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Abstract

We present results of applying our divergence-free effective action quantum
field theory techniques to the theory of scalar electrodynamics, describing the
interaction of the electromagnetic photon field with a charged scalar. This gives
an example of the applicability of our divergence-free methods to a system with
Abelian gauge invariance. Results of loop computations are given, demonstrat-
ing gauge invariance of the effective vertices. Whereas an infrared-regulating
mass parameter is given to the virtual photon, the masslessness of the effective
photon is demonstrated as well.

1 Introduction

The divergence-free effective action approach to quantum field theory[1, 2, 3, 4, 5, 6, 7]

is a subtle formulation that evades loop divegences in all quantum field theories while
preserving fundamental gauge and coordinate invariances. Here we give another illus-
tration that pertains to the theory of a massless Maxwellian (photon) gauge field and
massive matter represented by a charged scalar field.

After presenting the Lagrangian and the associated Feynman rules, we give the results
of applying our divergence-free methods to several loop computations, suppressing much

of the detailed derivations (given in comprehensive reports elsewhere[8]), and conclude
with a brief discussion.

2 The Lagrangian of Scalar Electrodynamics
and Graphical Rules

The Lagrangian of scalar electrodynamics is given by

L = −1

4
FµνFµν +∇µΦ∗∇µΦ−m2Φ∗Φ (1)

Here, Fµν is the field tensor, given in terms of the 4-potential by

Fµν = ∂µAν − ∂νAµ (2)

Divergence-Free Scalar Electrodynamics by N.S. Baaklini 1

mailto:nsbqft@aol.com
http://nsbcosmic.neocities.org


N.S.B. Letters NSBL-QF-045

We also have
∇µΦ = ∂µΦ− ieAµΦ ∇µΦ∗ = ∂µΦ∗ + ieAµΦ∗ (3)

Here, e is the (dimensionless) electromagnetic coupling constant. Notice that whereas
the charged (complex) scalar Φ,Φ∗ has a mass m, the photon field Aµ is massless,
which fact is associated with Abelian gauge invariance with respect to the infinitesimal
transformations (with real parameter ω):

δΦ = ieωΦ δΦ∗ = −ieωΦ∗ δAµ = ∂µω (4)

The above Lagrangian can be rewritten in the following form
1
2
Aµ (∂2ηµν − ∂µ∂ν)Aν − Φ∗ (∂2 +m2) Φ

+ieAµ (Φ∗∂µΦ− Φ∂µΦ∗)

+e2AµAµΦ∗Φ

(5)

displaying the bilinear, trilinear, and quartilinear terms.

Now according to the scheme of the effective action, the fields would be split like Aµ →
Aµ +Aµ, Φ→ Φ +φ, and Φ∗ → Φ∗ +φ∗, where A, φ, φ∗ are virtual fields. Accordingly,
the virtual vectorAµ will be constrained with the (gauge-invariant) condition ∂µAµ = 0.
Hence, we derive the following basic graphical rules (in Minkowskian momentum space):

• For every internal or bare propagator of the charged scalar (depicted with an
arrow) with momentum p, we write

1

−p2 +m2

• For every internal photon propagator (to be depicted by a wavy line), with mo-
mentum q, we write

1

−q2 +m2

{
−ηµν +

qµqν

q2

}
Notice that we have included a projection operator corresponding to the constraint
applied to the virtual vector, and we have included a mass-regulating parameter
as well. That the mass-regulating parameter taken here is equal to the mass of the
charged scalar should not be of much concern. In general the two masses could be
taken different, and the arbitrary mass of the virtual photon would be the subject of
fundamental physical interpretation in forthcoming works. However, for simplicity
in presenting the results of this article, we proceed as indicated above. We stress
that the above prescription is gauge invariant.

• For the bare trilinear vertex, we write

−e(2pµ + rµ)

Here, p is the momentum of the incoming charged scalar, and r is the momentum
of the incoming photon, according to the following depiction:
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• For the quartic vertex, we write
−2e2ηµν

corresponding to the following depiction

• We must associate a factor of i for each propagator, a factor of i for each vertex,
and an overall factor of −i for each graph.

• We must supply the appropriate combinatoric factors for each graph.

• Most importantly, we must supply the appropriate regularizing parameters and
the corresponding pole-removing operators, together with the gamma functions
factors, and Feynman parameter combinations, all according to our divergence-

free methods.[1]

In the following section, we shall display associated graphics and computational results
suppressing all details.

3 Vacuum contributions

3.1 One-Loop Contributions

For the one-loop vacuum contributions we have two graphs. The 1st one corresponds
to the virtual photon, depicted below:

This gives the result:
3m4

128π2

{
−3 + 2 ln(m2)

}
(6)

The 2nd contribution corresponds to the virtual charged scalar, with the depiction:
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And the result:
m4

64π2

{
−3 + 2 ln(m2)

}
(7)

Hence the total one-loop vacuum contribution is given by

m4

128π2

{
−3 + 2 ln(m2)

}
(8)

3.2 Two-Loop Contributions

For 2-loop vacuum contributions we have two graphs. The 1st one

gives exactly
3e2m4

256π4

{
−1 + ln(m2)

}2
(9)

The 2nd graph

gives (approx.)

− e2m4

430080π4

{
1767− 8780 ln(m2) + 8400 ln2(m2)

}
(10)

Hence the total 2-loop contribution is given by

− e2m4

430080π4

{
−3273 + 1300 ln(m2) + 3360 ln2(m2)

}
(11)
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3.3 Three-Loop Contributions

For 3-loop vacuum contributions we have seven graphs. The 1st graph

gives exactly

− 9e4m4

4096π6

{
−1 + ln(m2)

}2 {
1 + ln(m2)

}
(12)

The 2nd graph

gives

− 3e4m4

4096π6

{
−1 + ln(m2)

}2 {
1 + ln(m2)

}
(13)

The 3rd graph

gives (approx.)

3e4m4

5734400π6

{
10627− 17047 ln(m2) + 6420 ln2(m2)

}
(14)

The 4th graph

gives (approx.)

e4m4

20643840π6

{
−63747 + 89597 ln(m2) + 19788 ln2(m2)− 45360 ln3(m2)

}
(15)

The 5th graph
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gives (approx.)

e4m4

13762560π6

{
12381− 13842 ln(m2)− 13868 ln2(m2) + 15120 ln3(m2)

}
(16)

The 6th graph

gives (approx.)

e4m4

41287680π6

{
−21003 + 5693 ln(m2) + 60900 ln2(m2)− 45360 ln3(m2)

}
(17)

The 7th graph

gives (approx.)

− e4m4

5898240π6

{
15613− 44338 ln(m2) + 25536 ln2(m2)

}
(18)

Hence the total 3-loop vacuum contribution is given (approx.) by

e4m4

206438400π6

{
−560309 + 1032359 ln(m2) + 698760 ln2(m2)− 1058400 ln3(m2)

}
(19)

3.4 Fixing the Vacuum

According to the scheme adopted in earlier papers, consistency requires that we must
determine the value of ln(m2) by setting the total vacuum contribution equal to zero,
and inverting the perturbative series. The value of ln(m2) begins with 3

2
and receives

serial contributions in the coupling constant (here e2). This scheme can be applied

easily to the above results (compare with the procedures in other articles[6, 7]).
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However, we should note that when more than one mass parameter is present in the
vacuum contributions, we must find consistency conditions to relate masses to each
other. Basically there must be one central ln(m2) to be determined perturbatively. On
the other hand, physical interpretations of infrared-regulating mass parameters, such
as associated with the virtual photon (the virtual gluons and the virtual graviton as
well) would be important at the fundamental level. These ideas will be treated much

more deeply in other papers.[8]

4 Bilinear Photon Contributions

4.1 One-Loop Contributions

For 1-loop bilinear photon contributions we have two graphs. For the 1st,

we obtain
e2m2

16π2

{
−1 + ln(m2)

}
ηµν (20)

For the 2nd,

we obtain

e2

960m2π2

 rµrν {r2 − 10m2 ln(m2)}

−ηµν {r4 − 10m2r2 ln(m2) + 60m4 (−1 + ln(m2))}

 (21)

Here, we have computed the contribution to 4th order in the (external) momentum r
of the effective photon.

Adding the above two contributions, we obtain

e2

960π2

{
r2

m2
− 10 ln(m2)

}{
rµrν − r2ηµν

}
(22)

This result demonstrates gauge invariance as well as masslessness of the effective photon,
at the 1-loop level.
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4.2 Two-Loop Contributions

For 2-loop bilinear photon contributions we have eight graphs. Here, we compute to
2nd order in the effective photon momentum. For the 1st graph,

we obtain

− 3e4m2

256π4

{
−1 + ln(m2)

}
ln(m2)ηµν (23)

For the 2nd graph,

we obtain
e4

512π4

{
−1 + ln(m2)

}{
rµrν − ηµν

(
r2 − 6m2

)}
(24)

For the 3rd graph,

we obtain (approx.)

e4m2

30720π4

{
−439 + 114 ln(m2) + 360 ln2(m2)

}
ηµν (25)

For the 4th graph,

we obtain (approx.)

e4

1290240π4

{
3013− 2308 ln(m2)

}
rµrν

+ e4

2580480π4

{
(−3425 + 3632 ln(m2))r2 − 48m2

(
−1049 + 453 ln(m2) + 630 ln2(m2)

)} (26)
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For the 5th graph,

we obtain (approx.)

e4

7741440π4

{
21613− 17532 ln(m2)

}
rµrν

+ e4

7741440π4

{
(−37579 + 32868 ln(m2))r2 − 108m2

(
−309− 394 ln(m2) + 840 ln2(m2)

)} (27)

For the 6th graph,

we obtain (approx.)

e4

645120π4

{
169− 97 ln(m2)

}
rµrν

+ e4

2580480π4

{
(3557− 3164 ln(m2))r2 + 42m2

(
−439 + 114 ln(m2) + 360 ln2(m2)

)} (28)

For the 7th graph,

we obtain (approx.)

e4

645120π4

{
169− 97 ln(m2)

}
rµrν

+ e4

2580480π4

{
(3557− 3164 ln(m2))r2 + 42m2

(
−439 + 114 ln(m2) + 360 ln2(m2)

)} (29)

For the 8th graph,
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we obtain (approx.)

e4

161280π4

{
−57 + 32 ln(m2)

}
rµrν

+ e4

645120π4

{
(2307− 1886 ln(m2))r2 + 21m2

(
−259− 66 ln(m2) + 360 ln2(m2)

)} (30)

At this point, we note that adding the first two, 2-loop contributions that are obtained exactly, we
obtain the gauge-invariant result:

e4

512π4

{
−1 + ln(m2)

} (
rµrν − r2ηµν

)
(31)

However, the remaining six, 2-loop contributions that have a structure involving overlapping momenta,
and that can only be evaluated approximately (as far as we know), cannot be combined into a gauge-

invariant result. We shall have more to say about this situation later on and in other articles.[8]

5 Scalar Bilinear Contributions

5.1 One-Loop Contributions

For the 1-loop contributions to the bilinears of the charged scalar matter we have two graphs. For the
1st graph,

we have the result:
3e2

16π2

{
1 + ln(m2)

}
r2 (32)

Here r is the (external) momentum of the effective scalar field.

For the 2nd graph,

we have the result:

− 3e2

16π2

{
−1 + ln(m2)

}
m2 (33)

Adding the above two results, we obtain for the total 1-loop contribution to the scalar bilinear:

3e2

16π2

{
1 + ln(m2)

}
r2 − 3e2

16π2

{
−1 + ln(m2)

}
m2 (34)

Needless to tell the alert reader that the first is a correction to the kinetic term, and the second is a
corection to the mass term, and that like all computed contributions in our scheme are divergence-free,
and that ln(m2) can be replaced by its value, obtained by fixing the vacuum, to this order being 3

2 .
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5.2 Two-Loop Contributions

For the 2-loop contributions to the bilinears of the charged scalar matter we compute 10 graphs. For
the 1st graph,

we obtain
3e4m2

128π4

{
−1 + ln(m2)

}
ln(m2) (35)

For the 2nd graph,

we obtain

− 3e4

256π4

{
−1 + ln(m2)

}
r2 (36)

For the 3rd graph,

we obtain

− 9e4

512π4

{
−1 + ln(m2)

}
r2 (37)

For the 4th graph,

we obtain

− 9e4

512π4

{
−1 + ln(m2)

}2
r2 (38)

For the 5th graph,
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we obtain (approx.)

− e4m2

7680π4

{
73 + 38 ln(m2) + 240 ln2(m2)

}
(39)

For the 6th graph,

we obtain (approx.)

− e4

7680π4

{
33− 29 ln(m2) + 30 ln2(m2)

}
r2 (40)

For the 7th graph,

we obtain (approx.)
3e4

5120π4

{
65 + 82 ln(m2) + 60 ln2(m2)

}
r2 (41)

For the 8th graph,

we obtain (approx.)
e4

122880π4

{
403− 396 ln(m2)

}
r2

+ e4

61440π4

{
−859− 146 ln(m2) + 1080 ln2(m2)

}
m2

(42)

For the 9th graph,
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we obtain (approx.)

− e4

20480π4

{
387 + 466 ln(m2) + 360 ln2(m2)

}
r2 (43)

For the 10th graph,

we obtain (approx.)
e4

61440π4

{
−33 + 226 ln(m2)

}
r2 (44)

Adding the above ten results, we obtain for the total 2-loop contribution to the scalar bilinear (approx.):

e4

20480π4

{
−481− 630 ln(m2) + 200 ln2(m2)

}
m2

− e4

122880π4

{
−3607 + 4292 ln(m2) + 480 ln2(m2)

}
r2

(45)

6 Trilinear Photon-Scalar Contributions

Here we only give the 1-loop contributions. There are 3 implicated graphs. For the 1st graph,

we obtain
3e3

16π2

{
1 + ln(m2)

}
(rµ + sµ) (46)

Here and in the followings, r is the momentum of the incoming charged scalar, and s is the momentum
of the incoming photon. We shall give the result to first order in the external momenta, just enough
to check the corrections to the fundamental Lagrangian vertices.

For the 2nd graph,

we obtain
3e3

16π2

{
1 + ln(m2)

}
(rµ) (47)

For the 3rd graph,
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we obtain zero.

The sum of the above contributions gives the total 1-loop contribution to the trilinear vertex:

3e3

16π2

{
1 + ln(m2)

}
(2rµ + sµ) (48)

Now, comparing with the 1-loop contribution to the scalar bilinear, namely,

3e3

16π2

{
1 + ln(m2)

}
r2 (49)

and recalling our momentum-space graphic rules for bare bilinears and trilinears, we realize that the
above result is gauge invariant. What this means is that the one-loop corrections to the coordinate-
space terms ∂µΦ∗∂µΦ and ieAµ (Φ∗∂µΦ− Φ∂µΦ∗) are just the same. The following section will sup-
plement this by computing the correction to AµAµΦ∗Φ.

7 Quartic Photon-Scalar Vertex Contributions

Here we only give the 1-loop contributions to the quartic vertex with two external photons and two
external scalars. There are 5 implicated graphs. We shall be interested in contributions without
external momenta (no derivatives in the effective vertex), so we can check the corrections to the
pertinent bare vertex and the associated gauge invariance. For the 1st graph,

we obtain zero (to the 0th order in external momenta). Also the 2nd graph,

the 3rd graph,

and the 4th graph,
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all give zeros. However, the 5th graph,

gives the result:
3e4

16π2

{
1 + ln(m2)

}
ηµν (50)

Comparing with the results for 1-loop bilinears, and the results for trilinears in the preceding section,
the above result complements the scene by showing that the one-loop corrections to the coordinate-
space terms ∂µΦ∗∂µΦ, ieAµ (Φ∗∂µΦ− Φ∂µΦ∗), and AµAµΦ∗Φ, or rather the components of∇µΦ∗∇µΦ,
are all the same, verifying gauge invariance.

8 Quartilinear Scalar Vertex

Here we give 1-loop contributions to an effective vertex with four external charged scalars (two of
either charge). Notice that this vertex has no bare counterpart in the basic Lagrangian. However,
our divergence-free scheme can produce finite results already, and would not need bare counterterms.
We have four pertinent graphical contributions. We shall give the results to 2nd order in external
momenta (or derivatives in the effective vertex).

For the 1st graph,

we obtain
5e4

64m2π2
(r + s)2 − 3e4

16π2
ln(m2) (51)

Here and in what follows, r and s are momenta of external Φ and Φ∗, respectively.

For the 2nd graph,
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we obtain

− 3e4

16m2π2
(r · s) (52)

For the 3rd graph,

and for the 4th graph,

we obtain zeros (to the 2nd order demanded in external momenta).

Hence the total 1-loop contribution to the effective quartic scalar vertex is

e4

64m2π2

{
5r2 + 5s2 − 2r · s

}
− 3e4

16π2
ln(m2) (53)

Notice that (putting ln(m2) → 3
2 ) the last term gives a coupling constant for (Φ∗Φ)2 equal to

(9e4/32π2). The first term gives derivative couplings that should be easy to decipher.

9 Discussion

We have presented results of computing loop conributions in the theory of scalar electrodynamics.
Our computations are based on the framework of divergence-free quantum field theory and the as-
sociated effective action development. It should be clear from our results that our effective action
divergence-free approach would preserve gauge invariances, and offers greater simplicity than conven-
tional regularization and renormalization schemes.

However, in the light of our work, we realize the existence of an important issue that requires deeper
consideration and perhaps newer strategies. In dealing with higher-loop contributions we notice the
existence of certain integrals that (as far as we know) can only be computed approximatively. These are
basically the multiloop integrals with overlapping momenta. Our inability to compute these integrals
exactly seems to stand in the way of achieving perfectly gauge-invariant results.

But the strength of the gauge principle should lead us to devise some strategy for obtaining our needed
exact results without going through the ordeal of approximating integrals. Such a strategy would be
indispensable when we come to deal with much more complicated and important systems such as
non-Abelian gauge theories and Einstein-like gravidynamic theories. Actually, we have been able to
formulate certain powerful strategies and make real progress in applying our divergence-free program

to the aforementioned important theories.[8]

On the other hand, the (gauge-invariant) inclusion of an infrared-regulating mass parameter in con-
junction with virtual gauge fields (photon, gluon, or graviton) seems to us an extremely important
step that cannot be avoided. In actual fact, the conventional approach to these theories that tolerates
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the existence of infrared divergences does seem to be totally inconsistent. Whereas our use, so far,
of the infrared-regulating mass is only formal, we seem to have been led to a novel paradigm that
endows this approach with a deeper physical content. This would be a subject worth amplification in

forthcoming reports.[8]
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