Scaling and Distance of the Frame of Reference for Lorentz Transformation of Special Relativity Theory

Tsuneaki Takahashi


#### Abstract

Lorentz transformation handles an oblique frame of reference. Regarding to the oblique system, investigation about scaling and distance is required for clear understanding how the Lorentz transformation can be derived.


## 1. Introduction

There is a trial to derive Lorentz transformation from basic assumption. [1] In the process, moving system becomes an oblique system on orthogonal system. To complete the process, investigation of scaling of each dimensions and definition of distance for the system is required.

## 2. Distance of oblique system

Regarding to the Lorentz transformation, frame of reference of moving system is as Fig.1. [1]


Fig. 1
$x$ of point P is distance from $c t$-axis or $c t$ value constant line's length from 0 to $x$.
This is the case of orthogonal system.
But in the case of oblique system, distance from $c t^{\prime}-\operatorname{axis}(\overline{\mathrm{PB}})$ is different from $c t^{\prime}$ value constant line's length from 0 to $x^{\prime}(\mathrm{PA})$.
Here $x^{\prime}$ value of oblique system also should be distance of $x^{\prime}$ dimension. So it should not include $c t^{\prime}$ dimension distance. Then $x^{\prime}$ value of oblique system should be $\overline{\mathrm{PA}}$ not $\overline{\mathrm{PB}}$.

On similar reason, actual elapse time $\left(c t^{\prime}\right)$ of P should be $\overline{\mathrm{CP}}$ not $\overline{\mathrm{DP}}$. Then

$$
\begin{equation*}
c t^{\prime}=\overline{\mathrm{OA}}=\frac{\overline{\mathrm{DP}}}{\sin \alpha}=\frac{c t \cos \theta-x \sin \theta}{\sin \alpha} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime}=\overline{\mathrm{OC}}=\frac{\overline{\mathrm{PB}}}{\sin \alpha}=\frac{-c t \sin \theta+x \cos \theta}{\sin \alpha} \tag{2}
\end{equation*}
$$

## 3. Experience

When time $t$ passes for space V (length $l$ in the case of two dimensions, space and time), integration of V from time 0 to $t$ is defined as experience(exp). This is $\exp =\int_{0}^{t} V d t$
Ten thousand years on Sun is something different from $10 \mu \mathrm{~s}$ for an atom.
Experience is that something and its value indicate the huge difference in this case.

## 4. Scaling

In the case of orthogonal system, (Fig.1),

$$
\begin{equation*}
\exp =l \times t \tag{3}
\end{equation*}
$$

In the case of oblique system, (Fig.2),

$$
\begin{equation*}
\exp =l \times t \sin \alpha=l \sqrt{\sin \alpha} \times t \sqrt{\sin \alpha} \tag{4}
\end{equation*}
$$



Fig. 2


Fig. 3

Comparing (3) (4), distance value of oblique system is multiple $\sqrt{\sin \alpha}$ comparing to orthogonal system's.
This $\sqrt{\sin \alpha}$ is scaling factor for oblique system (in the case of orthogonal system, $\sqrt{\sin \alpha}=1$ ).
5. Conclusion

Considering above investigation of scaling and distance, (1) (2) become

$$
\begin{align*}
c t^{\prime} & =\overline{\mathrm{OA}} \sqrt{\sin \alpha}=\frac{c t \cos \theta-x \sin \theta}{\sin \alpha} \sqrt{\sin \alpha}=\frac{c t \cos \theta-x \sin \theta}{\sqrt{\sin \alpha}}  \tag{5}\\
x^{\prime} & =\overline{\mathrm{OC}} \sqrt{\sin \alpha}=\frac{-c t \sin \theta+x \cos \theta}{\sin \alpha} \sqrt{\sin \alpha}=\frac{-c t \sin \theta+x \cos \theta}{\sqrt{\sin \alpha}} \tag{6}
\end{align*}
$$

This consequence could be a part of process to derive Lorentz transformation from the basic assumption.

## Reference

[1] Tsuneaki Takahashi, viXra: 1611.0077,( http://vixra.org/abs/1611.0077)

