A naive solution for Navier-Stokes equations
Valdir Monteiro dos Santos Godoi
valdir.msgodoi@gmail.com

Abstract – We seek a solution attempt for the system of Navier-Stokes equations for spatial dimensions \(n = 2 \) and \(n = 3 \). This solution has the most objective to provide a better numerical evaluation of the exact analytical solution, thus contributing to the solution not only from a theoretical mathematical problem, but from a practical problem worldwide.

Keywords – Navier-Stokes equations, numerical solutions, exact solutions, equivalent systems.

1 – Introduction

The reading the last pages of chapter 10 of the book by Ian Stewart, "Seventeen Equations that Changed the World" [1], reminded me once again of the importance of the Navier-Stokes equations, especially of its solutions. A sense of urgency proved necessary for this issue. It is not equal to seek proof of the Riemann hypothesis, which although it is one of the most difficult problems of mathematics does not seem to bring greater immediate consequences to the world.

The problem of the Navier-Stokes equations described in the Millennium problems [2] is solved by the case (C), the breakdown of the solutions [3], [4], although I recognize that the cases more interesting and useful to solve would be the cases (A) and (B), the proof of existence and smoothness of their solutions for all initial velocity \(u^0(x) \) obeying determinate conditions.

The world is running a serious heating problem, either by natural or human causes. The more likely they are combined causes, of course. The northern hemisphere is heating up more (much more...) that the southern hemisphere, so we cannot rule out the human influence in this heat. Evidently the northern hemisphere is the most industrialized hemisphere of the world, which produces more heat due to their machines, and thus would be more likely to contribute to this warming.

The problem of global warming is not only the increase in temperature, the feeling of discomfort, but also in the disasters that it is able to produce, as the melting ice of the poles, the corresponding increase in sea levels, as well as torrential rains, storms, fires and the most destructive hurricanes.

According Ian Stewart in the mentioned book, two climate vital aspects are the atmosphere and the oceans. Both are fluid, and both can be treated using the
Navier-Stokes equation. The secrets of the climate system are closed in the Navier-Stokes equation. He said, referring to a research council document in physical sciences and engineering (EPSRC – Engineering & Physical Sciences Research Council, from United Kingdom), published in 2010: "The secrets of the climate system are closed in the Navier-Stokes equation, but it is too complex to be solved directly". Instead, researchers of climate models are using numerical methods to calculate the fluid flow at the point of a three-dimensional grid covering the globe from the depths of the oceans to the highest points of the atmosphere. The horizontal grid spacing is 100 km; anything less makes your computation impractical. Faster computers will not serve much, then the best way forward is to think harder. Mathematicians are developing more efficient means to numerically solve the Navier-Stokes equation.

Then that’s it. The purpose of this paper is to find a solution to the system of Navier-Stokes equations, given the initial condition \(u(x,0) = u^0(x) \), \(x \in \mathbb{R}^n, n = 2 \) and \(n = 3 \), for both the cases that must be obeyed the equation of incompressibility, \(\nabla \cdot u = \nabla \cdot u^0 = 0 \), as also for the general case, any values of \(\nabla \cdot u \) and \(\nabla \cdot u^0 \). Obviously this method can be used for the numerical solution of that equations, which I hope to have your accuracy greatly increased (1 m or less instead of 100 km would be excellent). A grid with width cell 100 km is absolutely unreliable.

2 – Solution for \(n = 2 \)

The system of Navier-Stokes equations in spatial dimension \(n = 2 \) is

\[
\begin{align*}
\frac{\partial p}{\partial x} + \frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} + u_2 \frac{\partial u_1}{\partial y} &= v \nabla^2 u_1 + f_1 \\
\frac{\partial p}{\partial y} + \frac{\partial u_2}{\partial t} + u_1 \frac{\partial u_2}{\partial x} + u_2 \frac{\partial u_2}{\partial y} &= v \nabla^2 u_2 + f_2
\end{align*}
\]

or in vectorial form

\[
\nabla p + \frac{\partial u}{\partial t} + (u \cdot \nabla) u = v \nabla^2 u + f,
\]

where \(u(x,y,t) = (u_1(x,y,t), u_2(x,y,t)), \) \(u: \mathbb{R}^2 \times [0,\infty) \rightarrow \mathbb{R}^2, \) is the velocity of the fluid, of components \(u_1, u_2, \) \(p \) is the pressure, \(p: \mathbb{R}^2 \times [0,\infty) \rightarrow \mathbb{R}, \) and \(f(x,y,t) = (f_1(x,y,t), f_2(x,y,t)), \) \(f: \mathbb{R}^2 \times [0,\infty) \rightarrow \mathbb{R}^2, \) is the density of external force applied in the fluid in point \((x,y) \) and at the instant of time \(t, \) for example, gravity force per mass unity, with \(x, y, t \in \mathbb{R}, t \geq 0. \) The coefficient \(v \geq 0 \) is the viscosity coefficient, and in the special case that \(v = 0 \) we have the Euler equations. \(\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) \) is the nabla operator and \(\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \equiv \Delta \) is the Laplacian operator.
If \(u_1 \) and \(u_2 \) are solutions of system (1) then are valid the following equalities:

\[
(2.3) \quad u_2 = \frac{\nu \nabla^2 u_1 + f_1 - \left(\frac{\partial p}{\partial x} + \frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} \right)}{\frac{\partial u_1}{\partial y}}, \text{ if } \frac{\partial u_1}{\partial y} \neq 0,
\]

and

\[
(2.4) \quad u_1 = \frac{\nu \nabla^2 u_2 + f_2 - \left(\frac{\partial p}{\partial y} + \frac{\partial u_2}{\partial t} + u_2 \frac{\partial u_2}{\partial y} \right)}{\frac{\partial u_2}{\partial x}}, \text{ if } \frac{\partial u_2}{\partial x} \neq 0.
\]

The equation (2.3) says that \(u_2 \) is a function of \(u_1 \), as well as the equation (2.4) says that \(u_1 \) is a function of \(u_2 \). Therefore, if we have the correct value of \(u_1 \) we can get the value of \(u_2 \), and vice versa, need for this too that pressure can be obtained. The equations (2.3) and (2.4) cannot contradict each other, i.e., the obtaining \(u_2 \) given \(u_1 \) in (2.3) must be verified next by the use of the equation (2.4), confirming it, and vice versa. If the pressure \(p \) is not a given function for the problem, both equations (2.3) and (2.4) need to be solved to the complete obtainment of \(p \). Thus, in principle, the velocity and pressure can be obtained completely following this method, since that \(\frac{\partial u_1}{\partial y} \frac{\partial u_2}{\partial x} \neq 0 \). In this case, the systems (2.3)-(2.4) and (2.1) are equivalent.

The solutions (2.3) and (2.4) are valid for all \(t \geq 0 \) on condition that \(\frac{\partial u_1}{\partial y} \frac{\partial u_2}{\partial x} \neq 0 \), and in this case, in \(t = 0 \), defining \(f(x, y, 0) = f^0(x, y) \) and \(p(x, y, 0) = p^0(x, y) \), we come to

\[
(2.5) \quad u_2^0 = \frac{\nu \nabla^2 u_1^0 + f_1^0 - \left(\frac{\partial p^0}{\partial x} + \frac{\partial u_1^0}{\partial t} \big|_{t=0} + u_1^0 \frac{\partial u_1^0}{\partial x} \right)}{\frac{\partial u_1^0}{\partial y}}, \text{ if } \frac{\partial u_1^0}{\partial y} \neq 0,
\]

and

\[
(2.6) \quad u_1^0 = \frac{\nu \nabla^2 u_2^0 + f_2^0 - \left(\frac{\partial p^0}{\partial y} + \frac{\partial u_2^0}{\partial t} \big|_{t=0} + u_2^0 \frac{\partial u_2^0}{\partial y} \right)}{\frac{\partial u_2^0}{\partial x}}, \text{ if } \frac{\partial u_2^0}{\partial x} \neq 0,
\]

i.e., \(u_1^0 \) and \(u_2^0 \) are related by (2.5) and (2.6), beyond the incompressibility condition, \(\nabla \cdot u = 0 \), if this is a condition imposed.

The equations (2.5) and (2.6) can be used to calculate \(\frac{\partial u_1}{\partial t} \big|_{t=0} \) and \(\frac{\partial u_2}{\partial t} \big|_{t=0} \), supposing that the pressure or its respective spatial derivatives are provided at least at time \(t = 0 \).
For other values of \(t, t > 0 \), through the value of \(\frac{\partial u}{\partial t} \), held fixed position \((x, y)\), it is possible to calculate the value of \(u(x, y, t) \), obviously by integrating with respect to time the local acceleration \(\frac{\partial u}{\partial t} \), i.e.,

\[
(2.7) \quad u = \int \frac{\partial u}{\partial t} \, dt + v(x, y),
\]

where \(v(x, y) \) may be encountered by given initial conditions.

Numerically, we have

\[
(2.8) \quad u^{T+\Delta T} = u^T + \frac{\partial u}{\partial t} \bigg|_{t=\Delta T} \Delta T,
\]

where \(u^T \) is the fluid velocity in the position \((x, y)\) at time \(t = T \). \(\Delta T \) is a positive not null small constant, the increment in time to each step calculation for \(u^T \).

Using (2.1) in (2.8) comes

\[
(2.9) \quad u_1^{T+\Delta T} = u_1^T + \left(v \nabla^2 u_1^T + f_1^T - \frac{\partial p^T}{\partial x} - u_1^T \frac{\partial u_1^T}{\partial x} - u_2^T \frac{\partial u_1^T}{\partial y} \right) \Delta T,
\]

\[
(2.10) \quad u_2^{T+\Delta T} = u_2^T + \left(v \nabla^2 u_2^T + f_2^T - \frac{\partial p^T}{\partial y} - u_1^T \frac{\partial u_2^T}{\partial x} - u_2^T \frac{\partial u_2^T}{\partial y} \right) \Delta T,
\]

where \(f^T \) and \(p^T \) are the external force and pressure, respectively, in the position \((x, y)\) at time \(t = T \), supposing given \(p^T \equiv p(x, y, T) \). Numerically and algorithmically, we need to use the approximations (among other that knows in the literature about numerical methods\[6\])

\[
(2.11) \quad \frac{\partial u_1^T}{\partial x} \approx \frac{u_1^T(x, y+\Delta y, T) - u_1^T(x, y, T)}{\Delta y},
\]

\[
(2.12) \quad \frac{\partial u_1^T}{\partial y} \approx \frac{u_1^T(x, y+\Delta y, T) - u_1^T(x, y, T)}{\Delta x},
\]

\[
(2.13) \quad \frac{\partial u_2^T}{\partial x} \approx \frac{u_2^T(x, y+\Delta y, T) - u_2^T(x, y, T)}{\Delta x},
\]

\[
(2.12) \quad \frac{\partial u_2^T}{\partial y} \approx \frac{u_2^T(x, y+\Delta y, T) - u_2^T(x, y, T)}{\Delta y},
\]

\[
(2.13) \quad \nabla^2 u_1^T \approx \frac{u_1^T(x+\Delta x, y, T) - 2u_1^T(x, y, T) + u_1^T(x-\Delta x, y, T)}{(\Delta x)^2} + \frac{u_1^T(x, y+\Delta y, T) - 2u_1^T(x, y, T) + u_1^T(x, y-\Delta y, T)}{(\Delta y)^2}.
\]
\begin{equation}
\n(2.14) \quad \nabla^2 u_2^T \approx \frac{u_2^T(x+2\Delta x,y,T)-2u_2^T(x+\Delta x,y,T)+u_2^T(x,y,T)}{(\Delta x)^2} + \frac{u_2^T(x,y+2\Delta y,T)-2u_2^T(x,y+\Delta y,T)+u_2^T(x,y,T)}{(\Delta y)^2},
\end{equation}

where \(\Delta x \times \Delta y \) is the grid cell size.

This numerical-algorithmic approach, which resulted in the equations (2.9) to (2.14), shows that we can calculate approximately the system solution (2.1) from \(t = 0 \) up to any \(t = T_{\text{max}} \), and the same method can be used in \(n = 3 \). When greater \(T_{\text{max}} \) value, however, the greater the accumulation of numerical errors to the correct result. It will be very convenient if it is possible to obtain an exact solution (the great dream) to this problem, at least in certain situations, eliminating thus to the maximum the occurrence of numerical errors. Our naive solution, or better, our first naive attempt solution, will be described to follow.

The smaller the value of \(T \), the closest correct value of \(u \) are the results obtained with (2.9) and (2.10). Therefore, considering \(t \) a small value, in the first order approximation in time the solution to the \(u \) components will be

\begin{equation}
(2.15) \quad u_1 = u_1^0 + \left(\nu \nabla^2 u_1^0 + f_1 - \frac{\partial p}{\partial x} - u_1^0 \frac{\partial u_1^0}{\partial x} - u_2^0 \frac{\partial u_1^0}{\partial y} \right) t,
\end{equation}

\begin{equation}
(2.16) \quad u_2 = u_2^0 + \left(\nu \nabla^2 u_2^0 + f_2 - \frac{\partial p}{\partial y} - u_1^0 \frac{\partial u_2^0}{\partial x} - u_2^0 \frac{\partial u_2^0}{\partial y} \right) t,
\end{equation}

which shows the possibility of infinite solutions to velocity, given only the initial velocity, since each different pressure can, in principle, imply a different velocity. Unfortunately, in general the above solution is not limited to the increased time, and therefore in general there is not here a case of velocity belonging to Schwartz space, space of fast decreasing functions. This time \(t \) in (2.15) and (2.16) corresponds exactly to the \(\Delta T \) value that appears in (2.9) and (2.10).

Defining \(x_1 := x, x_2 := y \), for an arbitrary value of \(t \), we can try a solution to the system (2.1) in the form

\begin{equation}
(2.17) \quad u_i = u_i^0 + X_i \left(u_1^0, u_2^0, f_i, \frac{\partial p}{\partial x_i} \right) T_i(t),
\end{equation}

with

\begin{equation}
(2.18) \quad T_i'(0) = 0, \quad T_i'(0) = 1,
\end{equation}

in special

\begin{equation}
(2.19) \quad X_i = \nu \nabla^2 u_i^0 + f_i - \frac{\partial p}{\partial x_i} - u_1^0 \frac{\partial u_1^0}{\partial x_i} - u_2^0 \frac{\partial u_i^0}{\partial y},
\end{equation}
or else, for example,

\[u_i = u_i^0 + X_i(u_1^0, u_2^0)t + \int \left(f_i - \frac{\partial p}{\partial x_i} \right) dt + v_i(x, y), \]

\[X_i = \nu \nabla^2 u_i^0 - u_1^0 \frac{\partial u_i^0}{\partial x} - u_2^0 \frac{\partial u_i^0}{\partial y}, \]

solutions based on (2.15) and (2.16), with

\[\int \left(f_i - \frac{\partial p}{\partial x_i} \right) dt|_{t=0} + v_i(x, y) = 0. \]

Differentiating (2.20) in relation to time, obviously, we obtain

\[\frac{\partial u_i}{\partial t} = X_i(u_1^0, u_2^0) + f_i - \frac{\partial p}{\partial x_i}, \]

or, using (2.21),

\[\frac{\partial u_i}{\partial t} = \nu \nabla^2 u_i^0 - u_1^0 \frac{\partial u_i^0}{\partial x} - u_2^0 \frac{\partial u_i^0}{\partial y} + f_i - \frac{\partial p}{\partial x_i}. \]

To the equation (2.24) to be equivalent to the system (2.1) for all \(u_i \) we need to have

\[\nu \nabla^2 u_i - u_1 \frac{\partial u_i}{\partial x} - u_2 \frac{\partial u_i}{\partial y} = \nu \nabla^2 u_i^0 - u_1^0 \frac{\partial u_i^0}{\partial x} - u_2^0 \frac{\partial u_i^0}{\partial y}, \]

therefore

\[u_i(x, y, t) = u_i^0(x, y) + w_i(t), \]

\(w_i(0) = 0, \)

and, substituting (2.26) in (2.25), it is necessary that

\[w_1(t) \frac{\partial u_i^0}{\partial x} + w_2(t) \frac{\partial u_i^0}{\partial y} = 0. \]

The trivial solutions of (2.27) are \(w_1(t) = w_2(t) = 0 \) and \(u_i^0 = cte. \) A more general condition is

\[\frac{w_1(t)}{w_2(t)} = -\frac{\partial u_i^0/\partial y}{\partial u_i^0/\partial x} = cte., i = 1, 2. \]

Well, the solution (2.26) there is not the same form that (2.20)–(2.21), except if
\[
\begin{align*}
\dot{f}_i - \frac{\partial p}{\partial x_i} &= v_i(x, y) = 0 \\
W_1(t) &= W_2(t) = t \\
X_i &= v \nabla^2 u_0^i - u_1^0 \frac{\partial u_0^i}{\partial x} - u_2^0 \frac{\partial u_0^i}{\partial y} = 1
\end{align*}
\]

and, according to (2.28),

\[
\frac{\partial u_0^i}{\partial y} = - \frac{\partial u_0^i}{\partial x}
\]

For this reason, the attempt solution (2.20)–(2.21) correctly solved the system (2.1) for some initial velocities, in special when (2.29) and (2.30) are obeyed. Another case of solution when (2.20)–(2.21) is valid, using trivial solution of (2.27), is

\[
\begin{align*}
\dot{f}_i - \frac{\partial p}{\partial x_i} &= v_i(x, y) = 0 \\
u_i^0 &= u = cte.
\end{align*}
\]

The dependence of \(f \) in relation to \(p \), related in (2.29) and (2.31), or

\[
\nabla p = f,
\]

shows that it’s necessary \(f \) be a gradient function, and \(p \) is a potential function for \(f \) (see, for example, [5]). An example for \(f \) is a constant gravity acceleration, like \(f = (0, -g) \), assuming a two-dimensional world, and in this case we have \(p = -gy \).

For more generic initial velocity, the form given by (2.26) is our next attempt solution,

\[
u_i(x, y, t) = u_i^0(x, y) + w_i(t), \; w_i(0) = 0.
\]

Applying (2.33) in (2.1) comes

\[
\frac{\partial p}{\partial x_i} + \frac{d}{dt} W_i(t) + u_1^0 \frac{\partial u_0^i}{\partial x} + u_2^0 \frac{\partial u_0^i}{\partial y} = v \nabla^2 u_0^i + f_i,
\]

using \(x_1 := x, \; x_2 := y \).

A consistent initial velocity also needs to be (2.1) solution, for \(t = 0 \). In \(t = 0 \) the equation (2.34) is equivalent to

\[
\frac{\partial p^0}{\partial x_i} + W_i^0(0) + u_1^0 \frac{\partial u_0^i}{\partial x} + u_2^0 \frac{\partial u_0^i}{\partial y} = v \nabla^2 u_0^i + f_i^0,
\]

so
(2.36) \quad u_1^0 \frac{\partial u_1^0}{\partial x} + u_2^0 \frac{\partial u_2^0}{\partial y} - \nu \nabla^2 u_1^0 = f_i^0 - \frac{\partial p^0}{\partial x_i} - w_i'(0),

the superior symbol 0 meaning the respective function value at time \(t = 0 \).

Substituting (2.36) in (2.34) we obtain

(2.37) \quad \left(\frac{\partial p}{\partial x_i} - \frac{\partial p^0}{\partial x_i} \right) + \left(w_i'(t) - w_i'(0) \right) = f_i(x, y, t) - f_i^0(x, y),

a beautiful equality that allow us to solve the system (2.1) in many situations, for any \(u^0 \) (or better, \(\forall u^0 \in C(\mathbb{R}^2) \)), according (2.33). But for this reason we cannot to accept any external force and pressure in the system, or model, except when (2.37) is true and the pressure can be calculated.

The next and last attempt solution is

(2.38) \quad u_i(x, y, t) = u_i^0(x, y) w_i(t), \quad w_i(0) = 1,

where \(u_i: \mathbb{R}^2 \times [0, \infty) \to \mathbb{R}, \ u_i^0: \mathbb{R}^2 \to \mathbb{R}, \ w_i: [0, \infty) \to \mathbb{R} \).

Repeating the steps from (2.33) to (2.37) with (2.38), applying (2.38) in (2.1) comes

(2.39) \quad \frac{\partial p}{\partial x_i} + u_i^0 \frac{d}{dt} w_i + w_1 w_i u_1^0 \frac{\partial u_1^0}{\partial x} + w_2 w_i u_2^0 \frac{\partial u_2^0}{\partial y} = \frac{\partial p}{\partial x_i} + u_i^0 w_i' + w_1 u_1^0 \frac{\partial u_1^0}{\partial x} + w_2 u_2^0 \frac{\partial u_2^0}{\partial y} = \nu w_i \nabla^2 u_i^0 + f_i.

As we have said, a consistent initial velocity also needs to be (2.1) solution, for \(t = 0 \). In \(t = 0 \) the equation (2.39) is equivalent to

(2.40) \quad \frac{\partial p}{\partial x_i} + u_i^0 w_i^0 + w_1^0 w_i^0 u_1^0 \frac{\partial u_1^0}{\partial x} + w_2^0 w_i^0 u_2^0 \frac{\partial u_2^0}{\partial y} = \nu w_i^0 \nabla^2 u_i^0 + f_i^0,

defining \(w_i^0 = \frac{d w_i}{d t} \mid_{t=0} \) and \(w_i^0 = w_i(0) = 1 \), so

(2.41) \quad \left[u_1^0 \frac{\partial u_1^0}{\partial x} + u_2^0 \frac{\partial u_2^0}{\partial y} - \nu \nabla^2 u_i^0 \right] = f_i - \frac{\partial p}{\partial x_i} - u_i^0 w_i'.

Supposing \(w_1 = w_2 = w \) and therefore \(w_1^0 = w_2^0 = w^0 = 1 \), \(w_i' = w_i' = w' \), \(w_1^0 = w_2^0 = w^0 \), we have from (2.39) and (2.41), respectively,
\[
\frac{\partial p}{\partial x_i} + u_i^0 w' + w^2 \left[u_1^0 \frac{\partial u_1^0}{\partial x} + u_2^0 \frac{\partial u_1^0}{\partial y} \right] = \nu \nabla^2 u_i^0 + f_i
\]

and

\[
\left[u_1^0 \frac{\partial u_1^0}{\partial x} + u_2^0 \frac{\partial u_1^0}{\partial y} \right] = \nu \nabla^2 u_i^0 + f_i^0 - \frac{\partial p^0}{\partial x_i} - u_i^0 w' + f_i.
\]

Taking the factor \(\left[u_1^0 \frac{\partial u_1^0}{\partial x} + u_2^0 \frac{\partial u_1^0}{\partial y} \right] \) in (2.43) and leading it in (2.42) we obtain

\[
\left(\frac{\partial p}{\partial x_i} - \alpha \frac{\partial p^0}{\partial x_i} \right) = (\nu \nabla^2 u_i^0 - u_i^0) (w' - \alpha w'') + (f_i - \alpha f_i^0),
\]

with \(\alpha = w^2 \neq 0 \). This relation (2.44) shows us that there are many possibilities to solve the system of Navier-Stokes equations, for an infinite set of initial velocities, external forces and pressure.

The integration of (2.44), again a beautiful equality, like (2.37), is

\[
p - \alpha p^0 = \int_L \left[(\nu \nabla^2 u_i^0 - u_i^0) (w' - \alpha w'') + (f_i - \alpha f_i^0) \right] \cdot dl
\]

where \(L \) is any path linking a point \((x_0, y_0) \) to \((x, y) \), supposing that the integrand is a gradient field\(^[5]\), without singularities.

3 - Solution for \(n = 3 \)

Similar to what we saw in section 2 for \(n = 2 \), now we solve the Navier-Stokes equations for spatial dimension \(n = 3 \). As we know, it can be put in the form of a system of three nonlinear partial differential equations, as follows:

\[
\begin{align*}
\frac{\partial p}{\partial x} + \frac{\partial u}{\partial t} + u_1 \frac{\partial u}{\partial x} + u_2 \frac{\partial u}{\partial y} + u_3 \frac{\partial u}{\partial z} &= \nu \nabla^2 u_1 + f_1 \\
\frac{\partial p}{\partial y} + \frac{\partial u}{\partial t} + u_1 \frac{\partial u}{\partial x} + u_2 \frac{\partial u}{\partial y} + u_3 \frac{\partial u}{\partial z} &= \nu \nabla^2 u_2 + f_2 \\
\frac{\partial p}{\partial z} + \frac{\partial u}{\partial t} + u_1 \frac{\partial u}{\partial x} + u_2 \frac{\partial u}{\partial y} + u_3 \frac{\partial u}{\partial z} &= \nu \nabla^2 u_3 + f_3
\end{align*}
\]

where \(u(x, y, z, t) = (u_1(x, y, z, t), u_2(x, y, z, t), u_3(x, y, z, t)) \), \(u: \mathbb{R}^3 \times [0, \infty) \to \mathbb{R}^3 \), is the velocity of the fluid, of components \(u_1, u_2, u_3 \), \(p \) is the pressure, \(p: \mathbb{R}^3 \times [0, \infty) \to \mathbb{R} \), and \(f(x, y, z, t) = (f_1(x, y, z, t), f_2(x, y, z, t), f_3(x, y, z, t)) \), \(f: \mathbb{R}^3 \times [0, \infty) \to \mathbb{R}^3 \), is the density of external force applied in the fluid in point \((x, y, z) \) and at the instant of time \(t \), for example, gravity force per mass unit, with \(x, y, z, t \in \mathbb{R}, \ t \geq 0 \). The coefficient \(\nu \geq 0 \) is the viscosity coefficient, and in the
special case that \(\nu = 0 \) we have the Euler equations. \(\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \) is the nabla operator and \(\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \equiv \Delta \) is the Laplacian operator.

Writing \(u_1 \) as a function of \(u_2 \) and \(u_3 \) we have by the system (3.1) above,

\[
\begin{align*}
(3.2) & \quad u_1 = \frac{\nu \nabla^2 u_2 + f_2 - \left(\frac{\partial p}{\partial y} + \frac{\partial u_2}{\partial t} + u_2 \frac{\partial u_2}{\partial y} + u_3 \frac{\partial u_2}{\partial z} \right)}{\frac{\partial u_2}{\partial x}}, \text{ if } \frac{\partial u_2}{\partial x} \neq 0, \\
(3.3) & \quad u_1 = \frac{\nu \nabla^2 u_3 + f_3 - \left(\frac{\partial p}{\partial z} + \frac{\partial u_3}{\partial t} + u_2 \frac{\partial u_3}{\partial y} + u_3 \frac{\partial u_3}{\partial z} \right)}{\frac{\partial u_3}{\partial x}}, \text{ if } \frac{\partial u_3}{\partial x} \neq 0, \\
(3.4) & \quad \frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} + u_2 \frac{\partial u_1}{\partial y} + u_3 \frac{\partial u_1}{\partial z} = \nu \nabla^2 u_1 + f_1 - \frac{\partial p}{\partial x},
\end{align*}
\]

therefore valid system when \(\frac{\partial u_2}{\partial x} \frac{\partial u_3}{\partial x} \neq 0 \).

Similarly to \(u_1 \), we obtain the following equations for \(u_2 \) and \(u_3 \), in index notation, defining \(x_1 := x, x_2 := y, x_3 := z, \) and index 4 = index 1, index 5 = index 2, with \(1 \leq j \leq 3 \),

\[
(3.5) & \quad u_i = \frac{\nu \nabla^2 u_j + f_j - \left(\frac{\partial p}{\partial x_j} + \frac{\partial u_j}{\partial t} + u_{i+1} \frac{\partial u_j}{\partial x_{i+1}} + u_{i+2} \frac{\partial u_j}{\partial x_{i+2}} \right)}{\frac{\partial u_j}{\partial x_i}}, \text{ if } \frac{\partial u_j}{\partial x_i} \neq 0, \\
(3.6) & \quad \frac{\partial u_i}{\partial t} + u_1 \frac{\partial u_i}{\partial x} + u_2 \frac{\partial u_i}{\partial y} + u_3 \frac{\partial u_i}{\partial z} = \nu \nabla^2 u_i + f_i - \frac{\partial p}{\partial x_i},
\]

therefore valid systems when \(\frac{\partial u_{i+1}}{\partial x_i} \frac{\partial u_{i+2}}{\partial x_i} \neq 0 \), for \(1 \leq i \leq 3 \).

All solutions obtained in (3.5) can not contradict each other, as well as (3.6) must be true for each \(i \).

The solutions (3.5) are valid for all \(t \geq 0 \) on condition that \(\frac{\partial u_{i+1}}{\partial x_i} \frac{\partial u_{i+2}}{\partial x_i} \neq 0 \), for \(1 \leq i \leq 3 \), and in this case, in \(t = 0 \), defining \(f(x,y,z,0) = f^0(x,y,z) \) and \(p(x,y,z,0) = p^0(x,y,z) \) and using index notation, we come to

\[
(3.7) & \quad u_{i0}^0 = \frac{\nu \nabla^2 u_j^0 + f_j^0 - \left(\frac{\partial p^0}{\partial x_j} + \frac{\partial u_j^0}{\partial t} \bigg|_{t=0} + u_{i+1}^0 \frac{\partial u_j^0}{\partial x_{i+1}} + u_{i+2}^0 \frac{\partial u_j^0}{\partial x_{i+2}} \right)}{\frac{\partial u_j^0}{\partial x_i}}, 1 \leq j \leq 3,
\]
where the superior index 0 means the respective value function at time $t = 0$. The equation (3.7) shows that the sum $\frac{dp^0}{\partial x_j} + \frac{\partial u_j}{\partial t} |_{t=0}$ cannot have any arbitrary value, independently of u_i^0 relation (3.7), contradicting it.

Numerically we can solve (3.1) through following iteration algorithm, just like we do for $n = 2$, for each natural i in $1 \leq i \leq 3$:

$$u_i^{T+\Delta T} = u_i^T + \left(\nu \nabla^2 u_i^T + f_i^T - \frac{\partial p^T}{\partial x} - \sum_{j=1}^{n} u_j^T \frac{\partial u_i^T}{\partial x_j} \right) \Delta T,$$

where u^T, f^T and p^T are the velocity, external force and pressure, respectively, in the position (x, y, z) at time $t = T$, supposing given $p^T \equiv p(x, y, z, T)$. ΔT is a positive not null small constant, the increment in time to each step calculation for u^T.

Again, we need to use the approximations (among other that knows in the literature containing numerical methods[6])

$$u_i^T (x + \Delta x, y, z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial x} \right|_{x},$$

$$u_i^T (x, y + \Delta y, z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial y} \right|_{y},$$

$$u_i^T (x, y, z + \Delta z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial z} \right|_{z},$$

$$u_i^T (x + \Delta x, y, z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial x} \right|_{x},$$

$$u_i^T (x, y + \Delta y, z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial y} \right|_{y},$$

$$u_i^T (x, y, z + \Delta z, T) - u_i^T (x, y, z, T) \approx \left. \frac{\partial u_i^T}{\partial z} \right|_{z},$$

$$u_i^T (x + \Delta x, y, z, T) - 2u_i^T (x + \Delta x, y, z, T) + u_i^T (x, y, z, T) \approx \nabla^2 u_i^T \frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} + \frac{1}{(\Delta z)^2}.$$
\[
\n\n\n\begin{align*}
+ & \frac{u_1^T(x,y+2\Delta y,z,T)-2u_1^T(x,y+\Delta y,z,T)+u_1^T(x,y,z,T)}{(\Delta y)^2} + \\
+ & \frac{u_1^T(x,y,z+2\Delta z,T)-2u_1^T(x,y,z+\Delta z,T)+u_1^T(x,y,z,T)}{(\Delta z)^2},
\end{align*}
\]

(3.18) \[\nabla^2 u_2^T \approx \frac{u_2^T(x+2\Delta x,y,z,T)-2u_2^T(x+\Delta x,y,z,T)+u_2^T(x,y,z,T)}{(\Delta x)^2} + \]

\[+ \frac{u_2^T(x,y+2\Delta y,z,T)-2u_2^T(x,y+\Delta y,z,T)+u_2^T(x,y,z,T)}{(\Delta y)^2} + \]

\[+ \frac{u_2^T(x,y,z+2\Delta z,T)-2u_2^T(x,y,z+\Delta z,T)+u_2^T(x,y,z,T)}{(\Delta z)^2}, \]

\[\nabla^2 u_3^T \approx \frac{u_3^T(x+2\Delta x,y,z,T)-2u_3^T(x+\Delta x,y,z,T)+u_3^T(x,y,z,T)}{(\Delta x)^2} + \]

\[+ \frac{u_3^T(x,y+2\Delta y,z,T)-2u_3^T(x,y+\Delta y,z,T)+u_3^T(x,y,z,T)}{(\Delta y)^2} + \]

\[+ \frac{u_3^T(x,y,z+2\Delta z,T)-2u_3^T(x,y,z+\Delta z,T)+u_3^T(x,y,z,T)}{(\Delta z)^2}, \]

where \(\Delta x \times \Delta y \times \Delta z \) is the three-dimensional grid cell size.

The greater the value of \(T \), the greater the number of times that need to iterate the solution given in (3.8), more numeric errors are added to the correct solution of system (3.1), is therefore highly desirable to find an exact solution for (3.1).

All attempt solutions seen for the case \(n = 2 \) can be used for \(n = 3 \), with obviously adaptations. The simplest (and naive) of these solutions is the similar one to (2.33), with \(w_i(t) = w(t) \),

(3.20) \[u_i(x,y,z,t) = u_i^0(x,y,z) + w(t), \quad w(0) = 0, \]

or

(3.21) \[u(x,y,z,t) = u^0(x,y,z) + w(t)I, \quad w(0) = 0, \quad I = (1,1,1), \]

whose direct application in (3.1) and more the correspondent use for \(t = 0 \) leads to the similar condition (2.37) seen previously, i.e.,

(3.22) \[\left(\frac{\partial p}{\partial x_i} - \frac{\partial p^0}{\partial x_i} \right) + (w'(t) - w'(0)) = f_i(x,y,z,t) - f_i^0(x,y,z). \]

As we have said for two dimensions, this equality allow us to solve the system (3.1) in many situations, for any \(u^0 \) (say, \(\forall u^0 \in C(\mathbb{R}^3) \)), according (3.20). For this
reason we cannot to accept any external force and pressure in the system, or model, except when (3.22) is true and the pressure can be calculated.

Making \(p(x, y, z, t) = q(t)(x + y + z) \), \(p^0(x, y, z) = q(0)(x + y + z) \) and supposing that \(f \) is only a time function, no spatial dependence, all its three components equals each other, \(f_i(t) = g(t) \), and \(f_i^0 = f_i(0) = g^0 \) is a constant, as well as \(q(0) \) is a constant, then from (3.22), we obtain

\[
(3.23) \quad q(t) - q(0) + (w'(t) - w'(0)) = g(t) - g^0,
\]

and so

\[
(3.24) \quad p(x, y, z, t) = q(t)(x + y + z),
\]

with

\[
(3.25) \quad q(t) = q(0) - (w'(t) - w'(0)) + (g(t) - g^0).
\]

The solution (3.21)-(3.24) is not unique, due to infinities different possibilities of construct \(w(t) \), \(w(0) = 0 \). Beyond this, the pressure may be unlimited, when \(q(t) \neq 0 \), due linear term \(x + y + z \), although we can choose \(u^0(x) \) and \(w(t) \) that limit the velocity.

If it were not necessary to obey the infinite kinetic energy condition, instead of this being a naive solution, it would really be a wonderful, unforgettable and memorable solution, because when \(u^0(x) \in S(\mathbb{R}^3) \), the 3-D functions Schwartz space, when we choose \(w(t) \in C^\infty([0 \times \infty)) \), a continuous function infinitely differentiable as well as continuous in all derivative orders, when \(w(t) \) is finite for any finite \(t \geq 0 \), and when the external force is null by definition, \(f = 0 \), then we would arrive to the case (A) of the said Millenium Problem[3]. Unfortunately, the free term \(w(t) \) in the velocity solution \(u(x, t) \) leads to an infinite total kinetic energy, which is not allowed in [2] for the case (A), and thus we have not yet got to the case (A). For a while, only the case (C) in [2] is true, when \(f \neq 0 \) obey some appropriate conditions. Cases spatial periodicity (B) and (D) have not been studied in depth due to possible discontinuities of solutions and derivatives in the boundary regions \(x = 1, y = 1, z = 1 \) and integer periods. Again, we will prove that the example given in [3] as well as the two others examples given in [4] lead to the case (C) of the Millennium Problem, even without uniqueness solutions.

4 – Conclusion

We reaches at least to an important conclusion, although yet not possible to arrive to the case (A) of Fefferman article[2]: the solutions of the Navier-Stokes equations may not be unique, even for two dimensions, even for three dimensions,
even with equations with all terms, and indeed for any value spatial dimension \(n \). We lack at least initial conditions for the pressure, among other requirements. The possibility of infinite solutions, however, even for cases in which all terms are present, leads us to conclude on the need to provide more equations to models that claim to accurately simulate the atmospheric or general fluid conditions, from cases simplest to the most complex one, or else build more complete Navier-Stokes equations, containing more variable, initial and boundary conditions.

Of course the velocity of a hurricane or a tsunami does not need to be regular, limited, continuous, infinitely differentiable and belonging to the Schwartz space, nor obey to the incompressibility condition. This gives us enough freedom to work with these equations.

I think that, in practical terms, the external force can act as a pressure or velocity controller, since it is not only due to the uncontrollable nature, but can also be conveniently constructed by engineering. This is a clear example of Applied Mathematical.

To world stability...
References

