attempts
to account for the observed acceleration of the expansion of the universe by fitting a nonzero “dark
energy” cosmological constant thus seem to be quite unnecessary.

Introduction

The Friedmann equation for the spherically-symmetric, uniform-density FLRW dust-ball model in “comov-
ing coordinates” is mathematically indistinguishable from the strictly Newtonian equation of motion for a
test mass moving purely radially under the gravitational influence of a point mass [1, 2]. That seeming
anomaly occurs because in “comoving coordinates” the metric component g00 is fixed to unity [3]; there-
fore since (g00)−

1
2 is the gravitational time dilation factor [4], “comoving coordinates” necessarily extinguish

gravitational time dilation, whose presence normally distinguishes GR from Newtonian gravitation (in which
there is no gravitational time dilation).

Gravitation without gravitational time dilation seems unlikely to be compatible with GR physical prin-
ciples, however. In fact, in order to accomplish the fixing of the metric component g00 to unity, “comoving
time” is defined by the clock readings of an infinite number of different observers [5], a “coordinate” definition
that is completely incompatible with Einstein’s observer-to-coordinate-system paradigm.

The GR-unphysical nature of “comoving time” is further underlined by the fact that the metric tensor for
the FLRW dust-ball model in “comoving coordinates” has a singularity at the particular “comoving time”
when the Newtonian-analog radially-moving test mass coincides in location with the Newtonian-analog point
mass.

That metric singularities are indeed GR-unphysical follows via Einstein’s equivalence principle from the
fact that coordinate-transformation Jacobian-matrix singularities are incompatible with the tensor contrac-
tion theorem—the tensor contraction theorem is of course indispensable to the general covariance of the
Einstein equation because the Einstein tensor is constructed from contractions of the Riemann tensor.

The incompatibility of coordinate-transformation Jacobian-matrix singularities with the tensor contrac-
tion theorem stems from the fact that the proof of the tensor contraction theorem requires the Jacobian
matrix of any candidate coordinate transformation x̄α(xµ) (and of its inverse transformation xν(x̄α)) to
satisfy the Jacobian-matrix relation [6],

(∂x̄α/∂xµ)(∂xν/∂x̄α) = δνµ, (1)

which, if each component of the Jacobian matrix ∂x̄α/∂xµ is well-defined in terms of the finite real numbers
at a given space-time point xµ, and also each component of its inverse matrix is thus well-defined in terms
of the finite real numbers, follows at that space-time point from the chain rule of the calculus. However,
because the right-hand side δνµ of Eq. (1) is always well-defined in terms of the finite real numbers, Eq. (1)
becomes self-inconsistent at any space-time point xµ where any component of the Jacobian matrix ∂x̄α/∂xµ

or any component of its inverse matrix fails to be a well-defined finite real number . Thus at a singularity of a
coordinate transformation’s Jacobian matrix or at a singularity of the inverse of that matrix the underpinning
of the proof of the GR-indispensable tensor contraction theorem is destroyed.
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Einstein’s equivalence principle implies that a metric tensor is at each space-time point the congruence
transformation of the Minkowski metric tensor with the Jacobian matrix of some coordinate transforma-
tion [7]. Therefore given the foregoing discussion of GR-physical coordinate transformations, a metric tensor
is GR-physical only at those space-time points where both it and its inverse consist solely of components
which are well-defined finite real numbers and its signature is equal to the {+,−,−,−} signature of the
Minkowski metric tensor [8]. Thus the metric tensor of the FLRW dust-ball model in “comoving coordi-
nates” is clearly GR-unphysical at its singularity in “comoving time”, namely at the particular “comoving
time” when its Newtonian-analog radially-moving test mass coincides in location with its Newtonian-analog
point mass.

In a GR-physical coordinate system where g00 isn’t fixed to unity, the FLRW dust-ball model will of
course be affected by gravitational time dilation. Oppenheimer and Snyder transformed an FLRW dust-ball
model with a very particular initial condition (namely that the radial velocity of the Newtonian-analog test
mass initially vanishes) from GR-unphysical “comoving coordinates”—where its metric tensor is governed by
the GR-unphysical Newtonian-analogous Friedmann equation—to “standard” coordinates [9], and found that
in this GR-physical coordinate system gravitational time dilation completely blocks the Newtonian-analog
radially-moving test mass from ever coming as near to the Newtonian-analog point mass as the Schwarzschild
radius of that point mass [10, 11, 2], thus preventing the “comoving coordinate” metric singularity from ever
occurring in GR-physical “standard” coordinates.

The time dilation introduced by the Oppenheimer-Snyder transformation from “comoving” to “standard”
coordinates is entirely naturally infinite at the Schwarzschild radius of the Newtonian-analog point mass.
That fact, however, makes the Oppenheimer-Snyder coordinate transformation a GR-unphysical singular
one. Of course it is mathematically obvious that a GR-unphysical singular metric can only be transformed
into a GR-physical nonsingular metric by a GR-unphysical singular coordinate transformation [11], such as
the one of Oppenheimer and Snyder. If the relevant Einstein equations were all analytically solvable, the
GR practitioner would have no call to ever become thus embroiled in GR-unphysical singular metrics or
coordinate transformations. For example, the GR sensible approach to the FLRW dust ball model would
be to straightaway solve its Einstein equation in a GR-physical coordinate system such as the “standard”,
“isotropic” or “harmonic” one, shunning the patently GR-unphysical g00 = 1 “comoving system” like the
proverbial plague. Unfortunately, of course, the brutal fact of the matter is that it isn’t known how to analyt-
ically solve the Einstein equation for the dust ball in other than GR-unphysical “comoving coordinates”. But
the GR practitioner certainly mustn’t proceed under the misapprehension that the use of GR-unphysical
g00 = 1 “coordinates” produces an Einstein-equation solution which is GR-physical; indeed the resulting
very precisely Newtonian Friedmann equation for a test mass moving radially in the gravitational field of a
point mass, which is bereft of any trace of purely relativistic phenomena such as gravitational or speed time
dilation, but which does deliver a wholly GR-unphysical metric singularity , absolutely confirms the opposite.

Therefore if we want GR-physical analytic results of the FLRW dust ball model, we apparently have no
viable option other than to follow the Oppenheimer-Snyder lead of (singularly) transforming the patently
GR-unphysical singular “comoving” dust-ball metric to a GR-physical coordinate system, such as the “stan-
dard”, “isotropic” or “harmonic” one, in which we would have analytically solved the dust-ball Einstein
equation had we been able to do so.

The experience of Oppenheimer and Snyder clearly shows that this coordinate-transformation course
indeed fills in fundamental phenomena of GR physics such as gravitational time dilation that are entirely
absent from GR-unphysical “comoving metric” results. Proper understanding of gravitational time dilation in
the dust-ball model is of considerable importance, for example, to working out the behavior of an expanding
dust ball in the distant past [2]. Gravitational time dilation can, just on its face, be expected to reverse
the intuitive Newtonian “deceleration of expansion” of any dust ball which isn’t sufficiently larger than its
Schwarzschild radius. Such implications of gravitational time dilation for dust balls are of special interest
in light of observations that the universe is undergoing “acceleration of expansion” [12, 13] (which has
popularly been modeled by fitting a nonzero value of the “cosmological constant”, thereby producing a
space-time permeating “expansive pressure” [14], the ether-reminiscent “dark energy”).

Therefore this article will extend Oppenheimer and Snyder’s transformation from their specialized case
of initially stationary dust-ball uniform energy density [15] in “comoving coordinates” to any initial rate
of change of dust-ball uniform energy density in those “coordinates”. The specialized Oppenheimer-Snyder
initial condition is guaranteed to be immediately followed by an epoch of increasing uniform energy density
of the dust ball in “comoving coordinates”, which implies a contracting dust-ball radius in GR-physical
coordinates such as “standard” coordinates. Oppenheimer and Snyder’s focus on “gravitational collapse”
guided their selection of a specialized initial condition, but here we want to as well treat all cases of expanding
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dust balls, so we will avoid restricting the initial rate of change of dust-ball uniform energy density.
The extension to arbitrary initial rates of change of dust-ball uniform energy density results in an extended

form of the particular Friedmann equation which was relevant for Oppenheimer and Snyder. Therefore, before
we present the derivation of the extended Oppenheimer-Snyder transformation itself, we present in the next
section important properties of the solutions of that extended Friedmann equation, as those solutions are
key constituents of the GR-unphysical singular “comoving metric tensors” for dust balls which are to be
(singularly) transformed to GR-physical nonsingular “standard” form.

Friedmann-equation solutions for general “comoving” dust balls

In GR-unphysical “comoving coordinates” all individual dust particles always have zero three-velocity [16], so
a uniform energy-density dust ball of radius a never changes that radius in “comoving coordinates”. However,
the value of the uniform energy density within the dust ball can change in GR-unphysical “comoving time”;
the Friedmann equation is a consequence of the Einstein equation in “comoving coordinates” which governs
the evolution of the dust ball’s uniform energy density and the accompanying “comoving metric tensor”
within the dust ball. The dimensionless function which the first-order Friedmann differential equation in
GR-unphysical “comoving time” describes can be conceptualized in different ways, one convenient one being
as the cube root of the reciprocal of the ratio of the dust ball’s uniform energy density to its initial uniform
energy density [17],

R(t) = (ρ(t0)/ρ(t))
1
3 , (2a)

so that R(t0) = 1. But in addition to the Eq. (2a) relationship that is satisfied by R(t), the square of R(t)
also occurs as the unique “comoving time-dependent” factor of both nontrivial components of the spherically-
symmetric “comoving metric tensor” [18].

The Friedmann equation for R(t) which follows from the Einstein equation for the uniform energy-density
dust ball in “comoving coordinates” can be conveniently written as [19],

(Ṙ(t))2 = ω2((1/R(t)) + γ), (2b)

for which, from Eq. (2a),
R(t0) = 1. (2c)

The convenient abbreviation ω2 is defined by,

ω2 def
= (8π/3)Gρ(t0)/c2, (2d)

and the dimensionless constant γ can be evaluated in terms of (Ṙ(t0)/ω)2 by specializing Eq. (2b) to the
initial time t = t0,

γ = (Ṙ(t0)/ω)2 − 1 = (ρ̇(t0)/(3ωρ(t0)))2 − 1, (2e)

where the second equality follows from Eq. (2a). Thus γ reflects ρ̇(t0), the initial rate of change of dust-ball
uniform energy density, moreover,

γ ≥ −1. (2f)

Oppenheimer and Snyder deliberately restricted their work to ρ̇(t0) = 0, i.e., to γ = −1.
The wholly Newtonian analog of the Friedmann equation emerges upon taking the radial coordinate r(t)

of the purely radially moving Newtonian-analog test mass to be,

r(t)
def
= aR(t), (3a)

and the mass M of the Newtonian-analog point mass to be the initial effective mass of the dust ball, i.e.,

M = (4π/3)ρ(t0)a3/c2 = ω2a3/(2G), (3b)

which implies that,
ω2 = 2GM/a3. (3c)

Inserting the Eq. (3a) and (3c) substitutions for R(t) and ω2 into the Friedmann Eq. (2b) and also into
Eq. (2e) for γ, and furthermore taking account of the Eq. (2c) initial condition yields,

1
2 (ṙ(t))2 −GM/r(t) = 1

2 (ṙ(t0))2 −GM/r(t0), (4a)
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which when multiplied through by the arbitrary value m of the test mass yields the very familiar conservation
of the strictly Newtonian kinetic plus gravitational potential energy of the test mass in the gravitational field
of the point mass M .

Of course when the location of the test mass is coincident with that of the point mass, namely when
r(t) = 0 (which is when R(t) = 0 in the language of the Friedmann equation), then (ṙ(t))2 is infinite (and
the same is true of (Ṙ(t))2 in Friedmann equation language). Furthermore, since (R(t))2 is the “comoving”
time-dependent factor of both nontrivial components of the “comoving metric” which applies within the
dust ball, that metric is singular when R(t) = 0. In addition, Eq. (2a) tells us that ρ(t) is infinite when
R(t) = 0.

A simple alternative way to write the test-mass Eq. (4a) is readily verified to be,

(dr/dt)2 = 2GM
(
(1/r) + (γ/a)

)
, (4b)

where, of course, a = r(t0). In “standard” coordinates it will turn out that the dynamically changing radius
of the dust ball obeys Eq. (4b) in the nonrelativistic limit c → ∞, but for finite values of c, the form of
Eq. (4b) is modified by a reciprocal squared relativistic time dilation factor on its right-hand side that makes
|dr/dt| not only less than c but as well linearly diminishing toward zero as r approaches the Schwarzschild
radius value rS = 2GM/c2 of the dust ball.

The solution of the Friedmann equation can be directly expressed in terms of elementary functions only
for “parabolic” initial conditions wherein γ = 0. In that case the Friedmann equation simplifies to,

(Ṙ(t))2 = ω2/R(t) or Ṙ(t) = ±ω/(R(t))
1
2 , (5a)

which with the initial condition R(t0) = 1 yields the solution,

R(t) = (1± 3
2ω(t− t0))

2
3 , (5b)

where ± is the sign of Ṙ(t0).
Even in those cases where γ 6= 0, however, the Friedmann equation and its initial condition R(t0) = 1

can be cast into the integral form, ∫ R(t)

1
R

1
2 dR/(1 + γR)

1
2 = ±ω(t− t0). (6)

where ± is again the sign of Ṙ(t0) when Ṙ(t0) 6= 0, and equals −1 in the case that Ṙ(t0) vanishes (which is
precisely the γ = −1 case that was treated by Oppenheimer and Snyder).

In the “parabolic” γ = 0 initial-condition case, Eq. (6) quickly leads to the solution for R(t) that is given
in Eq. (5b).

In the “hyperbolic” γ > 0 initial-condition case, the change of variable R = [sinh(u)]2/γ, i.e., u =
sinh−1((γR)

1
2 ), permits evaluation of the integral on the left side of Eq. (6) in terms of elementary functions.

But the consequence of that evaluation is only an implicit algebraic expression for R(t), namely,

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + γ−

1
2 sinh−1(γ

1
2 )− γ− 1

2 sinh−1((γR(t))
1
2 ) = ±γω(t− t0). (7a)

Since sinh−1(x) = ln
(
(1 + x2)

1
2 + x

)
, we can also express Eq. (7a) in the form,

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + γ−

1
2 ln

(
(1+γ)

1
2 +γ

1
2

(1+γR(t))
1
2 +(γR(t))

1
2

)
= ±γω(t− t0). (7b)

In the “elliptic” −1 ≤ γ < 0 initial-condition case, the change of variable R = −[sin(u)]2/γ, i.e.,
u = arcsin((−γR)

1
2 ), likewise permits evaluation of the integral on the left side of Eq. (6) in terms of

elementary functions. The consequence of that evaluation is the following implicit algebraic expression for
R(t),

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + (−γ)−

1
2 arcsin((−γ)

1
2 )− (−γ)−

1
2 arcsin((−γR(t))

1
2 ) = ±γω(t− t0). (8)

We have pointed out that at the “comoving time” t when R(t) = 0 it is the case that (Ṙ(t))2 is infinite
and the “comoving” metric is singular . With Eqs. (5b), (7b) and (8) in hand, we can now explicitly write
down the value of the “comoving time” ts when R(ts) = 0, namely the value of the “comoving time” when
this singularity occurs.
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In the “parabolic” initial-condition case that γ = 0 we see from Eq. (5b) that if R(ts) = 0,

ts = t0 ∓ 2
3ω
−1. (9a)

In the “hyperbolic” initial-condition case that γ > 0 we see from Eq. (7b) that if R(ts) = 0,

ts = t0 ∓ (γω)−1
[
(1 + γ)

1
2 − γ− 1

2 ln
(
(1 + γ)

1
2 + γ

1
2

)]
, (9b)

In the “elliptic“ initial-condition case that −1 ≤ γ < 0 we see from Eq. (8) that if R(ts) = 0,

ts = t0 ∓ (γω)−1
[
(1 + γ)

1
2 − (−γ)−

1
2 arcsin

(
(−γ)

1
2

)]
. (9c)

Having completed this comprehensive discussion of the character of the Friedmann equation and its
solutions in the cases of “parabolic”, “hyperbolic” and “elliptic” types of dust-ball initial conditions, we
now turn to the extension to all of these types of dust-ball initial conditions of the Oppenheimer-Snyder
transformation—the work of Oppenheimer and Snyder themselves was deliberately restricted to ρ̇(t0) = 0,
which corresponds to the “elliptic” value −1 for the Friedmann-equation parameter γ.

The Oppenheimer-Snyder transformation for general “comoving” dust balls

The spherically-symmetric “comoving metric” for which the Einstein equation is solved in conjunction with
the dust ball of radius a and uniform initial energy density ρ(t0) has the form [20],

ds2 = (cdt)2 − U(r, t)dr2 − V (r, t)((dθ)2 + (sin θdφ)2). (10a)

The result in the region 0 ≤ r ≤ a of solving the Einstein equation for this metric and the dust ball’s uniform
energy density ρ(t) is [21],

V (r, t) = r2(R(t))2, U(r, t) = (R(t))2/(1 + γ(ωr/c)2), and ρ(t) = ρ(t0)/(R(t))3, (10b)

where,

ω2 def
= (8π/3)Gρ(t0)/c2, (10c)

and the dimensionless entity R(t) satisfies the Friedmann equation,

(Ṙ(t))2 = ω2((1/R(t)) + γ), (10d)

with the initial condition R(t0) = 1, which implies that γ = (Ṙ(t0)/ω)2 − 1 = (ρ̇(t0)/(3ωρ(t0)))2 − 1 ≥ −1.
To carry out the Oppenheimer-Snyder mapping of the spherically-symmetric “comoving” coordinates (r, t)

to the spherically-symmetric “standard” coordinates (r̄, t̄) we write the invariant differential line element ds2

of Eq. (10a) in terms of the metric tensors of both coordinate systems [2, 11],

ds2 = B(r̄, t̄)(cdt̄)2 −A(r̄, t̄)(dr̄)2 − r̄2((dθ)2 + (sin θdφ)2)
= (cdt)2 − U(r, t)(dr)2 − V (r, t)((dθ)2 + (sin θdφ)2).

(11a)

Eq. (11a) constrains the mapping vector (r̄(r, t), t̄(r, t)); thus comparing the last terms on the left and
right-hand sides respectively of Eq. (11a) immediately yields,

r̄(r, t) = (V (r, t))
1
2 = rR(t), (11b)

where we have used the Eq. (10b) relation V (r, t) = r2(R(t))2. Next we would like to obtain t̄ as a function
of r and t, just as has been done in Eq. (11b) for r̄. Inspection of Eq. (11a), however, reveals that that task
is completely entwined with the determination of B and A as functions of r and t; moreover t̄ itself doesn’t
occur in relations that can be extracted from Eq. (11a), only its partial derivatives (∂t̄/∂t) and (c(∂t̄/∂r))
do. We are thus faced with solving both simultaneous algebraic and first-order partial differential equations
merely to obtain t̄(r, t)! These considerations give us our first small taste of the formidably long and arduous
path, so masterly pioneered by Oppenheimer and Snyder, which lies ahead.

We now present in more explicit detail the part of Eq. (11a) which still must be solved to obtain B, A
and t̄,

B[(∂t̄/∂t)(cdt) + c(∂t̄/∂r)dr]2 −A[(1/c)(∂r̄/∂t)(cdt) + (∂r̄/∂r)dr]2 = (cdt)2 − U(r, t)(dr)2. (11c)
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Since the three bilinear differential forms (cdt)2, (2c dt dr) and (dr)2 are linearly independent, Eq. (11c)
produces the three simultaneous equations,

B(∂t̄/∂t)2 −A((1/c)(∂r̄/∂t))2 = 1, (12a)

B(∂t̄/∂t)(c(∂t̄/∂r))−A((1/c)(∂r̄/∂t))(∂r̄/∂r) = 0, (12b)

B(c(∂t̄/∂r))2 −A(∂r̄/∂r)2 = −U. (12c)

We begin by solving Eq. (12b) for B in terms of A, (∂t̄/∂t) and (c(∂t̄/∂r)),

B = A((1/c)(∂r̄/∂t))(∂r̄/∂r)
(∂t̄/∂t)(c(∂t̄/∂r)) . (13a)

We substitute Eq. (13a) into Eq. (12a), and solve the result for A in terms of (∂t̄/∂t) and (c(∂t̄/∂r)),

A = 1
(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)/(c(∂t̄/∂r))−((1/c)(∂r̄/∂t))2 . (13b)

We now divide Eq. (12c) through by A, thus expressing it in terms of (B/A) and (1/A). Into that we insert
(B/A) obtained from Eq. (13a) and (1/A) obtained from Eq. (13b). The resulting equation in terms of
(∂t̄/∂t) and (c(∂t̄/∂r)) is,

(1/c)(∂r̄/∂t)(∂r̄/∂r)(c(∂t̄/∂r))
(∂t̄/∂t) − (∂r̄/∂r)2 + U

[
(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)

(c(∂t̄/∂r)) − ((1/c)(∂r̄/∂t))2
]

= 0. (14a)

We now multiply Eq. (14a) through by the factor (∂t̄/∂t)(c(∂t̄/∂r)) to obtain the following homogeneous
bilinear equation in the two variables (∂t̄/∂t) and (c(∂t̄/∂r)),

(1/c)(∂r̄/∂t)(∂r̄/∂r)(c(∂t̄/∂r))2 − (∂r̄/∂r)2(∂t̄/∂t)(c(∂t̄/∂r))+
U [(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)2 − ((1/c)(∂r̄/∂t))2(∂t̄/∂t)(c(∂t̄/∂r))] = 0.

(14b)

The structure of this homogeneous bilinear equation in the two variables (∂t̄/∂t) and (c(∂t̄/∂r)) becomes
more transparent after dividing it through by the factor U(∂r̄/∂r)((1/c)(∂r̄/∂t)) and rearranging the order
of the terms to obtain,

(∂t̄/∂t)2 −
([

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
+
[

(∂r̄/∂r)
U((1/c)(∂r̄/∂t))

])
(∂t̄/∂t)(c(∂t̄/∂r)) +

[
1
U

]
(c(∂t̄/∂r))2 = 0. (14c)

The homogeneous bilinear form in (∂t̄/∂t) and (c(∂t̄/∂r)) on the left-hand side of Eq. (14c) can now be seen
to factor into the product of two homogeneous linear forms in (∂t̄/∂t) and (c(∂t̄/∂r)), namely,(

(∂t̄/∂t)−
[

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
(c(∂t̄/∂r))

)(
(∂t̄/∂t)−

[
(∂r̄/∂r)

U((1/c)(∂r̄/∂t))

]
(c(∂t̄/∂r))

)
= 0. (14d)

Now the first factor on the left-hand side of Eq. (14d) turns out to also be a factor of the denominator of
the solution for A which is given by Eq. (13b). Indeed, it is readily verified from Eq. (13b) that (1/A) can
be written in the form,

(1/A) =
(

(∂t̄/∂t)−
[

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
(c(∂t̄/∂r))

)(
((1/c)(∂r̄/∂t))(∂r̄/∂r)

(c(∂t̄/∂r)

)
,

which implies that if the first factor on the left-hand side of Eq. (14d) vanished, then A would be infinite.
Thus to obtain a finite value for the “standard” metric component A, it must be that the second factor on
the left-hand side of Eq. (14d) vanishes, which implies the following homogeneous linear first-order partial
differential equation for t̄(r, t),

((1/c)(∂r̄/∂t))U(∂t̄/∂t) = (∂r̄/∂r)(c(∂t̄/∂r)). (15a)

Since r̄(r, t) = rR(t) from Eq. (11b) and U(r, t) = (R(t))2/(1 + γ(ωr/c)2) from Eq. (10b), the Eq. (15a)
partial differential equation for t̄(r, t) can be written,

[(r/c)/(1 + γ(ωr/c)2)](∂t̄/∂t) = [R(t)Ṙ(t)]−1(c(∂t̄/∂r)). (15b)

6



Now given a separable homogeneous linear first-order partial differential equation of the form,

τ(r)(∂t̄/∂t) = T (t)(c(∂t̄/∂r)), (16a)

there exists a large class of solutions for t̄(r, t). Indeed, for any differentiable dimensionless function χ(y) of
dimensionless argument, Eq. (16a) is solved by,

t̄(r, t) = t1χ
(
f (2)

∫ t
t2
T (t′)dt′ + (1/c)f (2)

∫ r
r0
τ(r′)dr′

)
, (16b)

where f (2), r0, t1 and t2 are arbitrary constants with the dimensions of frequency squared, length and time
respectively. That the t̄(r, t) of Eq. (16b) actually solves the partial differential equation of Eq. (16a) can be
straightforwardly verified.

In the particular case of Eq. (15b), which of course is the partial differential equation of actual interest
to us, τ(r) = (r/c)/(1 + γ(ωr/c)2) and T (t) = [R(t)Ṙ(t)]−1. If we conveniently select the arbitrary constant
r0 of Eq. (16b) to be zero, then,

(1/c)
∫ r

0
[(r′/c)/(1 + γ(ωr′/c)2)]dr′ = 1

2 (γω2)−1 ln(1 + γ(ωr/c)2) = (γω2)−1 ln[(1 + γ(ωr/c)2)
1
2 ]. (16c)

Similarly, if we conveniently select the arbitrary constant t2 to be the time ts of the “comoving” metric’s
GR-unphysical singularity , namely ts is such that R(ts) = 0 (the precise value of ts is laid out in complete
detail in Eqs. (9)), then, ∫ t

ts
[R(t′)Ṙ(t′)]−1dt′ =

∫ t
ts

[R(t′)(Ṙ(t′))2]−1Ṙ(t′)dt′ =

(ω2)−1
∫ t
ts

[1 + γR(t′)]−1Ṙ(t′)dt′ = (ω2)−1
∫ R(t)

0
[1 + γR′]−1dR′ = (γω2)−1 ln(1 + γR(t)),

(16d)

where we applied, in succession, the Eq. (10d) Friedmann equation of motion (Ṙ(t))2 = ω2((1/R(t))+γ), the
change of integration variable from t′ to R′ = R(t′) (for which Ṙ(t′)dt′ = dR′), and the fact that R(ts) = 0.

We now insert the integrations performed in Eqs. (16c) and (16d) into the Eq. (16b) solution prescription,
and furthermore select the following convenient values for the two remaining arbitrary constants: f (2) = γω2

and t1 = (1/ω). This yields the solution t̄(r, t) of the Eq. (15b) partial differential equation as,

t̄(r, t) = (1/ω)χ
(
ln[(1 + γ(ωr/c)2)

1
2 (1 + γR(t))]

)
, (16e)

where χ(y) is an arbitrary differentiable dimensionless function of dimensionless argument. A tidier, more
compact expression of this result is,

t̄(r, t) = (1/ω)φ(u(r, t)), (16f)

where u(r, t) is defined as,

u(r, t)
def
= (1 + γ(ωr/c)2)

1
2 (1 + γR(t)), (16g)

and φ(u) is an arbitrary differentiable dimensionless function of positive dimensionless argument. It is
well worth noting that the t̄(r, t) given by Eqs. (16f) and (16g) can straightforwardly be verified to satisfy
Eq. (15b), provided that the Friedmann equation of motion (Ṙ(t))2 = ω2((1/R(t))+γ) for R(t) is taken into
account.

In the region 0 ≤ r ≤ a we now have obtained the general form of t̄(r, t) given by Eqs. (16f) and (16g),
albeit in terms of a function of one variable φ(u) which hasn’t yet been determined , to which we can add the
Eq. (11b) fact that r̄(r, t) = rR(t). With those two pieces of information we can also obtain the “standard”
metric component functions A and B by applying Eqs. (13b) and (13a). The results for A and B aren’t
definitive either because they involve φ′(u) which hasn’t yet been determined . Oppenheimer and Snyder
insightfully realized , however, thatA andB are in fact uniquely determined at the r = a surface of the dust ball
by the Birkhoff theorem. As a matter of fact, it turns out that A conforms to the requirement of the Birkhoff
theorem at r = a regardless of what the function φ(u) is. But that definitely isn’t the case for B; the Birkhoff-
theorem requirement for B at r = a determines |φ′(u)|, and thus completes our knowledge of the “comoving”
to “standard” time transformation t̄(r, t). Not surprisingly, however, t̄(a, t) turns out to be infinite if r̄(a, t)
isn’t larger than the dust ball’s Schwarzschild radius a(ωa/c)2 = (8π/3)Gρ(t0)a3/c4 = 2GM/c2 (since
M = (4π/3)ρ(t0)a3/c2), a singular consequence of the restoration in GR-physical “standard” coordinates
of the gravitational time dilation that simply doesn’t exist in the GR-unphysical “comoving coordinates”.
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Gravitational time dilation stymies the dust ball’s access in “standard” coordinates to a radius as small or
smaller than its Schwarzschild radius, even in the arbitrarily distant past .

To calculate the “standard” metric components A and B we require the partial derivatives of t̄(r, t) and
r̄(r, t) which enter into Eqs. (13b) and (13a) for A and B respectively. We use Eqs. (16f) and (16g) for t̄(r, t)
to calculate its two partial derivatives,

(c(∂t̄/∂r)) = γ(ωr/c)(1 + γ(ωr/c)2)−
1
2 (1 + γR(t))φ′(u(r, t)), (17a)

and,
(∂t̄/∂t) = (γṘ(t)/ω)(1 + γ(ωr/c)2)

1
2φ′(u(r, t)). (17b)

We calculate the two partial derivatives of r̄(r, t) from its formula r̄(r, t) = rR(t),

(∂r̄/∂r) = R(t), (17c)

and,
((1/c)(∂r̄/∂t)) = (rṘ(t)/c), (17d)

When Eqs. (17a) through (17d) are inserted into Eq. (13b) for A, no factors of φ′(u(r, t)) survive. Indeed,
with the help of the Friedmann equation, (Ṙ(t))2 = ω2((1/R(t)) + γ), A(r, t) is seen to have the relatively
simple form,

A(r, t) = 1
1−[(ωr/c)2/R(t)] . (18a)

At the surface of the dust ball, namely at r = a, the A(a, t) implied by Eq. (18a) automatically has the
Birkhoff-theorem mandated empty-space Schwarzschild-metric A-component form as a function of r̄(a, t) =
aR(t),

A(a, t) = 1
1−[(ωa/c)2/R(t)] = 1

1−[(ω2a3)/(c2r̄(a,t))] = 1
1−[(2GM)/(c2r̄)] , (18b)

where the last equality in Eq. (18b) is the consequence of ω2 = (8π/3)Gρ(t0)/c2, which is the definition of ω2

given by Eq. (10c), together with the definition of the mass of the dust ball, namely M = (4π/3)ρ(t0)a3/c2.
The last expression on the right-hand side of Eq. (18b) is indeed the familiar classic A-component of the
empty-space Schwarzschild metric tensor , which is exactly what is mandated for A(r, t) at the r = a surface of
the dust ball by the Birkhoff theorem. Therefore the Eq. (18a) result for the A-component of the “standard”
metric tensor doesn’t provide any information about the not yet determined function φ(u).

However when Eqs. (17a) through (17d) are inserted into Eq. (13a) for B, the result is,

B(r, t) = 1
((1/R(t))+γ)(1−[(ωr/c)2/R(t)])(γφ′(u(r,t)))2 , (18c)

which, in stark contrast with the A(r, t) of Eq. (18a), is explicitly dependent on the not yet determined
function φ(u). The presence within the structure of the B(r, t) of Eq. (18c) of a not yet determined function
is in fact fortunate because the Birkhoff theorem at the dust-ball’s surface mandates that,

B(a, t) = (1− [(2GM)/(c2r̄(a, t))]) = (1− [(ωa/c)2/R(t)]), (18d)

which is obliged to be be consistent with the result for B(a, t) which is implied by B(r, t) given by Eq. (18c).
We therefore equate the second expression for B(a, t) on the right-hand side of Eq. (18d) to the just discussed
result for B(a, t) which follows from the Eq. (18c) form for B(r, t), and then solve the resulting equation for
φ′(u(a, t)). It turns out to be very convenient notationally to express that result for φ′(u(a, t)) in terms of
an intermediary definition, namely,

φ′(u(a, t)) = F (R(t)), (19a)

where,

F (s)
def
= ± 1

γ((1/s)+γ)
1
2 (1−[(ωa/c)2/s])

. (19b)

We note from Eq. (16g) that u(a, t) is a simple inhomogeneous linear function of R(t) which is readily
inverted, namely,

R(t) = γ−1[(1 + γ(ωa/c)2)−
1
2u(a, t)− 1]. (19c)

Therefore, from Eq. (19a),

φ′(u(a, t)) = F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u(a, t)− 1]

)
, (19d)
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which provides us the functional form of φ′(u) as,

φ′(u) = F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u− 1]

)
, (19e)

where the functional form of F (s) is, of course, given by Eq. (19b).
In order to obtain t̄(r, t), however, we see from Eq. (16f) that we need the functional form of φ(u), which

of course is,
φ(u) = φ(u0) +

∫ u
u0
du′ φ′(u′). (20a)

In Eq. (20a) we conveniently fix the arbitrary constant u0 to have the value of u(r, t) (which is defined by
Eq. (16g)) at the initial time t0 at the surface of the dust ball (namely at r = a),

u0 = u(a, t0) = (1 + γ(ωa/c)2)
1
2 (1 + γR(t0)) = (1 + γ(ωa/c)2)

1
2 (1 + γ), (20b)

with the last equality following from the fact that the initial time t0 satisfies R(t0) = 1 (see immediately
below Eq. (10d)).

Of course the functional form of φ′(u′) is obtained from Eq. (19e). We insert that functional form into
Eq. (20a), which produces,

φ(u) = φ(u(a, t0)) +
∫ u
u(a,t0)

du′ F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u′ − 1]

)
. (20c)

We can formally greatly simplify the integrand in Eq. (20c) by making the simple inhomogenous linear
change of the integration variable from u′ to s, where,

s = γ−1[(1 + γ(ωa/c)2)−
1
2u′ − 1], (20d)

and therefore,
u′ = [(1 + γ(ωa/c)2)

1
2 (1 + γs)] and du′ = (1 + γ(ωa/c)2)

1
2 γds. (20e)

With this change of the integration variable, Eq. (20c) becomes,

φ(u) = φ(u(a, t0)) + (1 + γ(ωa/c)2)
1
2 γ
∫ σ(u)

1
dsF (s), (20f)

where,

σ(u)
def
= γ−1[(1 + γ(ωa/c)2)−

1
2u− 1],

and we have used the fact given in Eq. (20b) that u(a, t0) = (1 + γ(ωa/c)2)
1
2 (1 + γ).

With the previously unknown function φ(u) now in hand via Eq. (20f), we recall from Eq. (16f) that the
GR-unphysical Oppenheimer-Snyder transformation t̄(r, t) from GR-unphysical “comoving space-time” to
GR-physical “standard” time is given by (1/ω)φ(u(r, t)), where u(r, t) = (1 + γ(ωr/c)2)

1
2 (1 + γR(t)) as per

Eq. (16g). Furthermore, the explicit form of the integrand F (s) in Eq. (20f) is, of course, given by Eq. (19b).
Putting all this together, we obtain,

t̄(r, t) = t̄(a, t0)±
(
(1 + γ(ωa/c)2)

1
2 /ω

) ∫ S(r,t)

1

ds

((1/s)+γ)
1
2 (1−[(ωa/c)2/s])

, (20g)

where,

S(r, t)
def
= σ(u(r, t)) = γ−1

[
(1 + γR(t))

(
1+γ(ωr/c)2

1+γ(ωa/c)2

) 1
2 − 1

]
, (20h)

and R(t) satisfies the Friedmann equation (Ṙ(t))2 = ω2((1/R(t)) + γ) with the initial condition R(t0) = 1.
Eq. (20g) is restricted to 0 ≤ r ≤ a, where a is the dust ball’s unchanging radius in “comoving coordinates”.
The parameter ω2 equals by definition (8π/3)Gρ(t0)/c2, where ρ(t0) is the initial uniform energy density
of the dust ball, while the parameter γ equals [(ρ̇(t0)/(3ωρ(t0)))2 − 1]; note that γ ≥ −1. The ± sign in
Eq. (20g) has the value of the sign of Ṙ(t) when Ṙ(t) 6= 0, and has the value −1 when Ṙ(t) = 0.

It is clear from Eq. (20g) that t̄(r, t) diverges to infinity whenever S(r, t) ≤ (ωa/c)2 (it is readily checked
that (ωa/c)2 is the Schwarzschild radius of the dust ball divided by its “comoving coordinate” radius a). Thus
all “comoving” space-time points (r, t) for which S(r, t) ≤ (ωa/c)2 are mapped to “standard” time infinity ,
which makes all such “comoving” space-time points inaccessible in GR-physical “standard” coordinates.

We have pointed out that the “comoving time” ts such that R(ts) = 0 produces a singularity in the
“comoving metric” described by Eqs. (10a) through (10d). It is readily checked from Eq. (20h) that
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S(r, ts) ≤ 0 < (ωa/c)2 for all r within the “comoving” dust ball, namely 0 ≤ r ≤ a. Therefore the
points of singularity of the “comoving” metric are inaccessible in GR-physical “standard” coordinates. That
is how the GR-unphysical singular Oppenheimer-Snyder transformation removes the singularity present in
the GR-unphysical “comoving” metric in the course of mapping it to the GR-physical nonsingular “standard”
metric.

In the next section we use the extended Oppenheimer-Snyder transformation’s r̄(r, t) = rR(t) of Eq. (11b)
and t̄(r, t) of Eqs. (20g) and (20h) to study the dynamical behavior in “standard” coordinates of the radii of
the dust ball’s interior shells. Despite having partially developed the wherewithal needed for such inquiry,
Oppenheimer and Snyder themselves made no systematic effort to pursue it , preferring instead to treat the
interior of the dust ball exclusively in terms of “comoving coordinates” and the consequent purely Newto-
nian Friedmann equation, which GR-unphysically extinguishes all relativistic time dilation, forcing the dust
ball’s interior energy density and metric to both become GR-unphysically singular at the GR-inaccessible
“comoving time” ts (for which R(ts) = 0)—that is mapped to “standard” time infinity !

Dust-ball interior-shell radial dynamics in “standard” coordinates

Because dust three-velocity is always zero everywhere in GR-unphysical “comoving coordinates” [16], the
dust ball’s interior-shell radii εa, 0 < ε ≤ 1, are unchanging in GR-unphysical “comoving time” t, which
implies that the “comoving-coordinate” world lines of the dust-ball interior shells are (εa, t), 0 < ε ≤ 1. The
corresponding “standard-coordinate” world lines (r̄εa(t), t̄εa(t)), 0 < ε ≤ 1, of the dust-ball interior shells
are obtained by applying the extended Oppenheimer-Snyder transformation (r̄(r, t), t̄(r, t)) to (r, t) = (εa, t),
0 < ε ≤ 1; the components r̄εa(t) = r̄(εa, t) and t̄εa(t) = t̄(εa, t) of those “standard-coordinate” world lines
of the dust-ball interior shells follow immediately from Eqs. (11b), (20g) and (20h),

r̄εa(t) = εaR(t) & t̄εa(t) = t̄(a, t0)±
(
(1 + γ(ωa/c)2)

1
2 /ω

) ∫ S(εa,t)

1

ds

((1/s)+γ)
1
2 (1−[(ωa/c)2/s])

, (21a)

where,

S(εa, t) = γ−1

[
(1 + γR(t))

(
1 + ε2γ(ωa/c)2

1 + γ(ωa/c)2

) 1
2

− 1

]
. (21b)

If we change the integration variable in the integral that appears in Eq. (21a) from s to ρ = εas, it becomes
apparent that the “standard-coordinate” local shell times t̄εa(t), 0 < ε ≤ 1, can be regarded as being functions
of their corresponding “standard-coordinate” shell radii r̄εa(t) = εaR(t), 0 < ε ≤ 1,

t̄εa(ρεa(r̄εa(t))) = t̄(a, t0)±
(
(1 + γ(ωa/c)2)

1
2 /(εωa)

) ∫ ρεa(r̄εa(t))

εa

dρ

((εa/ρ)+γ)
1
2 (1−[εa(ωa/c)2/ρ])

, (21c)

where,

ρεa(r̄εa(t)) = εaS(εa, t) = −(εa/γ) +

(
1 + ε2γ(ωa/c)2

1 + γ(ωa/c)2

) 1
2

(r̄εa(t) + (εa/γ)) . (21d)

Note that the complicated inhomogeneous linear function ρεa(r̄εa) given by Eq. (21d) greatly simplifies in
two special instances, the first being when ε = 1, namely the case of the dust ball’s surface shell ,

ρa(r̄a) = r̄a, (21e)

and the second being the c→∞ nonrelativistic limit,

lim
c→∞

ρεa(r̄εa) = r̄εa. (21f)

Eqs. (21c) and (21d) become more compact when they are expressed in terms of the dust ball’s “standard-
coordinate” Schwarzschild radius rS = a(ωa/c)2 = 2GM/c2 (where M = (4π/3)a3ρ(t0)/c2 = ω2a3/(2G))

and the dimensionless constant α
def
= γ(ωa/c)2 = γ(rS/a), instead of being expressed in terms of ω and γ,

t̄εa(ρεa(r̄εa)) = t̄(a, t0)±
(
(1 + α)

1
2 /(cε)

) ∫ ρεa(r̄εa)

εa

dρ

((εrS/ρ) + α)
1
2 (1− (εrS/ρ))

, (21g)
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where,

ρεa(r̄εa) = −(εrS/α) +

(
1 + ε2α

1 + α

) 1
2

(r̄εa + (εrS/α)) . (21h)

The integral in Eq. (21g) diverges to infinity unless ρεa(r̄εa) > εrS (and a > rS). Provided that care is
exercised to respect that caveat , the integral in Eq. (21g) can be evaluated in closed form; the resulting
completely analytic, but complicated, expression for t̄εa(ρεa(r̄εa)) is useful for crafting numerical plots of
r̄εa(t̄εa). We shall calculate that entirely analytic result for t̄εa(ρεa(r̄εa)) at the end of this section, but
unfortunately its form is too complicated to readily lend itself to direct interpretation.

However the integral form of t̄εa(ρεa(r̄εa)) that is given by Eqs. (21g) and (21h) also yields a first-order
differential equation for r̄εa(t̄εa), namely,

dr̄εa/dt̄εa = (dt̄εa(ρεa(r̄εa))/dr̄εa)
−1

= ±cε
(

(εrS/ρεa(r̄εa)) + α

1 + ε2α

) 1
2

(1− (εrS/ρεa(r̄εa))), (21i)

where ρεa(r̄εa) is given in detail by Eq. (21h). The caveat ρεa(r̄εa) > εrS, which carries over from Eq. (21g),
must of course be respected ; Eq. (21i) together with that caveat implies the following upper bounds on the
radial speeds |dr̄εa/dt̄εa|, 0 < ε ≤ 1, of the dust ball’s interior shells,

|dr̄εa/dt̄εa| < c

(
ε2 + ε2α

1 + ε2α

) 1
2

(1− (εrS/ρεa(r̄εa))). (21j)

Since the Eq. (21h) relation of ρεa(r̄εa) to r̄εa is a linear one, the upper bounds of Eq. (21j) drive |dr̄εa/dt̄εa|
linearly toward zero as ρεa(r̄εa)→ εrS+. Therefore it isn’t possible for ρεa(r̄εa) to become equal to or smaller
than εrS in any finite interval of “standard” local shell time ∆t̄εa. Thus the Eq. (21j) upper bounds on the
shell speeds |dr̄εa/dt̄εa| and the caveat that ρεa(r̄εa) > εrS mutually reinforce each other . Such zeroing of
the approach speed to a GR-unphysical configuration exemplifies the GR-crucial role of gravitational time
dilation. (In the special case that ε = 1, i.e., the case of the dust ball’s surface shell , we see from Eq. (21e) that
the caveat simplifies to r̄a > rS , namely the dust ball’s dynamical radius r̄a always exceeds its Schwarzschild
radius rS ; thus a dust ball never produces an event horizon.)

From Eq. (21f) and the facts that rS = 2GM/c2 and α = γ(rS/a), the c→∞ nonrelativistic limit of the
Eq. (21i) dust-ball shell radial equations of motion are readily seen to be,

dr̄εa/dt̄εa = ±ε 3
2 (2GM)

1
2 ((1/r̄εa) + (γ/(εa)))

1
2 . (21k)

These nonrelativistic-limit shell-radius equations of motion are completely devoid of the time-dilation speed
and configuration constraints which feature so prominently in Eq. (21j). Squaring both sides of Eq. (21k)
reveals that each one of these ε-labeled nonrelativistic-limit shell-radius equations of motion corresponds to
the Newtonian Friedmann equation (Ṙ(t̄εa))2 = ω2((1/R(t̄εa)) + γ), where ω2 = (2GM/a3), via the simple
scaling relationship r̄εa(t̄εa) = εaR(t̄εa), 0 < ε ≤ 1.

The Eq. (21i) dust-ball shell-radius first-order equation of motion in “standard” coordinates has a second-
order form which illuminates the modification of shell-radius acceleration caused by gravitational time dila-
tion. To obtain that form, both sides of the Eq. (21i) first-order equation are differentiated with respect to
t̄εa, the “standard” local time at the shell, which produces, inter alia, an overall factor of dr̄εa/dt̄εa on the
right-hand side of the result. That factor is then replaced by the right-hand side of the original Eq. (21i)
first-order equation, yielding the second-order equation,

d2r̄εa/dt̄
2
εa = (ε/2)(c2/rS)

[
(−1 + 2α)(εrS/ρεa(r̄εa))2 + 3(εrS/ρεa(r̄εa))3

] [ 1− (εrS/ρεa(r̄εa))

(1 + ε2α)
1
2 (1 + α)

1
2

]
, (21l)

which of course has the same caveat ρεa(r̄εa) > εrS as the Eq. (21i) first-order equation.
Just as was done with Eq. (21i), the c→∞ nonrelativistic limit of Eq. (21l) is readily worked out to be,

d2r̄εa/dt̄
2
εa = −ε3GM/r̄2

εa. (21m)

Eq. (21m) is straightforwardly verified to be consistent with the nonrelativistic limit of Eq. (21i) that is
given by the Newtonian Eq. (21k). The Eq. (21m) rendition of the radial acceleration of the ε-labeled shell
reflects the effective Newtonian mass ε3M which actually exerts force on that shell.
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However despite the fact that the shell-radius acceleration d2r̄εa/dt̄
2
εa of the nonrelativistic-limit Eq. (21m)

is always negative (i.e., inward), the full Eq. (21l) implies, because 3 > (1− 2α) (since α > −1), that there
always exists a range of ρεa(r̄εa) values which both satisfy the caveat ρεa(r̄εa) > εrS and produce positive
(i.e., outward) shell-radius acceleration d2r̄εa/dt̄

2
εa. We furthermore see that for all initial conditions which

satisfy α ≥ 1
2 every shell-radius acceleration d2r̄εa/dt̄

2
εa, 0 < ε ≤ 1, of the full Eq. (21l) is positive (i.e.,

outward) at all finite “standard” local times t̄εa—notice from Eq. (21g) that for finite “standard” local times
t̄εa(ρεa(r̄εa)) the caveat ρεa(r̄εa) > εrS is necessarily satisfied .

That α ≥ 1
2 causes every shell-radius acceleration d2r̄εa/dt̄

2
εa to be positive (i.e., outward) at all fi-

nite “standard” local times t̄εa apparently eliminates any need whatsoever to fit a nonzero “dark energy”
cosmological constant .

From Eq. (21l) we clearly see that the shell-radius accelerations d2r̄εa/dt̄
2
εa, which are always positive for

some range of r̄εa values that also satisfy the caveat that ρεa(r̄εa) > εrS , definitely as well tend toward zero
both when ρεa(r̄εa) → εrS and when ρεa(r̄εa) → +∞. Therefore d2r̄εa/dt̄

2
εa must have a positive maximum

at a value of r̄εa which also satisfies the crucial caveat that ρεa(r̄εa) > εrS . With algebraic effort we obtain
from Eq. (21l) that the value of r̄εa where d2r̄εa/dt̄

2
εa attains this maximum satisfies the equation,

ρεa
(
r̄
(max d2r̄εa/dt̄

2
εa)

εa

)
= (3εrS/2)

(
1 +

[
(3α+ 2) +

(
(3α+ 2)2 + 8

) 1
2

]−1
)−1

, (21n)

where, of course, α > −1. We note that ρεa
(
r̄
(max d2r̄εa/dt̄

2
εa)

εa

)
strictly increases with α, and as α → −1

it tends toward the value εrS , while as α → +∞ it tends toward the value 3εrS/2. We thus see that

ρεa
(
r̄
(max d2r̄εa/dt̄

2
εa)

εa

)
is under all circumstances only fractionally larger than the GR-inaccessible value εrS

of ρεa(r̄εa).

When we specialize Eq. (21n) to the ε = 1 dust-ball surface-shell case using Eq. (21e), we see that the
outward (i.e., positive) acceleration of the dust ball’s dynamical radius ra always peaks when that radius
is only fractionally larger than the dust ball’s Schwarzschild radius rS . Thus every expanding dust ball
experiences an outward “accelerative inflation” peak when its dynamical radius is only fractionally larger
than its Schwarzschild radius. Of course such a peak in outward acceleration doesn’t at all necessarily entail
any corresponding peak in outward expansion velocity (which is the commonplace conception of “inflation”);
there is scope for the expanding dust ball’s shell radii r̄εa to continue their outward acceleration forever ,
namely the situation delineated by Eq. (21l) when α ≥ 1

2—although that continuing outward acceleration
decreases asymptotically toward zero with increasing “standard” local time.

We now turn to the calculation of the (complicated) entirely analytic result for t̄εa(ρεa(r̄εa)) by carrying
out the integration in Eq. (21g). To do so, we change the integration variable from ρ to v = ((εrS/ρ) +α)

1
2 ,

which produces an integrand that is a rational function of v2. Partial-fraction expansion of that integrand
then yields,

t̄εa(ρεa(r̄εa)) = t̄(a,t0)±2(rS/c)(1+α)
1
2

∫ ((εrS/ρεa(r̄εa))+α)
1
2

((rS/a)+α)
1
2

dv

[
1

α−v2 −
1

(α−v2)2 −
1

1+α−v2

]
. (21o)

It is now straightforward to write down an appropriate particular indefinite integral I(v;α) of the elementary
three-term integrand which is given inside the square brackets of Eq. (21o),

I(v;α) = Ip(v;α)− tanh−1(v/(1 + α)
1
2 )

(1 + α)
1
2

, (21p)

where, of course, α > −1, and tanh−1(x) = 1
2 ln
(
(1 + x)/(1 − x)

)
is rejected as undefined unless |x| < 1 to

enforce the caveat that ρεa(r̄εa) > εrS . The remaining indefinite integral part Ip(v;α) that is referred to in
Eq. (21p) assumes three different functional forms, depending on whether α is positive, zero or negative,

Ip(v;α) =


(
1− 1

2α

)( tanh−1(α
1
2 /v)

α
1
2

)
−
(

1
2α

) (
v

α−v2

)
if α > 0,

1
v + 1

3v3 if α = 0,(
1− 1

2α

)( arctan((−α)
1
2 /v)

(−α)
1
2

)
−
(

1
2α

) (
v

α−v2

)
if α < 0.

(21q)
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With our appropriate particular indefinite integral I(v;α) thus fully in hand, we are able rewrite Eq. (21o)
in completely integrated, entirely analytic form,

t̄εa(ρεa(r̄εa)) = t̄(a, t0)± 2(rS/c)(1 + α)
1
2

[
I
(
v = ((εrS/ρεa(r̄εa)) + α)

1
2 ; α

)
− I
(
v = ((rS/a) + α)

1
2 ; α

)]
.

(21r)
We note that that the term ∓2(rS/c)(1 +α)

1
2 I
(
v = ((rS/a) +α)

1
2 ; α

)
of Eq. (21r) is completely independent

of both r̄εa and ε, and therefore can be combined with t̄(a, t0) to produce a new arbitrary constant t̄0.
Eq. (21r) is thereupon reexpressed as simply,

t̄εa(ρεa(r̄εa)) = t̄0 ± 2(rS/c)(1 + α)
1
2 I
(
v = ((εrS/ρεa(r̄εa)) + α)

1
2 ; α

)
. (21s)

Of course the caveats ρεa(r̄εa) > εrS and α > −1 must be respected when dealing with the arguments of
the entirely analytic Eq. (21s) representation of t̄εa(ρεa(r̄εa)), which, employed in tandem with the Eq. (21h)
function ρεa(r̄εa), is useful for crafting plots of the dust ball’s dynamical shell radii r̄εa(t̄εa), 0 < ε ≤ 1.
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