
The Impedance Representation:
Proton Structure (and a little Spin) from an Electron Model

Peter Cameron∗

Strongarm Studios
Mattituck, NY USA 11952

(Dated: May 25, 2016)

Impedance is defined as a measure of the amplitude and phase of opposition to the flow of
energy. The notion of exact impedance quantization can be extended beyond quantum Hall to
impedances associated with all potentials. Geometric Clifford algebra permits one to construct a
geometric electron model, and to calculate elementrary particle spectrum observables (the S-matrix)
from interactions between geometric objects of the model. Proton structure (and a little spin) are
extracted from the dual character of scalar electric and pseudoscalar magnetic charges.

INTRODUCTION

This paper focuses upon the primary problem of the
high energy spin physics community, the ongoing failure
of QCD point-particle quark models to provide a coherent
picture of nucleon spin[1–4]. It is organized as follows:

• Introduction - outlines the structure of the paper,
introduces the impedance representation, and gives
a guided tour of the figures.

• Geometric Clifford Algebra and the Impedance
Representation - presents a brief historical account
of the remarkable absence from mainstream QFT
of Clifford’s original geometric interpreta-
tion, identifies the fundamental geometric objects
(FGOs) of the 3D Pauli and 4D Dirac subalgebras
of geometric algebra (GA) with the FGOs of the
impedance representation, and discusses topologi-
cal symmetry breaking inherent in the algebras.

• S-matrix and the Impedance Representation -
presents a brief historical account of the remark-
able absence from mainstream QFT of exact
impedance quantization, and the equivalence of
the S-matrix and impedance representions of QFT.

• Dark Modes and Symmetry Breaking - Mode struc-
tures of all the elementary particles are present in
the impedance representation. Particles with dark
FGOs (magnetic charge, electric dipole and
flux quantum) decay/decohere due to the differ-
ing vacuum impedances they excite, and the re-
sulting differential phase shifts. The stable proton
contains no dark FGOs, permitting us to pick out
its mode structure.

• Proton Mode Structure - the mode structure is pre-
sented and discussed, first in a subsection on tran-
sition modes and topological mass generation, then
in a second subsection on the stable state eigen-
modes and their representation of point parti-
cle quark models.

• (and a little Spin) - very brief discussion of present
status and possible near-future focus.

• Summary/Conclusion, Acknowledgements,....

Now for the Guided Tour of the Figures:

At the outset we proceed beyond the standard model,
beyond point particles, by examining commonality be-
tween fundamental geometric objects (FGOs) of geomet-
ric Clifford algebra[5–10] and those of the impedance
model of the electron[11] (figure 1).

FIG. 1. Shared FGOs of the 3D Pauli subalgebra of geometric
Clifford algebra [8] and those of the impedance approach to
geometric structure of the electron [11]. Bivector and trivec-
tor are pseudovector and pseudoscalar of the Pauli algebra.

As the figure shows, electromagnetic duality results in
magnetic inversion of geometric grade/dimension:

- scalar electric charge - grade 0 point
- vector electric moment - grade 1 line
- pseudovector magnetic moment - grade 2 area
- pseudoscalar magnetic charge - grade 3 volume

All are orientable.
One can identify these objects with the eight FGOs

of a minimally complete 3D Pauli algebra of space (top
and left side of figure 2), and via the geometric product
(figure 3) generate an impedance representation of their
interactions in the 4D Dirac algebra of flat Minkowski
spacetime[8]. If we take the eight FGOs at the top of
figure 2 to comprise the electron, then in the manner of
the Dirac equation those on the left are the positron.
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FIG. 2. Impedance representation of the S-matrix. At top and left are the eight FGOs of both the impedance model[11] and a
minimally complete Pauli algebra of 3D space - 1 scalar, 3 vectors, 3 bivectors/pseudovectors, and 1 trivector/pseudoscalar [8].
The matrix of background independent two-body interactions[29] is generated by geometric products of these FGOs. Matrix
elements comprise a 4D Dirac algebra of flat Minkowski spacetime, arranged in even (blue) and odd (yellow) by geometric
grade of the emerging FGOs (the observables). ‘Pauli FGOs’ enter an interaction. ‘Dirac FGOs’ emerge, are the Pauli FGOs
entering the next interaction. Impedances of modes indicated by colored symbols are plotted as a function of energy/length
scale in figure 4. Scale invariant mode impedances (quantum Hall, centrifugal, chiral, Coriolois, three body,...) are associated
with inverse square potentials, have no intrinsic energy. They do no work, but shift quantum phase, acting as mode couplers.

We then come back to point particles to set an anchor
point in the common language of the theorist, namely the
S-matrix representation of quantum field theory[12–18],
and explain its equivalence with what we are calling the
impedance representation. When you see ‘impedance’,
think S-matrix [19]. This permits one to look between
asymptotically free states of initial and final wavefunc-
tions, to look deep inside the black box of Wheeler and
Heisenberg’s ‘observables only’ S-matrix through the eyes
of both experimentalists and theoreticians.

A portion of the network that results from calculating
interaction impedances of ‘Pauli FGOs’ when endowed
with electric and magnetic fields is shown in figure 4.
The relationship between this representation and the un-
stable particle spectrum is established via correlations of
particle lifetimes (their coherence lengths on the causal

boundary of the light cone) with network nodes, where
impedances are matched and energy flows without re-
flection (as required by the decay process) [20–22].

The stable proton is absent from figure 4, which in-
cludes only photon, electron, and all the unstable parti-
cles. Which is not to say it is absent from figure 2. If
that figure is indeed a reasonable first approximation of
nature’s S-matrix, then proton mode structure must be
there. The question is how to identify those modes in the
maze of possibilities present in the impedance matrix.

As shown in figure 1, we see electric charge and mag-
netic dipole and flux quantum, but not their duals [23].
Magnetic charge [24, 25] and electric dipole and flux
quantum are absent, not visible, ‘dark’. Dark FGOs cou-
ple only indirectly to the photon not because they are
too weak, but rather too strong (figure 5) [11].
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The speed of light (or impedance of free space) can
be calculated from excitation of virtual electron-positron
pairs (represented in part as the impedance network of
figure 4) by the photon[26]. Dark FGOs couple more
strongly (see a different impedance). Modes containing
one or more dark FGOs decohere from differential phase
shifts. To identify the mode structure of the proton we
need only consider modes comprised exclusively of visible
FGOs (figure 6), a tremendous simplification.

GEOMETRIC CLIFFORD ALGEBRA AND
THE IMPEDANCE REPRESENTATION

The impedance approach (IA) to the S-matrix is
grounded in geometric Clifford algebra (GA), the alge-
bra of interactions between geometric objects as origi-
nally conceived by Grassman and Clifford[5–10]. With
the early death of Clifford in the late 1800s and ascen-
dance of the more simple vector algebra of Gibbs, the
power of geometric interpretation has for the most part
been lost in modern theoretical physics. While both Pauli
and Dirac algebras are subalgebras of GA, their geomet-
ric origin went unrecognized by their creators. It was
only in the 1960s with the work of David Hestenes that
the power of geometric interpretation was rediscovered
and introduced to physics, as recognized by the Ameri-
can Physical Society in awarding him the 2002 Oersted
Medal for “Reformulating the Mathematical Language of
Physics”[9]. Yet even with this endorsement GA remains
obscure, acceptance confoundingly slow.

As shown in figures 1 and 2 and discussed
elsewhere[27], IA and GA share the same Pauli FGOs.
Six geometric objects, three magnetic and three elec-
tric, follow from the electron model. However, the model
yields not one but two electric flux quanta[11, 28].

The first is associated with the magnetic flux quantum
(a fundamental constant) and quantization of magnetic
flux in the photon, which by Maxwell’s equations requires
quantization of electric flux as well. The second follows
from applying Gauss’s law to the electron charge, and
is a factor of 2α smaller, where α is the electromagnetic
fine structure constant. Similarly, there are not one but
two electric dipole moments in the model.

Like the wave function, whose ‘reality’ is of interest in
quantum interpretations [30], FGOs of the 3D Pauli alge-
bra are not observable. Of interest here are impedances
of observables, taken to be impedances of interactions
between Pauli FGOs - the mode impedances of the 4D
Dirac algebra. Or if you will, the S-matrix elements de-
rived from the impedance representation.

The matrix elements of figure 2, grouped by geomet-
ric grade, comprise a 4D Dirac algebra of flat Minkowski
spacetime, generated by taking geometric products of
the Pauli FGOs. From these interactions time (relative
phase) emerges, and topological symmetry is broken.

Topological Symmetry Breaking in GA

Given two vectors a and b, the geometric product ab
mixes products of different dimension, or grade (figure
3). In the product ab = a · b+ a∧ b, two 1D vectors have
been transformed into a point scalar and a 2D bivector.

“The problem is that even though we can transform
the line continuously into a point, we cannot undo
this transformation and have a function from the point
back onto the line...” [32]. This breaks both topologi-
cal and time symmetry, and is presumably true for all
grade/dimension increasing operations. The presence of
the singularity is implicit, becomes explict when we in-
troduce the singularities of the impedance model.

FIG. 3. Geometric algebra components in the 3D Pauli al-
gebra of flat space. In GA the term grade is preferred to di-
mension, whose meaning in physics is sometimes ambiguous
and confused with degrees of freedom. The two products (dot
and wedge or inner and outer) that comprise the geometric
product lower and raise the grade [31]

.

In the above example of the geometric product of two
vectors, the number of singularities is not conserved. In
the impedance model (figure 1) each vector is comprised
of two singularities (those of the magnetic flux quantum
of figure 2 are at opposite infinities), for a total of four
singularities entering the geometric product. Emerging
from the product is a scalar electric charge (one singular-
ity) and a pseudovector (none). In the process three sin-
gularities disappear. In the impedance model scalars and
vectors contain singularities, and their dual pseudovec-
tors and pseudoscalars do not, a topological distinction
between particle and pseudoparticle.

It would seem that there are two types of topological
symmetry breaking in this example. One follows directly
from dimensional transformations of the geometric prod-
uct and the other from appearance and disappearance of
singularities introduced by the impedance model.
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FIG. 4. In QFT one is permitted to define but one fundamental length (customarily taken to be the short wavelength cutoff).
The impedance approach is finite, divergences being cut off by impedance mismatches as one moves away from the fundamental
length of the model, the electron Compton wavelength. With FGOs of the model confined to that scale by the mismatches,
interaction impedances can be calculated as a function of their separation, the ‘impact parameter’. Strong correlation of
the resulting network nodes with unstable particle coherence lengths[34–38] follows from the requirement that impedances be
matched for energy flow between modes as required by the decay process, permitting for instance precise calculation of π0, η,
and η′ branching ratios and resolution of the chiral anomaly[21].

S-MATRIX AND THE
IMPEDANCE REPRESENTATION

Chapter 11 of Hatfield’s textbook [18] on the quantum
field theory of point particles and strings opens with this
statement of S-matrix universality:

“One of our goals in solving interacting quantum field
theories is to calculate cross sections for scattering pro-
cesses that can be compared with experiment. To com-
pute a cross section, we need to know the S-matrix el-
ement corresponding to the scattering process. So, no
matter which representation of field theory we work with,
in the end we want to know the S-matrix elements. How
the S-matrix is calculated will vary from representation
to representation.”

Barut, in opening his comprehensive introduction[17],
asks “What is the meaning of the S-matrix elements?”
and answers “It is the transition probability amplitude
from the initial state i to the final state f. It is in the use
of probability amplitudes rather than probabilities that
the quantum principle enters into the theory.”

In the process of decohering/collapsing the wave func-
tion, the amplitude is extracted and the phase is lost
[33]. The use of complex transition probability ampli-
tudes permits taking the product of the wave function
with its conjugate, canceling the phase - the mathemat-
ical equivalent of decohering the physical wave function.
Normalized this delivers the probability. In GA the Dirac
algebra is a real algebra, and phase information is con-
tained in the pseudoscalar I .
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Impedance may be defined as the amplitude and phase
of opposition to the flow of energy. Whereas the S-
matrix is comprised of complex probability amplitudes
and phases, the impedance matrix is comprised of that
which governs those amplitudes and phase shifts. The
essential point, missing from QFT and crucially relevant
in models and theories of quantum interactions, is this:
Impedances are quantized. Yet how, if impedance
quantization is both fact of nature and powerful theoret-
ical tool, is it not already present in the Standard Model?

This absence is most remarkable. Impedance is a fun-
damental concept, universally valid. Impedance match-
ing governs the flow of energy. The oversight can be
attributed primarily to three causes. The first is histori-
cal [22], the second follows from the penchant of particle
physicists to set fundamental constants to dimensionless
unity, and the third from topological and electromagnetic
paradoxes in our systems of units [11, 28, 39].

The first is a simple historical accident, a consequence
of the order in which experimentalists revealed relevant
phenomena. The scaffolding of QFT was erected on ex-
perimental discoveries of the first half of the twentieth
century, on the foundation of QED, which was set long
before the Nobel prize discovery of the scale invariant
quantum Hall impedance in 1980 [40]. Prior to that
impedance quantization was more implied than explicit
in the literature [41–47]. The concept of exact impedance
quantization did not exist.

A more prosaic second cause is the habit of parti-
cle physicists to set fundamental constants to dimension-
less unity. Setting free space impedance to dimensionless
unity made impedance quantization just a little too easy
to overlook. And to no useful purpose. What matters
are not absolute values of impedances, but rather their
relative values, whether they are matched.

The third confusion is seen in an approach [43] sum-
marized [44] as “...an analogy between Feynman dia-
grams and electrical circuits, with Feynman parameters
playing the role of resistance, external momenta as cur-
rent sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the
canonical text [45]. As presented there, the units of the
Feynman parameter are [sec/kg], the units not of resis-
tance, but rather mechanical conductance [48].

It is not difficult to understand what led us astray
[29, 43, 49–51]. The units of mechanical impedance are
[kg/sec]. One would think that more [kg/sec] would mean
more mass flow. However, the physical reality is more
[kg/sec] means more impedance and less mass flow. This
is one of many interwoven mechanical, electromagnetic,
and topological paradoxes [39] to be found in the SI sys-
tem of units, which ironically were developed with the
intent that they “...would facilitate relating the standard
units of mechanics to electromagnetism.” [52].

With the confusion that resulted from misinterpret-
ing conductance as resistance and lacking the concept of

quantized impedance, the anticipated intuitive advantage
[45] of the circuit analogy was lost. The possibility of the
jump from a well-considered analogy to a photon-electron
impedance model was not realized at that time.

Had impedance quantization been discovered in 1950
rather than 1980, one wonders whether it might have
found its way into the foundation of QED at that time,
before it was set in the bedrock. As it now stands the in-
evitable reconciliation of practical and theoretical, the in-
corporation of impedances into the foundations of quan-
tum theory, opens new and exciting possibilities.

Transformation between impedance and scattering ma-
trices is standard fare in electrical engineering[19, 53, 54].
There is nothing particularly difficult or mysterious
about this. As we endeavor to make clear in this pa-
per, when seeking to understand details of the elemen-
tary particle spectrum significant advantages accrue for
the physicist working in the impedance representation.

DARK MODES AND SYMMETRY BREAKING

Much of the structure we observe in the physical world
is organized around four fundamental interaction scales,
ordered in powers of α - inverse Rydberg, Bohr ra-
dius, Compton wavelength, and classical electron radius
(figure 4). The Compton wavelength λe = h/mec con-
tains no charge, is the same for both magnetic and elec-
tric charge (figure 5). However, substituting magnetic
charge for electric via the Dirac relation 2eg = h inverts
the scaling of the remaining fundamental lengths [55].

FIG. 5. Inversion of the fundamental lengths of figure 4 by
magnetic charge [55], with the magnetic singularity removed
to infinity by the Dirac string [24].

With electric charge the lengths correspond to specific
physical mechanisms of photon emission or absorption,
matched in quantized impedance and energy. Inversion
results in mismatches in both energy and impedance.
Magnetic charge cannot couple directly to the photon
- not despite its great strength, but rather because of it.
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FIG. 6. Modes lacking dark Pauli FGOs are highlighted, correspond to the transition (yellow) and eigenmodes (blue) of the
stable proton. Unstable particles contain at least one dark FGO, the proton none. The differing interaction of dark and visible
FGOs with the vacuum (essentially the virtual electron impedance network) determines the differing impedances they see [26].
This generates differential phase shifts, resulting in decoherence of unstable particles at impedance nodes (figure 4). The
matrix is arranged in even (blue) and odd (yellow) by geometric grade of the emerging Dirac FGOs (the observables).

Consequently the Dirac monopole is dark, cannot cou-
ple to the photon. The Bohr radius cannot be inside the
Compton wavelength, Rydberg inside Bohr,... Specific
physical mechanisms of photon emission and absorption
no longer work. Related arguments can be advanced for
the electric flux quantum and moment of figure 1.

The electron model presented here starts with maximal
electric-magnetic symmetry[23] in the 3D Pauli algebra of
physical space. Electric and magnetic FGOs are taken to
be duals. Scalar and pseudoscalar are duals, as are vector
and pseudovector. The inversion of fundamental interac-
tion scales of figures 4 and 5 suggests that the duality
is both electromagnetic and topological. Given that we
define magnetic charge via the Dirac relation, which it-
self breaks topological symmetry, it is not surprising to
find other manifestations of this symmetry breaking.

For example, the magnetic flux quantum φ = h
2e and

magnetic charge as defined by the Dirac relation g = h
2e

are numerically equal, but topologically distinct [28].
Topological character is also suggested by the inversion

of units of mechanical impedance - more [kg/sec] means
more impedance and less mass flow.

As mentioned earlier, there are additional electromag-
netic symmetry breakings. There is only one magnetic
flux quantum, but two electric flux quanta. One magnetic
moment, but two electric moments. How these might be
related to topology is not yet clear.

In what follows the distinction between dark modes
(whose presence dominates the impedance matrix of fig-
ure 6) and visible modes is utilized to identify the mode
structure of the proton. With that and the symmetry
breakings in hand, we seek to provide mechanisms for
topological mass generation and possibilities for investi-
gating proton structure and spin [1],...
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PROTON MODE STRUCTURE

The electron is not a point particle. It gives that ap-
pearance if one doesn’t appreciate the possibility that
electron geometric structure, when endowed with elec-
tric and magnetic fields and excited by the photon, might
generate the remainder of the massive particle spectrum.
By far the lightest of all charged elementary particles,
the electron impedance network is the natural candidate
for this role [56], in some sense might be considered the
structure of the vacuum [26]. We seek to understand de-
tails of how the stable proton emerges from excitation
of that network (elsewhere we explore how a related ap-
proach sheds light upon the early Big Bang [57]).

To sort out the dynamics of the full impedance/S-
matrix is a formidable computational task. The
impedance network of figure 4 is non-linear (plot is log-
log) and presents only a small subset of the modes of fig-
ure 6. Scale-dependent impedances open the possibility
of noiseless parametric mixing and amplification (whose
connection to topological mass generation remains to be
explored) [58, 59]. Topological effects in general are not
clearly understood. Within these complexities one must
iterate mode compositions, orientations, couplings and
phases. The problem is far beyond resources available
(particularly to independent researchers) for the present
purpose.

However, restricting attention to modes containing
only the ‘visible’ FGOs of figure 1 gives us both tran-
sition modes and eigenmodes of the proton (the only
known particle absent from figure 4 - more on neutri-
nos later), resulting in tremendous simplification. Modes
containing visible FGOs only are highlighted in green in
figure 6.

The FGOs entering the geometric products to generate
the transition modes are shown in figure 7, as well as
grades of the FGOs emerging from the products and their
corresponding identities in the impedance representation.

Transition Modes and Topological Mass

In the impedance approach there are two ways to
calculate electron mass - from electromagnetic field en-
ergy of modes of the electron model [28], and from the
impedance mismatch to the event horizon at the Planck
length [60, 61]. Both methods are correct at the part-
per-billion limit of experimental accuracy. Both require
prior knowledge of the electron Compton wavelength, the
input-by-hand fundamental length of the model.

Similarly, one can use either or both methods to cal-
culate proton mass. And both require knowledge of the
proton Compton wavelength, not a given in the model.
The problem is how one makes the jump from electron
Compton wavelength to that of the proton. This is where
topological mass generation enters.

The muon mass calculation of the impedance approach
agrees with experiment at one part per thousand, the
pion at two parts per ten thousand, and the nucleon
at seven parts per hundred thousand [28]. The muon
and pion masses are calculated from field energies of flux
quanta confined to the electron Compton wavelength.
The nucleon calculation exploits the topological differ-
ence between Bohr magneton and flux quantum.

“It has been suggested that the origin of mass is some-
how related to spin [29]. After the neutron, the next most
stable particle is the muon. If we take the muon as a plat-
form state [36] for the nucleon, in terms of spin-related
phenomena we return here to the notion that the flux
quantum is similar to a magnetic moment with no return
flux, and consider the ratio of the magnetic flux quantum
to the muon Bohr magneton

ratioµ =
φB

µµBohr

The nucleon mass can then be calculated as

mnucleonCalc =

√
2

2
· e2 · ratioµ

where the
√
2
2 term might be regarded as a projection op-

erator. Taking the measured nucleon mass to be the av-
erage of the proton and the neutron, we then have the
calculated nucleon mass accurate to seven parts in one
hundred thousand.”[28]

Topological mass generation is a phenomenon in 2+1
dimensions in which Yang-Mills fields acquire mass upon
the inclusion of a Chern-Simons term in the action
[62], the essential point being that this happens with-
out breaking gauge invariance, without losing quantum
phase coherence. The phase shift of the added mass is
compensated by that of the Chern-Simons term (whose
mode impedance is scale invariant, and therefore shifts
phase without emitting or absorbing energy).

FIG. 7. Transition modes of figure 6 having only ‘visible’
FGOs entering the geometric products, and showing grades of
emerging FGOs and the corresponding electromagnetic FGOs
of the impedance model.

In figure 7 the Chern-Simons term φBe is the quan-
tum Hall impedance of the charge ‘orbiting’ in the field
of the flux quantum, the charge being driven by the elec-
tromagnetic fields of the impinging photon. The two spin
zero (vectors have no spin) flux quanta φB are indistin-
guishable bosons, can be taken to couple the bivector
(GA equivalent of a Yang-Mills axial vector) Bohr mag-
neton µB to the charge scalar e.
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FIG. 8. Impedance network of muon-proton topological mass generation. Horizontal scale is photon wavelength/energy,
logarithmic in powers of the fine structure constant α. Energy step from muon to proton is ∼

√
2α.

FGOs entering geometric products of the transition
modes (left column of figure 7) number one scalar, two
vectors, and one bivector. These comprise a minimally
complete geometric algebra in two spatial dimensions.
Their geometric products yield two vector flux quanta
φB and the pseudoscalar magnetic charge g. With the
pseudoscalar we’ve gained a dimension. Via the inter-
actions we have the 2+1 dimensions of topological mass
generation [62]. This suggests the pseudoscalar can be
identified with time, perhaps defines relative phases.

At the scale of the .511 MeV electron Compton wave-
length there exist modes of the electron impedance model
that are shifted in energy by powers of α, a consequence
of nodes of the impedance network being arranged in
such powers. Scalar Lorentz coupling of emergent mag-
netic charge g to flux quantum φB (rightmost column of
figure 7) yields a route to the 70 MeV mass quantum,
and a few pages later the muon mass [28].

In accord with that calculation, if one takes µB en-
tering the interaction (leftmost column of figure 7) to
be not the electron Bohr magneton but rather that of
the muon and φB to be similarly confined to the muon
Compton wavelength, then the energy of the bivector
magneton in the field of the vector flux quantum, the
energy of the φBµB transition mode, is the muon mass.

One might suppose this a recipe for muon making.
Muon lifetime/decoherence then derives from the dif-
fering impedances/phase shifts seen by the numerically
equal but topologically distinct pseudoscalar charge g
and vector flux quanta φB, the subtle topological dis-
tinction perhaps accounting for the exceptionally long
muon lifetime.

According to this recipe, if one turns up the flame
and continues cooking, given sufficient heat the proton
emerges. How energy is transferred is shown in more de-
tail in figure 8. The numerical identity between the
topologically distinct flux quantum φB and charge g
becomes interesting in this context. The scale invari-
ant Chern-Simons impedance of the three-body φBgφB

mode is indicated by the 1027 ohm green line. It inter-
sects the impedance node at the (logarithmic) midpoint
between muon and proton. Also impedance matched
at the node are the near field 105 MeV muon electric
flux quantum, and the Coulomb and magnetic moment
impedances of the proton. Coupling of energy from muon
to proton is via the impedance match between the near
field impedances of the muon electric flux quantum and
proton magnetic moment bivectors and Coulomb scalars.

The point here is that the proton magnetic moment
impedance plotted in the figure corresponds to the exper-
imentally measured proton gyromagnetic ratio. Without
the anomalous portion of the proton magnetic moment,
topological mass generation doesn’t work. As shown in
the figure, the impedance corresponding to the anomaly-
free nuclear Bohr magneton is that which matches the
near field electrical impedance of the 938 MeV proton
electric flux quantum (which is yet a few zeptoseconds
in the future of topological mass generation), not that of
the muon. The anomaly is essential.

However, the 938 MeV proton-mass µBµB mode
(figure 9) is not that of the measured moment, but
rather the anomaly-free theoretical nuclear magneton!
This suggests that the anomaly originates not in the pro-
ton, but rather in the transition excitation/measurement.
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Proton Eigenmodes

The eigenmode Dirac FGOs emerging from the geo-
metric products (figure 9) number three scalars, two
bivectors, and one pseudoscalar - an even subalgebra of
the Dirac algebra, itself again a Pauli algebra.

The connection of the emergent three scalars with
quarks seems obvious place. The only scalar in our model
is electric charge. Given that the top and left Pauli al-
gebras of figure 6 correspond to electron and positron
‘wave functions’, then all three scalars follow from three
particle-antiparticle geometric products (ee, φBφB , and
µBµB), one for each of the three grades entering the
products. All are found on the diagonal of the matrix
of figure 6. Also prominent on both the diagonal and
the impedance network of figure 4 is the Coulomb mode
gg of magnetic charge, part of the mode structure of the
superheavies (top, Higgs, Z, W,...).

FIG. 9. Eigenmodes of figure 6 having only visible Pauli
FGOs entering the geometric products, and showing grades of
emerging Dirac FGOs and the corresponding electromagnetic
FGOs of the impedance model.

The first ‘quark’, the scalar e emerging from the charge
pair ee, is unaccompanied. One wonders if it is in any
observable way different from the second, emerging from
the φBφB interaction in the company of the pseudovec-
tor µB, or whether these two are distinguishable from
the third, emerging from µBµB in the company of the
pseudoscalar I .

The two bivector pseudovectors µB emerging
from the geometric products φBφB and µBe might be
identified with axial vectors of Yang-Mills theory. As
mentioned in the previous sub-section, the 938 MeV pro-
ton rest mass of the emergent coupled µBµB mode cor-
responds to the interaction energy not of the measured
magnetic moment, but rather the g=2 gyromagnetic ra-
tio of the nuclear magneton.

The grade-4 pseudoscalar I = γ0γ1γ2γ3 defines
spacetime orientation as manifested in the phases, with
γ0 the sign of time orientation. The γµ are orthogonal
basis vectors in the Dirac algebra of flat 4D Minkowski
spacetime, not matrices in ‘isospace’. [10]

There are no gluons or weak vector bosons to bind the
constituents. The modes are confined by the impedance
mismatches, by reflections as one moves away from the
quantization scale as defined by the impedance nodes.
Mismatches also remove infinities associated with singu-
larities. The impedance approach is finite and confined.

(and a little Spin)

Neither scalar (one singularity) nor vector (two) has
intrinsic spin, but rather only the bivector (and possibly
higher grade geometric objects), taken in the literature
to be a magnetic flux quantum and given the attribute
of a spin 1/2 fermion [63]. However magnetic geometric
grades are inverted relative to electric by the topologi-
cal duality. It is not magnetic flux quantum, but rather
magnetic moment, that is to be identified with the bivec-
tor spin 1/2 fermion, an assignment in agreement with
Jackson as well [64] (who persisted in calling it a dipole
despite the absence of poles/singularities).

If one takes that moment to be in some sense not a
vector dipole but rather a pseudovector dipole comprised
of two pseudoscalar magnetic charge volume elements,
then the proton angular momentum controversy arising
from trying to ‘locate’ the intrinsic exact half-integer spin
[4] need no longer be portioned out to various inexact
origins, but rather might find resolution in the diffuse
singularity-free character of such a magnetic moment.

To understand dynamics of proton spin more deeply
will likely require further application of GA, and partic-
ularly the rotor, to the impedance model.

SUMMARY AND CONCLUSION

The serendipitous commonality of fundamental geo-
metric objects between the impedance model and geo-
metric Clifford algebra lends a formal structure to the
impedance approach that maximizes the utility of both,
providing simple yet powerful mathematical tools to the
physicist and physical intuition to the mathematician.

Thus far applications of generalized quantum
impedances have been primarily conceptual, limited
to theoretical particle physics, quantum gravity, and
quantum information theory. Sage advice [65] suggests
that the most fertile field for impedances will be in
condensed matter - in atomic, molecular, and optical
physics, and particularly in superconductivity. If there is
practical value in this, AMO is the place where it will be
found. Though harking back to Wheeler [12], impedance
matching might prove equally useful in understanding
both fission and fusion.
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