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Abstract: This paper innovates the way we comprehend time and its relationship with space by 

proposing a new concept within General relativity and, to some extent, Quantum Mechanics in 

order to explain some of the natural aspects that still puzzle scientists that study the very nature 

of the Universe. Gravitation, the arrow of time, cosmic inflation and many more subjects that are 

crucial to modern day physics shall be debated within the most accurate theory, General 

relativity, but also with some concepts developed in terms of Quantum Mechanics. 
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I Introduction 

1. Manifold 

The model we will use for spacetime is a Lorentzian manifold, as we mentioned before that is the 

manifold type used in General Relativity. We have a pair (𝑀, 𝑔) where (𝑀) is a connected (4)-

dimensional Hausdorf (𝐶∞) manifold and (𝑔) is a Lorentzian metric with a signature (+2) on 

(𝑀).  

(𝑀,𝑔) and (𝑀′, 𝑔′) will be taken as equivalent if they are isometric, meaning that there should be 

a diffeomorphism (𝜃:𝑀 → 𝑀′) which would take the metric (𝑔) into the metric (𝑔′), that is: 

(1) 𝜃∗ 𝑔 = 𝑔′ 

The metric (𝑔) enables the non-zero vectors at a point (𝑝 ∈ 𝑀) to be divided into three classes: a 

non-zero vector (𝑋 ∈ 𝑇𝑝) that is timelike, spacelike or null if (𝑔(𝑋, 𝑋)) is negative, positive or 

zero, respectively.  

The order of differentiability (𝑟) of the metric should be sufficient for the field equations to be 

defined. They can be defined in a distributional sense if the metric coordinate components (𝑔𝑎𝑏) 

and (𝑔𝑎𝑏) are continuous and have locally square integrable generalized first derivatives with 

respect to local coordinates. A set of functions (𝑓;𝑎) on (𝑅𝑛) is said to be a generalized derivative 

of a function (𝑓) on (𝑅𝑛) if for any (𝐶∞) function (𝛹) on (𝑅𝑛) with compact support: 

(2) ∫𝑓;𝑎 𝛹 𝑑
𝑛𝑥 = ∫𝑓 (

𝜕𝛹

𝜕𝑥𝑎
) 𝑑𝑛𝑥 

However, this condition is too weak since it does not guarantee neither the existence nor the 

uniqueness of geodesics. We will now assume that the metric is at least (𝐶2). The (𝐶𝑟) pair 

(𝑀′, 𝑔′) is a (𝐶𝑟)-extension of (𝑀,𝑔) if there is an isometric (𝐶𝑟) imbedding (𝜇:𝑀 → 𝑀′). 

We require that the model (𝑀,𝑔) is (𝐶𝑟)-inextensible, meaning that there is no (𝐶𝑟) extension 

(𝑀′, 𝑔′) of (𝑀,𝑔) where (𝜇(𝑀)) does not equal (𝑀′). 

A pair (𝑀,𝑔) is (𝐶𝑟) locally inextensible if there is no open set (𝑈 ⊂ 𝑀) with non-compact 

closure in (𝑀), such that the pair (𝑈,
𝑔
𝑛⁄ ) has an extension (𝑈′, 𝑔′) in which closure of the image 

of (𝑈) is compact. 

2. Matter fields 

We denote the matter fields as: 



 
 

 

(3) 𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

 

where the sub-script (𝑖) numbers the fields considered.  

The following two postulates on the nature of the equations obeyed by the (𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

) are 

common to both Special and General Relativity.  

2.1. The first postulate: Local causality  

The equations governing the matter fields must be such that if (𝑈) is a convex normal 

neighborhood and (𝑝) and (𝑞) are points in (𝑈), then a signal can be sent in (𝑈) between (𝑝) and 

(𝑞) if and only if (𝑝) and (𝑞) can be joined by a (𝐶1) curve lying entirely in (𝑈), whose tangent 

vector is everywhere non-zero and is either timelike or null; hence called “non-spacelike”. 

Whether the signal is sent from (𝑝) to (𝑞), or vice versa, will depend on the direction of time in 

(𝑈).  

This postulate is what sets apart the metric (𝑔) from other fields on (𝑀) and gives it its 

distinctive geometrical character.  

If ({𝑥𝑎}) are normal coordinates in (𝑈) about (𝑝), then we can conclude that the points that can 

be reached from (𝑝) by non-spacelike curves in (𝑈) are those whose coordinates satisfy: 

(4) (𝑥1)2 + (𝑥2)2 + (𝑥3)2 + (𝑥4)2 ≤ 0 

The boundary of these points is formed by the image of the null cone of (𝑝) under the 

exponential map, that is the set of all null geodesics through (𝑝). Therefore by observing which 

points can communicate with (𝑝), we can determine the null cone (𝑁𝑝) in (𝑇𝑝). Once the (𝑁𝑝) is 

known, the metric at (𝑝) may be determined up to a conformal factor. 

2.2. The second postulate: Local conservation of energy and momentum 

The equations governing the matter fields are such that there exists a symmetric tensor (𝑇𝑎𝑏), 

known as the energy momentum tensor, which depends on the fields, their covariant derivatives 

and the metric; all of which has properties: 

1) (𝑇𝑎𝑏) vanishes on an open set (𝑈) if and only if all the matter fields vanish on (𝑈). 

2) (𝑇𝑎𝑏) obeys the equation: 

(5) 𝑇𝑎𝑏;𝑏 = 0 

3. Lagrangian formulation 

Let (𝐿) be a Lagrangian which is a scalar function of the fields (𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

), their first covariant 

derivatives and the metric. We obtain the equations of the fields by requiring that the action: 



 
 

 

(6) ∫ 𝐿 𝑑𝑣
𝐷

 

be stationary under variations of the fields in the interior of a compact four-dimensional region 

(𝐷). By variation of the fields (𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

) we mean a one-parameter family of fields 

(𝛹(𝑖)(𝑢, 𝑟)) where (𝑢 ∈ (−𝜀, 𝜀)) and (𝑟 ∈ 𝑀), such that: 

1) (7) 𝛹(𝑖)(0, 𝑟) = 𝛹(𝑖)(𝑟) 

2) (8) 𝛹(𝑖)(𝑢, 𝑟) = 𝛹(𝑖)(𝑟) when (𝑟 ∈ 𝑀 − 𝐷) 

We denote (𝜕𝛹(𝑖)(𝑢, 𝑟)/𝜕𝑢|𝑢=0) by (∆𝛹(𝑖)). 

Then: 

(9) 
𝜕𝐼

𝜕𝑢
|
𝑢=0

=∑∫ (
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

∆𝛹(𝑖)𝑎…𝑏
𝑐…𝑑

+
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒
∆(𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒))𝑑𝑣

𝐷(𝑖)

 

where (𝛹(𝑖)𝑎…𝑏
𝑐…𝑑;𝑒

) are the components of the covariant derivatives of (𝛹(𝑖)) but 

(∆(𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒) = ∆(∆𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒)), hence the second term can be expressed as: 

(10) ∑∫ [(
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒
∆𝛹(𝑖)𝑎…𝑏𝑐…𝑑)

;𝑒

− (
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒
)

;𝑒

∆𝛹(𝑖)𝑎…𝑏𝑐…𝑑] 𝑑𝑣
𝐷(𝑖)

 

The first term in this expression can be written as: 

(11) ∫ 𝑄𝑎;𝑎 𝑑𝑣 = ∫ 𝑄𝑎 𝑑𝜎𝑎
𝜕𝐷𝐷

 

Where (𝑄) is a vector whose components are: 

(12) 𝑄𝑒 =∑
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒(𝑖)

∆𝛹(𝑖)𝑎…𝑏𝑐…𝑑 

This integral is zero as condition two states that (∆𝛹(𝑖)) vanishes at the boundary (𝜕𝐷). Hence in 

order that (𝜕𝐼 𝜕𝑢|𝜕𝑢=0⁄ ) should vanish for all variations on all volumes (𝐷), it is necessary and 

sufficient that the Euler-Lagrange equations: 

(13) 
𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑
− (

𝜕𝐿

𝜕𝛹(𝑖)𝑎…𝑏𝑐…𝑑;𝑒
)

;𝑒

= 0 

hold for all (𝑖). 



 
 

 

We obtain the energy momentum tensor from the Lagrangian by considering the change in the 

action induced by a change in the metric. 

4. Field equations 

To determine what the field equations should be we shall determine the Newtonian limit. Since 

the Newtonian gravitational field equation does not include time, correspondence with the 

Newtonian theory should be made with a metric that is static, meaning a metric that admits a 

timelike Killing vector field (𝐾) which is orthogonal to a family of spacelike surfaces, which can 

be regarded as surfaces of constant time and may be labeled by the parameter (𝑡).  

We define the unit timelike vector (𝑉) as (𝑓−1𝐾) where (𝑓2 = −𝐾𝑎𝐾𝑎). Then (𝑉𝑎;𝑏 = −𝑉̇𝑎𝑉𝑏) 

where (𝑉̇𝑎 = 𝑉𝑎;𝑏𝑉
𝑏 = 𝑓−1𝑓;𝑏𝑔

𝑎𝑏) represents the departure from geodesity of the integral 

curves of (𝑉), which are also the curves of (𝐾). Note that (𝑉̇𝑎𝑉𝑎 = 0).  

These integral curves define the static frame of reference. We can derive an equation for the 

Newtonian gravitational potential by considering the divergence of (𝑉̇𝑎): 

(14) 𝑉̇𝑎;𝑎 = (𝑉
𝑎
;𝑏𝑉

𝑏)
;𝑎
= 𝑉𝑎;𝑏;𝑎𝑉

𝑏 + 𝑉𝑎;𝑏𝑉
𝑏
;𝑎 = 𝑅𝑎𝑏𝑉

𝑎𝑉𝑏 + (𝑉𝑎;𝑏);𝑏𝑉
𝑏 + (𝑉𝑏𝑉̇

𝑏)
2

= 𝑅𝑎𝑏𝑉
𝑎𝑉𝑏 

But: 

(15) 𝑉̇𝑎;𝑎 = (𝑓
−1𝑓;𝑏𝑔

𝑎𝑏)
;𝑎
= −𝑓−2𝑓;𝑎𝑓;𝑏𝑔

𝑎𝑏 + 𝑓−1𝑓;𝑏𝑎𝑔
𝑎𝑏 

and: 

(16) 𝑓;𝑎𝑏𝑉
𝑎𝑉𝑏 = −𝑓;𝑎𝑉

𝑎
;𝑏𝑉

𝑏 = −𝑓−1𝑓;𝑎𝑓;𝑏𝑔
𝑎𝑏 

So we find: 

(17) 𝑓;𝑎𝑏(𝑔
𝑎𝑏 + 𝑉𝑎𝑉𝑏) = 𝑓 𝑅𝑎𝑏𝑉

𝑎𝑉𝑏 

We therefore obtain agreement with the Newtonian theory in the limit of a weak field, when 

(𝑓 ≅ 1), if the term on the right is equal to (4𝜋𝐺) times the matter density plus terms which are 

small in the weak field limit. This will be the case if there is a relation: 

(18) 𝑅𝑎𝑏 = 𝐾𝑎𝑏 

where (𝐾𝑎𝑏) is a tensorial function of the energy momentum tensor and the metric, which is such 

that ((4𝜋𝐺)−1 𝐾𝑎𝑏𝑉
𝑎𝑉𝑏) is equal to the matter density plus terms which are small in the 

Newtonian limit since (𝑅𝑎𝑏) satisfies the contracted Bianchie identities (𝑅𝑎
𝑏
;𝑏
=

1

2
𝑅;𝑎), implies 

that: 



 
 

 

(19) 𝐾𝑎
𝑏
;𝑏
=
1

2
𝐾;𝑏 

which shows that the apparently natural equation (𝐾𝑎𝑏 = 4𝜋𝐺𝑇𝑎𝑏) cannot be correct due to the 

equation above (19)  and the conservation equations (𝑇𝑎
𝑏
;𝑏
= 0) would imply (𝑇;𝑎 = 0). 

The only first order identities satisfied by the energy-momentum tensor are the conservation 

equations. The only tensorial function (𝐾𝑎𝑏) of the energy-momentum tensor and the metric, 

which obeys the identities (𝐾𝑎
𝑏
;𝑏
=

1

2
𝐾;𝑏) for all energy-momentum tensors is the: 

(20) 𝐾𝑎𝑏 = 𝑘 (𝑇𝑎𝑏 −
1

2
𝑇 𝑔𝑎𝑏) + 𝜆𝑔𝑎𝑏 

where (𝑘) and (𝜆) are constants. The values of these constants can be determined from the 

Newtonian limit, for example a perfect fluid with energy density (𝜇) and pressure (𝑝) whose flow 

lines are the integral curves of the Killing vector, hence: 

(21) 𝑓;𝑎𝑏(𝑔
𝑎𝑏 + 𝑉𝑎𝑉𝑏) = 𝑓 (

1

2
𝑘(𝜇 + 3𝑝) − 𝜆) 

In the Newtonian limit the pressure is usually very small compared to energy density. We would 

then obtain approximate agreement with Newtonian theory if (𝑘 = 8𝜋𝐺) and if (𝜆) is very small. 

We shall use the units of mass where (𝐺 = 1), in these units a mass of (1028𝑔) corresponds to a 

length of (1𝑐𝑚). 

We then integrate the previous equation over a compact region (𝐹) at the three surface where 

(𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), and transform the left hand into an integral of the gradient of (𝑓) over the 

bounding two-surface (𝜕𝐹): 

(22) ∫ 𝑓(4𝜋(𝜇 + 3𝑝))𝑑𝜎 = ∫ 𝑓;𝑎𝑏(𝑔
𝑎𝑏+𝑉𝑎𝑉𝑏)𝑑𝜎 = ∫ 𝑓;𝑎(𝑔

𝑎𝑏 + 𝑉𝑎𝑉𝑏)𝑑𝜏𝑏
𝜕𝐹𝐹𝐹

 

where (𝑑𝜎) is the volume element of the three-surface where (𝑡 = 𝑐𝑜𝑛𝑠𝑡), in the induced metric, 

and (𝑑𝜏𝑏) is the surface element of the two-surface (𝜕𝐹) in the three surface. 

Here we realize two important differences from the Newtonian case: 

1) A factor (𝑓) appears in the integral on the right-hand side. 

2) The pressure contributes to the total mass. 

Hence we form the equations: 

(23) 𝑅𝑎𝑏 = 8𝜋 (𝑇𝑎𝑏 −
1

2
𝑇𝑔𝑎𝑏) + 𝜆𝑔𝑎𝑏 



 
 

 

known as “Einstein field equations” and can also be written in the form: 

(24) (𝑅𝑎𝑏 −
1

2
𝑅𝑔𝑎𝑏) + 𝜆𝑔𝑎𝑏 = 8𝜋𝑇𝑎𝑏 

Since both sides are symmetric, these form a set of ten coupled non-linear partially differential 

equations in the metric and its first and second derivatives. However, the covariant divergence of 

each side vanishes identically: 

(25) (𝑅𝑎𝑏 −
1

2
𝑅𝑔𝑎𝑏 + 𝜆𝑔𝑎𝑏)

;𝑏
= 0   𝑎𝑛𝑑 𝑇𝑎𝑏;𝑏 = 0 

hold independent of the field equations, which means that the field equations really provide only 

six independent differential equations of the metric, which is the correct number of equations to 

determine the spacetime, since four of the ten components of the metric can be given arbitrary 

values by use of the four degrees of freedom to make coordinate transformations. Einstein 

equations can also be determined by requiring that the action: 

(26) 𝐼 = ∫ (𝐴(𝑅 − 2𝜆) + 𝐿)𝑑𝑣
𝐷

 

be stationary under variations of (𝑔𝑎𝑏), where (𝐿) is the matter Lagrangian and (𝐴) is a suitable 

constant for:  

(27) ∆((𝑅 − 𝜆)𝑑𝑣) = ((𝑅 − 2𝜆)
1

2
𝑔𝑎𝑏∆𝑔𝑎𝑏 + 𝑅𝑎𝑏∆𝑔

𝑎𝑏 + 𝑔𝑎𝑏∆𝑅𝑎𝑏)𝑑𝑣 

which can be written as: 

(28)𝑔𝑎𝑏∆𝑅𝑎𝑏𝑑𝑣 = 𝑔𝑎𝑏((∆Г𝑐𝑎𝑏);𝑐 − (∆Г
𝑐
𝑎𝑏);𝑏)𝑑𝑣 = (∆Г𝑐𝑎𝑏𝑔

𝑎𝑏 − ∆Г𝑑𝑎𝑑𝑔
𝑎𝑐);𝑐𝑑𝑣  

Thus it can be transformed into an integral over the boundary (𝜕𝐷), which vanishes as (∆Г𝑎𝑏𝑐) 

vanishes the boundary: 

(29) 
𝜕𝐼

𝜕𝑢
|
𝑢=𝑜

= ∫ {𝐴((
1

2
𝑟 − 𝜆)𝑔𝑎𝑏 − 𝑅𝑎𝑏) +

1

2
𝑇𝑎𝑏}∆𝑔𝑎𝑏𝑑𝑣

𝐷

 

hence if (𝜕𝐼 𝜕𝑢⁄ ) vanishes for all (∆𝑔𝑎𝑏), we obtain the Einstein equations on the setting (𝐴 =

(16𝜋)−1). 

5. Fieldless equations 

Equations without any fields are necessary to effectively explain the earliest stages of the 

Universe, from the beginning of the Big Bang, an event known as “cosmic inflation”. The period 

of cosmic inflation was a small segment of a second. Only time and space are necessary for the 



 
 

 

fieldsless equations which is the reason for the name “fieldless”. Having in mind that, within 

General Relativity, space-time consists of three spatial dimensions and another, temporal 

dimension, fieldless equations can also be called “dimensional equations”. 

The point of the fieldless equations is to explain the fundament nature of the Universe:  

1. Why does it expand at an accelerated rate? 

2. What is the reason for its homogenous and isometric nature? 

3. What is (𝑐) known as the speed of light and why is it the most crucial and important 

constant? 

4. What are the material properties of time? 

5. What is the relationship between space and time? 

 

We have to abandon the idea of “arrow of time” and instead define a new term called “temporal 

motion” which means that time is expanding without a specific direction, in all directions 

positive to the observer; temporal motion also causes spatial expansion which will be shown later 

and that it accelerates the spatial expansion as well.  

We form an equation by defining that there are two imaginary angles (𝛼𝑥, 𝛼𝑦) formed by the 

intersection of an imaginary line that will represent an imaginary axis of (𝑎(𝑡)) and another 

imaginary line (𝑑) that will represent a diameter of space. The two angles are always: 

(30) 𝛼𝑥 = 𝛼𝑦 = 90° 

These two imaginary angles will represent the difference between the present and the ongoing 

“temporal motion” that is the future. We will represent this temporal motion with an (↠) 

symbol, in honor of the previous idea of the “arrow of time”. 

The (𝑎(𝑡)) is the scale factor that depends on time and it will describe the expansion of time, that 

influences the spatial expansion, hence the expansion of the whole Universe. We declare that 

(𝑎(𝑡)) is heading to a realistic maximum (𝑟𝑚𝑎𝑥). It is not certain if this maximum exists so we 

also define that (𝑟𝑚𝑎𝑥 = ∞) if there is no maximum or (𝑟𝑚𝑎𝑥 ≠ ∞) if there is a maximum. If 

there is a maximum than the Universe will not expand infinitely from a temporal perspective, 

meaning indefinitely, but will instead have an end in the distant future. 

Now we define a set of equations to explain how the relationship between time and space 

functions due to temporal motion: 

(31) 𝑎(𝑡)

{
 
 

 
 𝑡(𝑥) = log

lim
𝑥→∞

(
↠
𝑥
+↠)

𝑥(𝑥) ; 𝑎 → 0

𝑡(𝑦) = log
lim
𝑦→∞

(
↠
𝑦
+↠)

𝑦(𝑦) ; 𝑎 → 0

𝑡(𝑧) = 𝑧+↠;                        𝑎 → 0

 



 
 

 

This is the reason why our spacetime is nearly flat. If the (𝑧) spatial dimension were to expand as 

the (𝑥) and (𝑦) do, our spacetime would be shaped like a saddle.  

Or in other words, we imagine the spacetime as: 

 

Figure 1: the flat spacetime 

Meaning that the (𝑥) and (𝑦) are expanding while spacetime is “moving on”, or “expanding on”, 

the (𝑧) dimension. On an image it would look like this: 

 

Figure 2: spacetime from the Big Bang to the present 



 
 

 

Time expands in all directions as represented by (𝑎(𝑡)), therefore making an observer feel like 

time is “passing”. Time also forces the spatial dimensions to expand hence forming the 

spacetime continuum and by expanding in all directions we could say that time inflates space 

and it has done so from the soul beginning of the Big Bang due to temporal motion. 

6. Temporal motion 

Unlike spatial motion, temporal motion requires no direction. Instead of a trajectory it needs 

expansion and it needs a velocity. Time expands in all direction and it influences spatial 

expansion, hence it “inflates space”, which forms the spacetime continuum.  

We define that on the quantum level: 

(32) 𝛿 ↠ = 𝛿 ∫𝑑Д 𝐿(𝑎(𝑡), 𝑎̇(𝑡))  

where the (𝑑Д) is the accelerating quantum and (𝑎̇(𝑡)) is the velocity. We also define that: 

(33) 𝑎̇(𝑡) = 𝑐 

Where (𝑐) is “the speed of light”. This is the reason for time dilatation caused by velocity and 

why (𝑐) is the speed necessary to achieve maximal time dilatation. What (𝑐) actually is, is the 

speed of temporal motion. Any velocity will cause time dilatation to some extent as every mass 

of a celestial body will cause gravitational time dilatation to some extent. 

The accelerating quantum (𝑑Д) constantly tries to accelerate temporal motion but it cannot since 

temporal motion cannot exceed (𝑐), which leads the accelerating quantum to influence the 

expansion of space instead, manifesting as “dark energy” on the large scale and accelerating 

spatial expansion. Spatial expansion of the Universe is well beyond the speed (𝑐) since dark 

energy has been massing to the point that it has an overwhelming presence in the Universe.  

Therefore: 

(34) 𝛿 ↠= 𝛿∫𝑑Д𝐿(𝑎(𝑡), 𝑐) 

 

In order to prove that time inflates space and has inflated it since the beginning of the Big Bang, 

causing “cosmic inflation”, we go back to the early Universe in the period known as the 

“radiation dominated era”. 

As (𝑡 → 0) and (𝑎 → 0) the only term is the radiation one, meaning that the Universe was 

dominated by radiation, around (𝑧 ≳ 3200). 

For the early, radiation dominated era we can approximate a solution: 



 
 

 

(35) 𝑎(𝑡) ≃ (2𝐻0√𝛺𝑟;0𝑡)
1 2⁄

 

The early, radiation dominated Universe expanded as (𝑎 ∝ √𝑡).  

We use the initial data to write the fieldless equations for the initial inflation of the Universe: 

(36) 𝑎(𝑡)

{
 
 

 
 
𝑡(𝑥) = log

lim
𝑎→0

(
↠
𝛼𝑥
+↠)

↠
𝛼𝑥
(𝑥) ; 𝑥 → ∞

𝑡(𝑦) = log
lim
𝑎→0

(
↠
𝛼𝑦
+↠)

↠
𝛼𝑦
(𝑦) ; 𝑦 → ∞

𝑡(𝑧) = 𝑧+↠;                          𝑧 → ∞

 

 

Which means that time inflates space and has always inflated it, causing what we call “cosmic 

inflation”. With time the accelerating quantum influenced space so that the Universe is now 

dominated by the (𝜆) factor, or in other words “dark energy” is dominant in the present Universe.  

 

II Conclusion 

In the conclusion of the paper we observe the equation (34) where (𝑑Д) is the accelerating 

quantum that is responsible for the existence of “dark energy”. 

This means that dark energy can be explained as “temporal kinetic energy” since it is caused by 

temporal motion. 

(37) 〈Д̂〉 = 〈𝛹 | ∑
−ћ2

2𝑚𝜆

𝐻𝑈(𝑡)

↠=1

∇↠
2 | 𝛹〉 = −

ћ2

2𝑚𝜆
 ∑ 〈𝛹|∇↠

2 |𝛹〉

𝐻𝑈(𝑡)

↠=1

  

where (𝐻) is the Hamiltonian of the system, (∇↠
2 ) is the Laplacian, (𝐻𝑈(𝑡)) is time-evolution and 

(𝑚𝜆) is the mass which manifests as dark matter. 

When the Universe was young the (𝜆) factor was significantly lesser than it is now, therefore the 

rate of acceleration of the expansion was much lesser than it is at the present period of time. 
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