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ABSTRACT. By proving that his “last theorem” (FLT) is true for the integral 
exponent n = 3, Fermat took the first step in a standard method of proving 
there exists no greatest lower bound on n for which FLT is true, thus 
proving the theorem. Unfortunately, there are two reasons why the standard 
method of proof is not available for FLT. First, transitive inequality lies at 
the heart of that method. Secondly, FLT admits to a change from > to < 
rendering their transitive natures unavailable. A related, self-evident 
symmetry illustrates another problem that would have plagued Fermat and 
centuries of successors. FLT asserts such a narrow proposition, it is difficult 
to find an antecedent while easy to find a non-equivalent consequence. For 
example, if FLT asserted that the exponent n is even, then FLT would be 
equivalent to the proposition that Fermat’s equation has two solutions, one 
for positive bases and one for their negative counterparts. This could be 
addressed with conservative transformations. The example provided by FLT 
motivates the use of an early paper by the author to prove a theorem on 
theorems. The theorem on theorems demonstrates there are infinitely many 
theorems as difficult to prove as FLT.
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1. INTRODUCTION  

 Pierre de Fermat had a copy of Bachet’s 1621 translation of Arithmetica by Diophantus of 
Alexandria [C]. Problem 8 of Book II of Arithmetica asks how to divide a given square number 
into two squares. In the late 1630s while pondering this problem, Fermat [H] wrote in the 
margin, “On the other hand, it is impossible to separate a cube into two cubes, or a biquadrate 
into two bioquadrates, or generally any power except a square into two powers with the same 
exponent. I have discovered a truly marvelous proof of this, which however the margin is not 
large enough to contain.”  

 Fermat never published his “truly marvelous proof” of what became known as Fermat’s 
Last Theorem (FLT). But he did prove that FLT is true for the integral exponent n = 3. In doing 
so, Fermat took the first step in a standard method of proving that there exists no greatest lower 
bound on n for which FLT is true, thus proving the theorem. That standard method of proof 
(SMOP) goes all the way back to Euler.1 Either Fermat never knew this or he realized there was 
a reason SMOP is not available for FLT. Some such thing surely happened because Fermat went 
on to prove that FLT is true for n = 4, which was redundant and unnecessary for purposes of 
SMOP, a method based on the axiom that the positive integers are closed under addition. 

 Theorem 1.1 (SMOP). Let P(n) be a proposition on the real numbers the truth of which 
depends upon positive integer n. Prove there exists a fixed positive integer k such that P(k) is 
true. Prove that if P(n) is true, then P(n + 1) is true. It follows that P(n) is true for all n ≥ k.  

 Over the ensuing centuries, the greatest known lower bound on the exponent n for which 
FLT was shown to be true grew in magnitude. The challenge became one of proving FLT for 
larger and larger exponents. But this goes in the wrong direction for SMOP, logically speaking. 
To prove FLT is valid across the entire countably infinite set of positive integers using SMOP, 
one shows that there exists no greatest lower bound on n for which FLT is true. Moreover, a 
self-evident symmetry related to how inequalities change illustrates another problem that would 
have plagued Fermat. FLT asserts such a narrow proposition that it is difficult to find an 
antecedent while easy to a non-equivalent consequence. For example, if FLT had stated that the 
exponent n is even, then FLT would be equivalent to the proposition that Fermat’s equation has 
two solutions, one for positive bases and one for their negative counterparts. This could at least 
be addressed by conservative transformations. 

 It would be instructive, and not just of historical interest, to know why Fermat was wrong 
in believing that he had a proof. Over the ensuing centuries there were surely other fine 
mathematicians, promising post-doctoral students and undergraduates who shared Fermat’s 
experience. Even as of this writing the open-access preprint depositories are not wanting for 
authors who believe they have found a superior proof of FLT. The question of why becomes 

                                                            
1See www.people.reed.edu/~jerry/131/nextprime.pdf 
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especially pertinent now that there is the proof of FLT that Wiles [W] found with the help of 
Taylor [F], a marvelous tome running over 200 pages and based on a complex argument 
involving modular elliptic curves. The present note will help answer that question with formal 
proofs of the obstacles mentioned above. This, in turn, motivates a theorem on theorems 
demonstrating that there are infinitely many theorems as difficult to prove as FLT lying in wait 
for the community of mathematicians. 

2. CHASING AN EARLY PROOF  

 Let N = {the positive integers}. 

 Let R be the set of all ordered pairs [r,s] of reduced rational fractions 0 < r < s < 1.  

 It is easily shown and well-known that the following theorem is equivalent to FLT as 
originally stated by Fermat for Diophantine equations. 

 Theorem 2.1 (FLT). If n > 2, then rn+ sn  1. 

 In order to prove theorem 2.1 using SMOP, it would need to be shown that if rn+ sn  1, 

then rn+1+ sn+1  1. The reason this is not the case becomes clear if the non-specific inequality  

in theorem 2.1 is bifurcated into the two specific inequalities. 

 Lemma 2.2. If rn + sn < 1, then, rn+1+ sn+1 < 1. 

 Proof. If [r,s] ⊊ R, then r < 1 and s < 1. Hence, rnr + sns < rn + sn < 1. 

 Lemma 2.2 shows the case in which transitive inequality makes SMOP available. If the 

antecedent condition rn + sn < 1 were always true, then it could be easily proved that there exists 

no greatest lower bound on n for which theorem 2.1 is true. But that antecedent condition is not 
always true because it depends upon small bases and large exponents. 

 Theorem 2.3. If rn + sn > 1, then rn+1+ sn+1 may or may not be greater than unity. 

  Proof.  If [r,s] ⊊ R, then r < 1 and s < 1. Hence, rnr + s
n
s < rn +sn > 1.  

 A self-evident symmetry related to how inequalities change illustrates another problem. 

 Lemma 2.4. Consider the equation 

 rn + sn = 1n.  (1)
  
Iff n is even, then (1) has another solution, 

 (–r)n + (–s)n = (–1)n.  (2)
 
Obviously, 
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 Lemma 2.5. FLT implies that Fermat’s equation has the two solutions (1) and (2). 

 On the other hand, 

 Lemma 2.6. If Fermat’s equation has the two solutions (1) and (2), this does not imply 
FLT. 

 Proof. Let n = 2k, k  N – {1}. Then (1) has the solution (2) but n > 2. 

 As a direct consequence of lemmas 2.5 and 2.6, 

  Theorem 2.7. The proposition that Fermat’s equation has the two solutions (1) and (2) is 
a consequence of FLT but does not imply it. 

 This can be sharpened.  

 Lemma 2.8. If m  N – {1}, then m = ∏ pi ∧	ߝi,	where the pi are prime numbers and the 

 .i  N are their respective exponentsߝ

 Theorem 2.9. Since FLT asserts n is even in (1), it asserts that for r = ∏ pi ∧	ߝi	and	for	s	
ൌ	∏ qi ∧	i	there exists no exponent for either integer that is common to every prime for that 

intgeger. 

 The example provided by FTL motivates a certain theorem on theorems following on an 
early paper by the author [A]. 

 Definitions 2.10. A context set C is a set of assertions about real numbers containing n 

non-empty, partitionable, proper subsets Ai, 1 ൏	i	൑	n,	such	that:		 

  Definition 2.10.1. Ai ⊊Ai+1. This is the context. 

  Definition 2.10.2. Iff i = j, then a(Ai) = c(Aj).    

 Obvious examples of partitions include {negative,{0},positive} and {rational,irrational}. 
Directly from definitions 2.10 and the transitive nature of ⊊: 

 Lemma 2.11. If {X,Y}   C  such that {X ⋃ Y} – {X ⋂ Y} is not empty, then {X ⋃ Y} – 

{X ⋂ Y} is a partition of Aj and {X ⋂ Y} = Ai, i < j.    

 Let a(Ai) denote a Ai. 

 Definition 2.12. For fixed a(Ai)  a one-to-many mapping from a(Ai) into (Ai+1)  

such that a(Ai)  c(Ai+1) where  denotes implication. 
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 Note that if, and only if, i = n, then Ai+1 = C . Directly from definitions 2.10.2 and 2.12, 

the transitive nature of implication, and the previously visited fact that the positive integers are 
closed under addition: 

 Lemma 2.13. Iff i = j and a(Ai)  c(Aj), then a(Ai) ↔ c(Aj), where ↔ denotes 

equivalence. 

 Definition 2.14. A theorem T(C) on C is the syllogism a(Ak)  c(Ai), k – i > 1. 

 Definition 2.15. A contextual element of T(C) is an element of the form a(Ai)  c(Aj).  

 Theorem 2.16. The less the number of contextual elements in T(C), the harder the 

theorem is to prove. 
 Proof. It follows from definitions 2.10.1, 2.14 and 2.15 that each time an element of the 
syllogism is not contextual, one must go outside the context of C in order to construct a proof.  

 To recall the concrete example from FLT: 

 n = 2  n is even ↔ equation (1) has two solutions  equation (1) has a solution. 
C =  

      A1            A2                                        A3                                                       A4 
 

 To get from A4 to A1 in this example, one must go outside the context of C three times. 

 Definition 2.17. Let [a(Aj)  c(Ai)] be the total number of elements in the syllogism 

T(C) and let C[a(Aj) ↔ c(Ai)] be the number that are contextual. 

 Directly from theorem 2.16 and definition 2.17:  

 Theorem 2.18. The difficulty in proving T(C) 1 is monotone increasing as the ratio 0 ൑ 

C[a(Aj) ↔ c(Ai)]{[a(Aj)  c(Ai)]}–1 ൑ 1. 

 Note that in the above example based on FLT the ratio is ¾. Although C has a finite 
number of defined subsets, there can be infinitely many elements in the subsets (countable or 
uncountable depending upon whether they are rational or not, respectively). Based on the 
boundary conditions there can be a countably infinite number of rational fractions in the range 0 
൑ C[a(Aj) ↔  c(Ai)]{[a(Aj) c(Ai)]}–1. Hence, the chief result of the present paper. 

 Theorem 2.19 (chief result). There exists infinitely many theorems as hard to prove as 
FLT.     
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3. CONCLUSIONS  

 Two reasons have been formally proved to help explain why the proof of FTL was 
centuries in coming and turns out to be so voluminous and complex. This motivates a theorem on 
theorems concerning how hard a theorem is to prove. That theorem on theorems tells us there are 
infinitely many theorems as difficult to prove as FLT lying in wait. 
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