Suitability or Non-Suitability of Certain Unification Schemes for the Grand Unification Scheme

Miguel A. Sanchez-Rey

Abstract

We aim to discuss some earlier unification candidates and whether such unification candidates are suitable or non-suitable for the grand unification scheme.

April 19th, 2016
C2R and Unification

There are six grand unified theories that are highly unique but fairly different from a variant [of stringy]. In that while variant [of stringy]'s are inherently supersymmetric they are also geometrically and algebraically one-dimensional objects that interact via their monopoles in meta-space [1]. We can also state, alternatively, that they interact via D-variant manifolds [2]. These six grand unified theories are unification schemes. Even though they comply with C2R [or the EOC Guideline] they are not essential to completing the grand unification scheme. Instead these unification schemes confirm C2R as experimentally theoretical examples [3].

These five unification schemes share similar group properties four of which can be extracted from SO [10]. Those four can be said to be minimal left-right models, SU [5], flipped SU [5], and the Pati-Salem model. The other unification scheme is the Georgi-Glashow model.


The Georgi-Glashow model are also consistent with C2R with the sum of the product that yields SU[5] that is keeping in mind the unitary group U[1].

Since the minimal left-right model is essentially the equivalence of left-handed and right-handed physical laws C2R is complied with base on the TrH Theorem.

Using these examples we’ve shown that C2R is valid. But since they are inconsistent with variant [of stringy]; in that, by variant [of stringy] we mean, and restate, one-dimensional objects that interact in metamorphic space, these unifications schemes are highly limited and inefficient. But appropriate in showing the necessity and validation of C2R.
References

