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Abstract

Motivated by the call for a more flexible, ea®ytune means of generating chaos, gnesent work
elaborates upon the developmentltd Ramanujan Theta Function as a soofcehaos. By setting the
variables of thidunction tosinusoids ofcompeting frequenciethe chaotic output signal is generated
with the ratio of theinput frequenciesserving as control paranmest The characteristics of such chaos
generated are studieusing theiterative mapand bifucation plds, andthe presence of chaos is
ascertained using Lyapunov Exponents and KolmogordkoRy. Following this, theroute from order to
chaos of the proposed system are studied using three techhigheseportrait, Farier Spectra and
wavelet analysisin the phase portiigs, it is seen thifor non-chaotic regimes, phase portraits are orderly
with definite number of loops, whereasrfahaotic regimes, trajectories are spread all over the phase
space, suggesting ergodicity agiding the phase portrait a rich, ornamental lodke Fourier spectra
highlighted the discretérequency components in nahaotic regimes, with well formed sidebands,
whereas in chaotic regimes, a lot of new frequencypmomants are seen, giving the spal profile a
G@rassyappearance-inally, ahyperbolicwavelet termed the SolitarWaveletseen to possesanishing
higher order moments with a negative logarithsiape, is used as the basis to perform wavelet analysis.
The resultseveal thathe rhythmic peridicity observed in large scale values for wotraotic regimes is
significantly absent for cotic regimes, #h vaiations in the trends of new pulses emerging alongside
the main pulse trainlt is seen that the wavelet analyses combine the best features of phase portrait
analysegergodigty detected by peak sporadicity ampdilsevariance)andFourier Spectral analysesdw
frequency component generatisea by observing domemce at various scales, and npeaks at lower
scales corresponding towmeulse$, while revealing additional features such as fractal nature, not seen in
the other twaanalyss tools In summary, thegresent article ushefs a novel perspective pertaining to
signal oriented chaos, calling for a change in the way bifurcation qohotgerative mapsare perceived,

as also the means to generatel control such chaok.is hoped that thavavelet analysishighlighting

both spectral and temporal aspects ofdigeal, emerges as a reliable and assertive qualitative means to
identify, deect and to an extent, characterize tta¢ure of chaosgither stanehlone, or in conjunction
with tools such as phase portraiBsogressin such an areavill eventually drive chaos analyses away
from Lyapunov Exponentsyhich are most useful in system based chaos where initial conditions are well
known, and are at best computed with apgroations fom output chaotic signals, using meissuch as

the Fosenstein Algorithm.
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1. Introduction

The advancement and development of simulation and visualization technologies in recent decades
have enabled a better understanding into the evolution mechanics of various natural anddman
systems. A key offshoot of such understanding, especially in systems governed by nonlinear laws, is the
rise and growth of chaos theory. From describing a narrow set of phenomena related to meteorology and
celestial mechanics, chaos theory has grown torapass a wide range of fields and applications, with
some works going so far as to pin chaos as the underlying aspect of quantum métj2dnics

In the engineering and signal processing domains, chaos, usually targeted towards developing secure
communicationsjnformatics or nonlinear control applications, is usually generated using circuits and
systems physically realizing a set of coupled nonlinear partial differential equations, such as the Lorenz
system. Such systems, the Chua diode being an example, liypgasystem based chaos, such as RLC
circuits and piecewise linear transfer functions to generate the required nonlinearity and hence drive the
system towards chag3].

However, the present day demands for chaos induced seandtgontrol, coupled with dkibility,
miniaturization and ultrafast operating speeds call for a novel and radical approach to generdte chaos
signal based chaos generation.

It is in this spirit that the present work explores one of the well known nonlinear special functions,
namey the Ramanujan Theta Function (RTF), as a possible means to generate signal basid. chaos
This is achieved by setting the two variables of the RTF as sinusoidal signals with competing frequencies.
With the ratio of input frequencies as the control paraméhbe iterative map of such a formation is
derived and the bifurcation plot is plotted, revealing patterns of order and chaos. The presence of chaos,
as well as its dependence on the control parameter is ascertained and characterized using the Lyapunov
Exponent.

Having ascertained the presence of chaos in the RTF, the primary objective of the work is focused upon,
namely the study and characterization of the route to chaos. This is done using three powerful analysis
tools i the Fourier spectrum of the RT$ignal, phase portraits, and Wavelet analysis. The Solitary
wavelet, seen to possess higher order moments vanishing with a negative logarithmic slope, is used as the
basis wavelet function. The patterns of order and chaos seen herein are in contrashwetitional

system based chaos, and among the analysis tools used, the wavelet analysis is seen to provide crucial
insights into the nature of the chaotic output signal. The formulations, analysis, and characterization
discussed in the present work putgdo a radically innovative approach in chaos generation, while also
calls for changes in the perception of chaos from a purely system oriented view to a more inclusive
perspective.
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2. Ramanujan Theta Function - Iterative Maps and Bifurcation Analysis
We start with the general form of the Ramanujan Theta Fun¢idr), given as follows:

]

fla,b) = Z g1 /2pn(n—1)/2

n=—00

wherea andb are variables with the specific condition tretlji$=1. Since the present work pertains to a
signal based chaos, the variabdeand b are represented as ssvoidal signals with frequencies f1 and
f2=rf1 respectively, where r represents the ratio of the frequencies r=f2/f1. Consequently, thEabjput
is represented as a time varying signal X(t). Thus, the output signal is given by

L]
X(t) = Z .@f-}'}[?ﬂflt}”r-”_l}-“az.ﬂ-in{im'flt]”i”_l:'*"lz

n—=—0C

From this relation its seen that the output signal results from a mixing (multiplication) operation of two
nonlinearly waveshaped (exponents of sinusoids) inputs, both mathematical terms giving rise to new
frequencies other than f1 and rf1.

To understand theonlinearevoluion and dynamics of the system, an iterative map has to be formed. In
order to do this, the derivative of X(t) is found a&tX By discretizing X(t) as well as its derivative, the

latter is expressed as the difference equation between successive safmf(les as X(i+1}X(i). By
rearranging, X(i+1) is obtained as a function of its previous sample X(i) and the derivative of X(i) as
follows, depicting the dependence of the current sample on previous samples, and for this reason termed
the “lterative Map[1].

T1(i) = [w fin(n + 1)sin(2r f1i) T2 eos(2n fri)sin(2nr fi é.]“[”_”*'!z:
T2(i) = [7rfin(n — l]s;-i:rtlfﬂﬁrrfl?']r'-nin_l:'-“f.z-\"_lc'().ﬂs(??rrfl-i).*;in(‘Z?rfl-i]m'-”"'u"}z]

X@E+1)=X@)+ ) [T1()+T2(3)

n—=—0oC

As seen from the iterative map, the evolution of X depends intricately on r. Thus, a mapping of X as a
function of r, termed the "Bifurcation Plot' is the ideal tool to study the evolution and dynamics of the
system represented by the RTF, and thisatqa as followsfor values of r from 0 to 4.
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Figurel Bifurcation Plot of the RTF

It is clear from the bifurcation plot that the systespresented by the RTF indeed shows an evolutionary
behavior dependent on r, with certaiegions, viewed as “sparse' and “dense' corresponding {0 non
chaotic and chaotic regimes of operation respecti&ly.eci fi cal ly it is seen tha
bifurcation plot trends disappear while approaching integer values of r, such & 1,2 é

It is seen that the proposed system radically differs from bifurcation plots seen in conventional chaotic
systems, such as the logistic map, since a conventional period doubling, tripling etc route is not followed
here. This, by itself calls for aare detailed and inclusive perspective of the concept of an iterative map,
as well as the very term Abifurcationd map.

The nature of chaos in X is assertively established by calculating the largest Lyapunov Exponent (LLE),
guantifying the systetn sensitve dependence on initial conditions. The Rosen&taigorithm is used to
compute the Lyapunov Exponents from the time sevibere the sensitive dependence is characterized
by the divergence samples between nearest trajecfatids is seen that the LLEorresponding to the

non integer values of r such 329322 is obtained as 3.36, whereagativeLLE valueis obtained for

r=1. These values and trendscertain the presence of chaos and valitteg ratio dependent trends
observed in the bifurcation plo

The worthiness of the generated signal as a potémittaimationcarrier can be precisely quantified by the
Kolmogorov EntropyK, a statistical measure of the uncertainty of the sighlaé values of K are
computed and tabulated for selected values aibng with their corresponding LLE Valuas follows:
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Ratio r | LLE | K (nats/sym)
1.0 -0.45 0.67
1.1 2.85 2.92
1.2 1.08 2.23
1.3 2.76 2.54
1.4 1.57 2.18
1.5 2.66 2.77
1.6 2.01 3.01
1.7 -0.02 0.93
1.8 0.87 2.28
1.9 2.95 3.23

Figure2 LLE and K values for RTF Chaos

3. The Route to Chaos
With the presence of chaos ascertained, it is now important to understand how the system transits from
order to ©laos and vice versa, while also characterizing various aspects of the RTF system when in order
and when in chaotic regimes.

In order to achieve this, three analysis tools are used, as elaborated below.

A. Phase Portraits
In order to examine the system dynamics for specific values of r, the phase portrait, a plot of the time
derivative of a signaX @as a function of the signal X illustrating the phase space dynamics, qualitatively
serving as a tool to assess various chgmirameters such as sensitivity and ergodicity, is [idett is
seernfrom the bifurcation analysitat nonintegral r valus such a2.0322 pi (3.14) and the golden ratio
(phi) correspond to dense pagstindicative of chaos, and to validate this infarenthree phase portraits
of X corresponding to the three non integral values are plotted alongside six integer values of r ranging
from 1 to 6.
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Figure3 Phase Portraits of the RTF

A clear distinction is observed between thegiase portraits corresponding to the integer r values, and
the three notinteger r value phase portraits.particular, one observes a rich, ornamental appearance for
chaotic cases, with the evolution trajectories well spread around the phase spae&s Vaneron chaotic

cases, phase portrait trajectories are limited to finite number of loops. This spreading is indicative of the
ergodicity of the system. Among the chaotic cases, the r value of 2.0322 shows less ergodicity than
irrational, well establiséd ratios phi and pi.

Thus, it is sen that the phase portrait, while offering an insight into the evolutioheathaotic syste
for a particular r value, is also used as ratfjualitative tool for identifying chaotic and noshaotic
regimes of peration

B. Fourier Spectra

The secondanalsis tool used isthe Absolute Fourier Spectra, computed using the F&sturier
Transform functionThese are plotted for the nine cases, as follows
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Figure4 Fourier Spectra of the RTF
From the spectra, the following can Inéeired

1. The RTF has an inherent nonlinegriwhich performs wawshapingon the input sinusoidal
signak. This is seen in the r=1 casehere a=b, andthe spectrum shosvan exponentially
decaying profile with a significant number of harmonics.

2. Asrincreases in iggervalues, one observes the evolutamd distinct segregation of sidebands
with the sidebands themselves developing side frequeaniegher side resembling arfctal
structure.

3. In all integer r cases, it is seen that the spectra shows discrete components, tigitfapar
frequencies, without and leakage or noise in between frequency components.

4. In all threenoninteger r values, one observastark contrast to the integer cases. Specifically,
frequency components are no longer discreith a Id of @gras® seen in between frequeaes
This suggests that the aperiodicityvilng chaos in the system gemates a whole array of new
frequencies, often expressed as a combination of several hasnupto large orders.

5. Among the norinteger caseghe presence ofgras$ is least dominant in the=2.0322 case,
which, in accordance wittine earlier phase portrait observations, has lower chaoticity than pi and
phivalues of r
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In summary,it is seen that the durier Spectra provides valuable information on the evolution and
creationof frequency compants in he output signal for various chaotic and +ubraotic cases

C. Solitary Wavelet Analysis
The efficient understanding of the rich dynamics of most-tie® signals and waveforms requires a
thorough analysis at multiple levels of temporal and spectral resolution. One of the most significant
applications of the wavelet based lgges i a comprehensive extension to the frequdncglized Fourier
Transform by adding time localization, is in detecting, identifying, characterizing and predicting trends
and features in regime signals, with the key clues in such feature detectieitsg discontinuities and
bursts in the time series data, which usually tend to be extremely compact and localized5h tirhas
been a constant challenge to formulate various mathematical functions as bases for wavelets, which are
able to capture suchubsts with the least possible level of decomposition, reconstruction and filtering.
The ability of a wavelet to capture such bursts effectively translates analytically to the wavelet function,
al so called the O6Mot her Wa vreflzexa highehoadericantgal motments. mo s t
I n recent works, a new kind of wavelet, the 0Sol.
secant function, which is known to possess an extremely smooth and compact structure. It is seen that the
highe order moments of this wavelet is closer to zero and vanishes at a rate logarithmically faster than
existing wavelets mentioned above. The primary application targeted for this wavelet is the effective
detection of bursts in signals.

The primary inspiration for the concept of solitary wavelet arisesnfithe hyperbolic secarfsech)
function popularas a solution to various nonlinear differential equations, and the waveform of the sech
function is known to be compact and extremely smddétsed on thesgroperties, the solitary wavelet is
formulated according to the following procedure:

The first step is to definehé ScalingFrunct i on, al so caldirecntinuduetmg@ Fat her
based on the hyperbolic secant%sd = sech0).

The Solitary Father Wavelet thus defineds used as the basis to form tBelitary6 Mot her Wavel et
such that the following criteria are satisfied

1. y(t) belongs to ai(s)xZb6&), dhe space bf alisblutely and square
integrable measurable functions.
2. (t) and y(t) are orthogonal to each other.

3.y(t) has zero mean)v,kb(id'ﬂéz.Othe foll owing hol ds:
4. y(t) has un,iadpgrthe tq)llm\ajrrgequati@w?tbﬁ] ogmd=1

It is preferable, but nat mandatorycriterionto ensuréd h at) pogs€sses a higher number M vanishing
moments. In other words, for all m<M?D<‘)"‘f om=0

The Solitary sloseditedefindiaesditarg daughter Wavqh?&%(c‘)) in the following

A

fashionwitha > 0 denot i njga dtehneo toi sncgaﬂwfnzaﬁlgsdh%%f t o

The Father, Mother and Daughter Solitary Wavelets are expressed as discrete «igngly n ) and
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(&4 (=) centered around zerdhe Father and Mother Wavelet Signals are platetbllows:
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Figure5 The Solitary Wavelet

In order to investigate and characterize the performance of the solitary wavelet, the moments upto the
tenth ader of the solitary mother wavel€sOL) are computed and compared with the corresponding
moments ofkix established wavelets, namely Daubechi¢®B4), Biorthogonal 4.4BIOR4.4) Reverse
Biorthogonal 4.4(RBIO4.4) Symlet 4(SYM4), Coiflet 4 (COIF4) ard the Discrete Meyer Wavelet
(DMEY) [5]. The moments of the various wavelets from the third order onwards are plotted on a

logarithmic scaleas follows:
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Figure6 Higher O der Moments of various wavelets

It is clearly seen that while all the other wavelet momenth aghe Dalbechies and Meyer show an
increasing trend, the solitary wavelet moments show a decreasing trend with a negative logarithmic slope.
This indicates that the momentstbé solitary wavelet rapidly decay and vanish toward ZEh@& gives

the solitary wavelet the exclusive advantages of smoothness, compactness and effective detection of

bursts

The time waveforms, for thexshon-chaotic and the three chaotic casesplasgted adollows:
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The correspondingvavelet aalyses, plotted as a émrmap of coefficients for various shifts and seale
re plotted alongside
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Figure9 Solitary Wavelet Analysis (Top: jphi; Middle: r=2.0322 Bottom: r=pi)
Thefollowing can be inferred from the anaiysesults:

1. In all integer r values, a remarkalgeriodicity, seerby the rhythmic alternation a&d andblue,
is observedin the coefficient endspertaining to scales between 35 and Bbe three chaotic
cases show a cleabsence of such rhythmic periodicity, with peaks inghil coefficient ranges
ocaurring in sporadic bursts, or as a pattern similar to a modulatirejcge:

2. At lower scalegbetween 4 and 14pne observes thas r increases in integer valuasw peaks,
corresponding temergence of smaller pulsesdapifurcations of the fundaemtal pulg trainin
Fig. 7 are observed.he numberof peaksis well in accordance with the number of new pulses
formed.

3. From Fig. 7, one observes that in theatiacases, the number of smaller pulsessanmily keep
varying, and his change is reflected in the number of peaks in wavelet anafysig. 9

4. An interesting obervation in Fig. 9 in all three chaotic eass the phenomenon where eyé&a
scale peak igollowed by bunchig of smaller peaks at lowescales, which are followed by
bunching of even lower scales and so on, giving a fractal appea&unte.an appearance has
been previously detectedwavelet analsis ofshare revenue aridreign exchange markets.

5. The above rentioned sporadicity at largerases, as well as vati@ns in pulse trends, as seen in
wavelet analyses of chaotic signals assertively emerge as indicative fact@aeilirequency
comporentscreating agrassy naturé theFourier Sggctral profile.

In summary, it is seen that the wavelet analyses combine the best features of phase portrait analyses
(ergodidty detected by peak sporadicity anpulse variance),and Fourier Spectral analysesngw
frequency component generatisea by observing domemce at various scales, and npeaks at lower

scales corresponding toweulse$, while revealing additional features such as fractal nature, not seen in

the other twaanalysstools
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4. Conclusion
Motivated by the call for a more flexible, ea®ytune means of generating chaos, gnesent work
elaborates upon the developmentltd Ramanujan Theta Function as a soofcehaos. By setting the
variables of thidunction tosinusoids ofcompeting frequenciethe chaotic output signal is generated
with the ratio of theinput frequenciesserving as control paranmest The characteristics of such chaos
generated are studieusing theiterative mapand bifucation plds, andthe presence of chaos is
ascertained using Lyapunov Exponents and KolmogordkoRy. Following this, theroute from order to
chaos of the proposed system are studied using three techhigheseportrait, Farier Spectra and
wavelet analysisin the phase portiigs, it is seen thifor non-chaotic regimes, phase portraits are orderly
with definite number of loops, whereasrfahaotic regimes, trajectories are spread all over the phase
space, suggesting ergodicity agiding the phase portrait a rich, ornamental lo@ke Fourier spectra
highlighted the discretérequency components in nahaotic regimes, with well formed sidebands,
whereas in chaotic regimes, a lot of new frequencypmomants are seen, giving the spal profile a
@rassyappearance-inally, ahyperbolicwavelet termed the SolitarWaveletseen to possesanishing
higher order moments with a negative logarithsiape, is used as the basis to perform wavelet analysis.
The resultseveal thathe rhythmic peridicity observed in large scale values for futraotic regimes is
significantly absent for cotic regimes, #h vaiations in the trends of new pulses emerging alongside
the main pulse trainlt is seen that the wavelet analyses combine the best features of phase portrait
analysegergodigty detected by peak sporadicity ampdilsevariance)andFourier Spectral analysesdéw
frequency component generatisea by observing domance at various scales, and npeaks at lower
scales corresponding toweulse$, while revealing additional features such as fractal nature, not seen in
the other twaanalyss tools In summary, theresent article ushers a novel perspective pertaining to
signal oriented chaos, calling for a change in the way bifurcation qohotgerative mapsare perceived,
as also the means to generatel control such chaohl.is hoped that thevavelet analysishighlighting
both spectral and temporal aspects ofdigeal, emerges as a reliable and assertive qualitative means to
identify, deect and to an extent, characterize tta¢ure of chaosgither stanehlone, or in conjunction
with tools such as phase portraiBsogressin such an areavill eventually drive chaos analyses away
from Lyapunov Exponentsyhich are most useful in system based chaos where initial conditions are well
known, and are at best computed with apgrations fom output chaotic signals, using meissuch as
the Rosenstein Algorithm.
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