Recursive Scheme To Find Prime Numbers

May 15th, 16th 2016 Anno Domini

Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal
Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.
Email: rameshebagadi@uwalumni.com

White Paper One {TRL131}
of
Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank,
Technology Assistance & Innovation Center, Madison, Wisconsin-53715,
United States Of America
Abstract

In this research investigation, the author has presented an algorithmic ‘Scheme To Generate Prime Numbers’.

Theory

1. The Sequence of Primes \(PS \) can be decomposed into a Union of three distinct sets \(PS_x, PS_y \) and \(PS_z \) where \(PS_x \) is that Sub-Set of the Sequence of Primes \(PS \) which can be thought of to lie on the \(x \) Dimension, \(PS_y \) is that Sub-Set of the Sequence of Primes \(PS \) which can be thought of to lie on the \(y \) Dimension, \(PS_z \) is that Sub-Set of the Sequence of Primes \(PS \) which can be thought of to lie on the \(z \) Dimension,

2. If \(x_i, y_j \) and \(z_k \) are the \(i^{th}, j^{th} \) and \(k^{th} \) Primes respectively of \(PS_x, PS_y \) and \(PS_z \), then the Recursive Relations between the Elements of \(PS_x, PS_y \) and \(PS_z \) is given by

\[
x_i + y_j - z_k = z_{k+r}
\]

Using

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

We find all values of \(r \) such that the above equation is true.

Now, we know

\[
\begin{align*}
 j &= f_1(i), f_1(i), \ldots, a_1 f_1(i) \\
 k &= f_2(i), f_2(i), \ldots, a_2 f_2(i) \\
 r &= f_3(i), f_3(i), \ldots, a_3 f_3(i)
\end{align*}
\]
In a similar fashion, we write
\[z_{k+r} + y_j - x_i = x_{i+r} \]
We now know,
\[s = t^4(i), \quad t^4(i), \ldots, \alpha f_4(i) \]
And also
\[z_k + y_j - x_i = x_{i+r} \]
We now know
\[t = t^5(i), \quad t^5(i), \ldots, \alpha f_5(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[u = t^6(i), \quad t^6(i), \ldots, \alpha f_6(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[v = t^7(i), \quad t^7(i), \ldots, \alpha f_7(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[p = t^8(i), \quad t^8(i), \ldots, \alpha f_8(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[q = t^9(i), \quad t^9(i), \ldots, \alpha f_9(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[a = t^{10}(i), \quad t^{10}(i), \ldots, \alpha f_{10}(i) \]
Again, in a similar fashion, we write
\[y_j + x_i - z_k = z_{k+r} \]
We now know
\[b = t^{11}(i), \quad t^{11}(i), \ldots, \alpha f_{11}(i) \]
It can be observed that
\[a_{\xi}(t) f_{\xi}(i) \]
for \(\xi = 1 \) to 11
give us the Recursive Relations for
\[r = s = t = u = v = p = q = a = b = 1 \text{ and/or } 2 \text{ and/or } -1 \]
From these Recursive Relations, we can recursively find Primes.

Moral

Our Promises Hold The Key To Our Lives.

References

Ramesh Chandra Bagadi

www.vixra.org/author/ramesh_chandra_bagadi

Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving family, respectable teachers, en-dear-able friends, inspiring Social Figures, highly esteemed Professors, reverence deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the conception, preparation and authoring of this research manuscript document.

Tribute

The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural
phenomenon and forms new premises and scientifically surmises plausible laws. The author strongly reiterates his sense of gratitude and infinite indebtedness to all such ‘Philosophical Statesmen’ that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.

Dedication

All of the aforementioned Research Works, inclusive of this One are Dedicated to Lord Shiva.