Optimisation of dynamical systems subject to meta-rules

Chris Goddard

July 1, 2013
Outline

The Basic Problem

Jet bundles

Geometry

Optimisation

Concluding remarks
Outline

The Basic Problem

Jet bundles

Geometry

Optimisation

Concluding remarks
Dynamical systems with metarules

- Suppose we have a simple dynamical system, e.g., a Morse function on a torus.
Dynamical systems with metarules

- Suppose we have a simple dynamical system, e.g., a Morse function on a torus.
- But suppose that it is not so simple. Suppose the shape of the system depends on the location in the system that we are currently at.
Dynamical systems with metarules

- Suppose we have a simple dynamical system, eg a Morse function on a torus.
- But suppose that it is not so simple. Suppose the shape of the system depends on the location in the system that we are currently at.
- So if the current state of the system is at the top of the torus, and we were to draw a trajectory from this point, we would expect suddenly the shape of the torus to change.
Dynamical systems with metarules

Why is this a useful way of modelling a real dynamical system?

- Because in reality the way a system changes depends on the direction a system is pushed from one state to another. The system is not static, but depends on the trajectories that are traced through it.
Dynamical systems with metarules

Why is this a useful way of modelling a real dynamical system?

- Because in reality the way a system changes depends on the direction a system is pushed from one state to another. The system is not static, but depends on the trajectories that are traced through it.

- In practice, this means that if we were to consider a system holistically, and consider a unique choice of initial tangent vector from each point - a vector field - in parameter space (ignoring situations where such is forbidden, since I am assuming Lorentzian geometry), then we would like to measure how a system would evolve / change in structure in a natural way, given that initial choice, or "push" in parameter space.
More primitively, consider the idea of a Markov process. One has a set of states, with transition probabilities between them. One can characterise this with a transition matrix.
More primitively, consider the idea of a Markov process. One has a set of states, with transition probabilities between them. One can characterise this with a transition matrix.

But suppose now that we wish to consider a set of transition matrices, and transition probabilities between these, which depend on the last state and the current state. In other words, a "meta-Markov" process. Then this is closer to the general idea I am trying to aim at.
More primitively, consider the idea of a Markov process. One has a set of states, with transition probabilities between them. One can characterise this with a transition matrix.

But suppose now that we wish to consider a set of transition matrices, and transition probabilities between these, which depend on the last state and the current state. In other words, a "meta-Markov" process. Then this is closer to the general idea I am trying to aim at.

We are now ready to ask the central question.
Central Question

Given a meta-dynamical system as loosely defined above, how can one describe the geometry of the associated object?

- If we can describe the geometry, we can compute geodesics (avoidance of tipping points).
Central Question

Given a meta-dynamical system as loosely defined above, how can one describe the geometry of the associated object?

- If we can describe the geometry, we can compute geodesics (avoidance of tipping points).
- If we can describe the geometry, it suggests ways that the system can be understood.
Central Question

Given a meta-dynamical system as loosely defined above, how can one describe the geometry of the associated object?

▶ If we can describe the geometry, we can compute geodesics (avoidance of tipping points).
▶ If we can describe the geometry, it suggests ways that the system can be understood.
▶ If we can describe the geometry, it suggests ways that the system can be controlled.
Outline

The Basic Problem

Jet bundles

Geometry

Optimisation

Concluding remarks
The first jet bundle

- The tangent bundle to M is given by tuples (p, v), where v is an element of T_pM.

- The tangent space to the tangent space gives $T(TM)$, given by tuples (p, v, w).

- Iterating this process a countably infinite number of times, we obtain the first jet bundle J^1M, given by tuples (p, V), where V is an infinite matrix.

- In practice, however, V is of rank $\dim(M)$.
The first jet bundle

- The tangent bundle to M is given by tuples (p, v), where v is an element of $T_p M$.
- The tangent space to the tangent space gives $T_{(2)} M$, given by tuples (p, v, w).
The first jet bundle

- The tangent bundle to M is given by tuples (p, v), where v is an element of T_pM.
- The tangent space to the tangent space gives $T_{(2)}M$, given by tuples (p, v, w).
- Iterating this process a countably infinite number of times, we obtain the first jet bundle J^1M, given by tuples (p, V), where V is an infinite matrix.
The first jet bundle

- The tangent bundle to M is given by tuples (p, v), where v is an element of $T_p M$.
- The tangent space to the tangent space gives $T_{(2)} M$, given by tuples (p, v, w).
- Iterating this process a countably infinite number of times, we obtain the first jet bundle $\mathcal{J}M$, given by tuples (p, V), where V is an infinite matrix.
- In practice, however, V is of rank $\text{dim}(M)$.
Elements of the jet bundle associated to trajectories

Suppose now we have two points, \(p \) and \(q \) in our parameter space \(M \).

- Consider the set of index preserving diffeomorphisms \(\text{Aut}(M) \) on \(M \). This will have a basis given by \(\{ f_{ij} : x_i \mapsto x_j \} \).
Suppose now we have two points, \(p \) and \(q \) in our parameter space \(M \).

- Consider the set of index preserving diffeomorphisms \(\text{Aut}(M) \) on \(M \). This will have a basis given by \(\{f_{ij} : x_i \mapsto x_j\} \).
- Consider a trajectory \(\gamma \) joining \(p \) and \(q \) in \(M \).
Elements of the jet bundle associated to trajectories

Suppose now we have two points, \(p \) and \(q \) in our parameter space \(M \).

- Consider the set of index preserving diffeomorphisms \(\text{Aut}(M) \) on \(M \). This will have a basis given by \(\{ f_{ij} : x_i \mapsto x_j \} \).
- Consider a trajectory \(\gamma \) joining \(p \) and \(q \) in \(M \).
- Then relative to any point \(\gamma(t) \) we have a vector pointing in the direction of the perturbation of the point relative to the \(ij \)th element of \(\text{Aut}(M) \) at \(\gamma(t) \).
Elements of the jet bundle associated to trajectories

Suppose now we have two points, \(p \) and \(q \) in our parameter space \(M \).

- Consider the set of index preserving diffeomorphisms \(Aut(M) \) on \(M \). This will have a basis given by \(\{ f_{ij} : x_i \mapsto x_j \} \).
- Consider a trajectory \(\gamma \) joining \(p \) and \(q \) in \(M \).
- Then relative to any point \(\gamma(t) \) we have a vector pointing in the direction of the perturbation of the point relative to the \(ij \)th element of \(Aut(M) \) at \(\gamma(t) \).
- This gives us a matrix of tangents (relative to these perturbations of \(\gamma \)), or an element of the first jet bundle, associated to each point of the path \(\gamma \).
Meta-markov processes again

I claim that to specify the structure associated to the first jet bundle, we need a 6-tensor κ.

- Consider again meta rules for a markov process. Note that $GL(n)$ as a matrix group has tangent group $GL(n)$.
Meta-markov processes again

I claim that to specify the structure associated to the first jet bundle, we need a 6-tensor κ.

- Consider again meta rules for a markov process. Note that $GL(n)$ as a matrix group has tangent group $GL(n)$.
- Then if T_{ij} is a unit transition probability, and U_{kl}, V_{mn} are unit tangent probabilities sitting in the tangent group $GL(n)$, we have that κ_{ijklmn} determines the result of acting on T_{ij} with U_{kl} "on the left" and V_{mn} "on the right". It is the "meta-rule transition to transition probability".
Meta-markov processes again

I claim that to specify the structure associated to the first jet bundle, we need a 6-tensor κ.

- Consider again meta rules for a markov process. Note that $GL(n)$ as a matrix group has tangent group $GL(n)$.
- Then if T_{ij} is a unit transition probability, and U_{kl}, V_{mn} are unit tangent probabilities sitting in the tangent group $GL(n)$, we have that κ_{ijklmn} determines the result of acting on T_{ij} with U_{kl} "on the left" and V_{mn} "on the right". It is the "meta-rule transition to transition probability".
- The analogy for left and right action is that a left action occurs subsequent to the state - it is where the trajectory is moving to, and a right action occurs prior - it is where the trajectory is moving from.
Outline

The Basic Problem

Jet bundles

Geometry

Optimisation

Concluding remarks
As in Riemannian geometry, we have structural coefficients given by

\[\Gamma^p_{ijklmn} = \langle \partial_p E_{ij}, E_{kl}, \partial_q E_{mn} \rangle_\kappa \]

where \(\{ E_{ij} \} \) forms a basis for the (first) jet bundle of the space.
As in Riemannian geometry, we have structural coefficients given by

\[\Gamma_{ijklmn}^{pq} = \langle \partial_p E_{ij}, E_{kl}, \partial_q E_{mn} \rangle_{\kappa} \]

where \(\{ E_{ij} \} \) forms a basis for the (first) jet bundle of the space.

These can be computed as

\[\Gamma_{ijklmn}^{pq} = \kappa_{ijk}^{abc}(\sum_{g \in C_8 \otimes C_7} \{ g \cdot \partial_p \partial_q \kappa_{abclmn} \}) \]

where summation is over the group product \(C_8 \otimes C_7 \) acting on the indices of \(\partial_p \partial_q \kappa_{abclmn} \).
Geodesics

- γ is geodesic with respect to κ if

$$\nabla_{(X_{ij}, \kappa)} X_{kl} = 0$$

where $X_{ij} : [0, 1] \rightarrow JM$ is the one parameter jet field associated to γ.
Geodesics

- γ is geodesic with respect to κ if
 \[\nabla_{(X_{ij}, \kappa)} X_{kl} = 0 \]
 where $X_{ij} : [0, 1] \rightarrow J M$ is the one parameter jet field associated to γ.

- $\nabla_{(X, \kappa)}$ is the affine connection with respect to κ, uniquely determined by
 \[\partial_{ij} \langle \ddot{X}, \ddot{Y}, \ddot{Z} \rangle_{\kappa} = \langle \partial_{ij} \ddot{X}, \ddot{Y}, \ddot{Z} \rangle + \langle \ddot{X}, \partial_{ij} \ddot{Y}, \ddot{Z} \rangle + \langle \ddot{X}, \ddot{Y}, \partial_{ij} \ddot{Z} \rangle \]
The cybernetic information functional

We wish to know what choice of κ is most natural, ie how a "physical" system will place constraints on allowable behaviour for κ.

Define $Cyb(M) := \{(\mathcal{J}M)^3 \to \mathcal{J}M\}$ as the space of left and right actions on the first jet bundle of M.

- We have an information functional given by

$$I := \int_M \int_{Cyb_m(M)} f(\partial_{ij}\partial_k \log f)^3 dmdV$$

where $f = f(m, V) = \delta(\kappa(m) - V)$, with $m \in M$ a point in parameter space and $V \in Cyb_m(M)$ is a point in the space of meta-rules at m.
The cybernetic information functional

We wish to know what choice of κ is most natural, i.e., how a "physical" system will place constraints on allowable behaviour for κ.

Define $Cyb(M) := \{ (\mathcal{J} M)^3 \to \mathcal{J} M \}$ as the space of left and right actions on the first jet bundle of M.

- We have an information functional given by

$$I := \int_M \int_{Cyb_m(M)} f(\partial_{ij} \partial_k \log f)^3 \, dm \, dV$$

where $f = f(m, V) = \delta(\kappa(m) - V)$, with $m \in M$ a point in parameter space and $V \in Cyb_m(M)$ is a point in the space of meta-rules at m.

- ∂_{ij} is the derivative on function space. ∂_k is the derivative on normal space.
The key result

- I conjecture that, after some considerable work, it can be demonstrated that this simplifies to

\[\int_M \text{Inv}(\kappa)\,dm \]

where \(\text{Inv}(\kappa) \) is a geometric invariant defined by

\[\text{Inv}(\kappa) := \kappa_{ijklmn} \Gamma_{ijabcdef} \Gamma_{klghpabc} \Gamma_{mndefghp} \]
The key result

- I conjecture that, after some considerable work, it can be demonstrated that this simplifies to

\[\int_M \text{Inv}(\kappa) \, dm \]

where \(\text{Inv}(\kappa) \) in a geometric invariant defined by

\[
\text{Inv}(\kappa) := \kappa_{ijklmn} \Gamma_{ijabcdef} \Gamma_{klghpabc} \Gamma_{mndefghp}
\]

- This allows us to understand the geometric behaviour of a meta-dynamical system as \(\text{Inv}(\kappa) = 0 \), as a physical system will minimise the information associated to its relevant information functional.
Outline

The Basic Problem

Jet bundles

Geometry

Optimisation

Concluding remarks
Final comments

- In this talk I have indicated how one might go about modelling dynamical systems using meta-rule type considerations.
Final comments

- In this talk I have indicated how one might go about modelling dynamical systems using meta-rule type considerations.
- This talk has been intended only as the starting point for a conversation on said matters.
Final comments

- In this talk I have indicated how one might go about modelling dynamical systems using meta-rule type considerations.
- This talk has been intended only as the starting point for a conversation on said matters.
- Naturally a great deal of work remains to be done.
Questions