Beal's Conjecture and Fermat's Last Theorem n=3
By Ricardo Gil
Ricardo.gil@sbcglobal.net
12/19/2015

Abstract
In the simplest terms here is a counterexample to Fermat's Last Theorem and a solution to Beal's Conjecture. Dr. Andrew Wiles proved Fermat's Last Theorem but I think my solution below is an example for n=3 if allowed. It also satisfies Beal's conjecture and is a counterexample to Fermat’s Last Theorem.

I. Beal’s Conjecture \((A^x+B^y=C^z)\)

Where \(A,B,C, x,y,z\) are positive integers with \(x,y,z>2\), then \(A,B,C\) have a common prime.

II. Solution to Beal’s Conjecture and Counterexample to Fermat’s Last Theorem.

\[n=3 \]
Let:
\[A=(1(2^3)^3))= 1(512)=512 \]
\[B=(2(2^3)^3))= 2(512)=1024 \]
\[C=(3(2^3)^3))= 3(512)=1536 \]

\[A^3+B^3=C^3 \]
\[A(1(2^3)^3)))+B(2(2^3)^3))=C(3(2^3)^3)) \]
\[512+1024=1536 \]

III Conclusion

If allowed the above is a counterexample to Fermat’s Last Theorem and solution to Beal’s Conjecture satisfies \(n=3\).