Euler’s proof of Fermat’s Last Theorem

for \(n = 3 \) is incorrect

Nguyen Van Quang
Hue - Vietnam, 05 - 2016

Abstract

We have spotted an error of Euler’s proof, so that the used infinite descent is impossible in his proof (case A).

1 Euler’s proof for \(n = 3 \)

First, we rewrite a proof for \(n = 3 \), which was proven by Euler in 1770 as follows:

As Fermat did for the case \(n = 4 \), Euler used the technique of infinite descent. The proof assumes a solution \((x,y,z)\) to the equation \(x^3 + y^3 + z^3 = 0 \), where the three non-zero integers \(x, y, z \) are pairwise coprime and not all positive. One of three must be even, whereas the other two are odd. Without loss of generality, \(z \) may be assumed to be even.

Since \(x \) and \(y \) are both odd, their sum and difference are both even numbers.

\[
2u = x + y \\
2v = x - y
\]

Where the non-zero integers \(u \) and \(v \) are coprime and have different parity (one is even, the other odd). Since \(x = u + v \) and \(y = u - v \), it follows that

\[-z^3 = (u + v)^3 + (u - v)^3 = 2u(u^2 + 3v^2)\]

Since \(u \) and \(v \) have opposite parity, \(u^2 + 3v^2 \) is always an odd number. Therefore, since \(z \) even, \(u \) is even and \(v \) is odd. Since \(u \) and \(v \) are coprime, the greatest common divisor of \(2u \) and \(u^2 + 3v^2 \) is either 1 (case A) or 3 (case B).

Proof for Case A

In this case, the two factors of \(-z^3\) are coprime. This implies that 3 does not divide \(u \) and the two factors are cubes of two smaller numbers, \(r \) and \(s \).

\[
2u = r^3 \\
u^2 + 3v^2 = s^3
\]

Since \(u^2 + 3v^2 \) is odd, so is \(s \). Then Euler claimed that it is possible to write:

\[s = e^2 + 3f^2\]

which \(e \) and \(f \) integers, so that

\[u = e(e^2 - 9f^2)\]
\[v = 3f(e^2 - f^2) \]

Since \(u \) is even and \(v \) is odd, then \(e \) is even and \(f \) is odd. Since

\[r^3 = 2u = 2e(e - 3f)(e + 3f) \]

The factors \(2e, (e - 3f), (e + 3f) \) are coprime, since 3 can not divide \(e \): if \(e \) were divisible by 3, then 3 would divide \(u \), violating the designation of \(u \) and \(v \) as coprime. Since the three factors on the right-hand side are coprime, they must individually equal cubes of smaller integers

\[-2e = k^3\]
\[e - 3f = l^3\]
\[e + 3f = m^3\]

Which yields a smaller solution \(k^3 + l^3 + m^3 = 0 \). Therefore, by the argument of infinite descent, the original solution \((x, y, z)\) was impossible.

Proof for Case B

In this case, the greatest common divisor of \(2u \) and \(u^2 + 3v^2 \) is 3. That implies that 3 divides \(u \), and one may express \(u = 3w \) in terms of a smaller integer \(w \). Since \(u \) is divisible by 4, so is \(w \), hence, \(w \) is also even. since \(u \) and \(v \) are coprime, so are \(v \) and \(w \). Therefore, neither 3 nor 4 divide \(v \).

Substituting \(u \) by \(w \) in the equation for \(z^3 \) yields

\[-z^3 = 6w(9w^2 + 3v^2) = 18w(3w^2 + v^2)\]

Because \(v \) and \(w \) are coprime, and because 3 does not divide \(v \), then 18w and \(3w^2 + v^2 \) are also coprime. Therefore, since their product is a cube, they are each the cube of smaller integers, \(r \) and \(s \)

\[18w = r^3\]
\[3w^2 + v^2 = s^3\]

By the step as in case A, it is possible to write:

\[s = e^2 + 3f^2\]

which \(e \) and \(f \) integer, so that

\[v = e(e^2 - 9f^2)\]
\[w = 3f(e^2 - f^2)\]

Thus, \(e \) is odd and \(f \) is even, because \(v \) is odd. The expression for 18w then becomes

\[r^3 = 18w = 54f(e^2 - f^2) = 54f(e + f)(e - f)\]

Since \(3^3 \) divides \(r^3 \) we have that 3 divides \(r \), so \((r/3)^3\) is an integer that equals \(2f(e + f)(e - f)\). Since \(e \) and \(f \) are coprime, so are the three factors \(2e, e + f, \) and \(e - f \), therefore, they are each the cube of smaller integers \(k, l, \) and \(m \).

\[-2f = k^3\]
\[e + f = l^3\]
\[e - f = m^3\]

which yields a smaller solution \(k^3 + l^3 + m^3 = 0 \). Therefore, by the argument of infinite descent, the original solution \((x, y, z)\) was impossible.
2 Arguments

Lemma. if the equation $x^3 + y^3 + z^3 = 0$ is satisfied in integers, then one of the numbers x, y, and z must be divisible by 3

proof. From the equation $x^3 + y^3 + z^3 = 0$, we obtain:

$$(x + y + z)^3 = 3(z + x)(z + y)(x + y)$$

Then, $x + y + z$ is divisible by 3, $(x + y + z)^3$ is divisible by 3^3

So $(z + x)(z + y)(x + y)$ must be divisible by 3:

If $z + x$ is divisible by 3, then y is divisible by 3

If $z + y$ is divisible by 3, then x is divisible by 3

If $x + y$ is divisible by 3, then z is divisible by 3

Hence, one of x, y, and z must be divisible by 3.

Mistake in Euler’s proof

For the case A

Since step,

$$u = e(e^2 - 9f^2)$$

$$v = 3f(e^2 - f^2)$$

Euler already considered only u, and passed over v, and it was a gap of proof as follows:

Since $v = 3f(e^2 - f^2)$, then v is divisible by 3.

Since

$$2v = x - y$$

Then, $x - y$ is divisible by 3, hence, both of them are divisible by 3, or both not divisible by 3. Since x and y are coprime, then x and y have not common divisor, so both x and y are not divisible by 3. By lemma above, z must be divisible by 3, which implies that $2u$ and $u^2 + 3v^2$ have common divisor 3, a contradiction. Case A is impossible!

Or by other argument as follows:

$2u = r^3$ then $u = 2^2r^{33}$, since in the case A, u is not divisible by 3, then r' is not divisible by 3

It gives:

$$2^2r^{33} = e(e^2 - 9f^2)$$

$$9ef^2 = e^3 - 2^2r^{33}$$

$$9ef^2 = e^3 - r^{33} - 3r^{33}$$

The term: $e^3 - r^{33} = (e - r')((e - r')^2 + 3er')$ is not divisible by 3, or is divisible by 3^2

Hence, Left hand side of equation: $9ef^2 = e^3 - r^{33} - 3r^{33}$ is divisible by 3^2, right hand side is not. Case A is impossible!

These above arguments is the correct proof for case A if

$$u = e(e^2 - 9f^2)$$

$$v = 3f(e^2 - f^2)$$

is the only way for $u^2 + 3v^2$ to be expressed as a cube. However, Euler only showed that is the possible way.
References
1. Proof of Fermat’s Last Theorem for specific exponents- Wikipedia.
2. Quang N V, A proof of the four color theorem by induction. Vixra:1601.0247(CO)
Email:
nguyenvquang67@gmail.com
quangnlu67@yahoo.com.vn