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Abstract

We offer a new look on multiparticle theory which was initiated in a
recent philosophical paper [1] of the author. To accomplish such feature,
we start by a revision and extension of the single particle theory as well
relativistically as nonrelativistically. Standard statistics gets an interpre-
tation in terms of symmetry properties of the two point function and any
reference towards all existing quantization schemes is dropped. As I have
repeatedly stated and was also beautifully explained by Weinberg, there
is no a priori rationale why quantum field theory should take the form it
does in a curved spacetime; there is no reason why the straightforward
generalizations of the Klein Gordon and Dirac theory should have some-
thing to do with the real world. Perhaps, if we were to look differently
at the flat theory, a completely satisfactory class of relativistic quantum
theories would emerge. These may not have anything to do with quantum
fields at all except in some limit.

1 Introduction.

Essentially, we still look at the world in terms of a 3 + 1 decomposition: at
least quantum theory is framed in that way as we will study now, and this leads
to a myriad of interpretational difficulties when trying to merge (general) rel-
ativity with quantum theory. When trying to find an answer to this problem,
it is convenient to look at well known theories from distinct, non-conventional
angles; such richness should enable one to generalize in different ways and it
is here that a solution for our puzzle may very well reside. Keeping this pos-
sibly important lesson in mind, we start by generalizing the free particle in a
Newtonian cosmology and see what we can learn from that, this might at least
shape our mind for more important things to come. Indeed, it teaches us we
should entirely focus upon the two point function of the theory or the Feyn-
man propagator; as is well known the latter is not uniquely defined in standard
quantum field theory which is a very unsatisfying feature indeed. I somehow
hoped that the definition of the Sorkin-Johnston state [6, 7, 5] would be some
progress in that direction but alas the latter is only well defined for compact
chuncks of spacetime and is not natural. Naturality roughly means that the two
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point function ω(φ(x)φ(y)) coincides with the two point function given by any
globally hyperbolic subneighborhood containing x and y (modulo some details).
As Fewster and Verch [2, 3, 4] have shown in full generality, locally covariant
theories satisfying some plausible technical details carry no natural state. In my
view, this is an almost leathal objection against their construction given that
one would expect a transition amplitude not to depend upon the wholeness of
spacetime and indeed this is the picture we shall hunt after. Therefore, instead
of turning to algebra to define a relativistic quantum theory, we turn our heads
towards geometry as the dominant language for quantum theory; hence we must
focus upon objects having a geometrical meaning. The only such quantity in
the free theory is the two point function: so instead of endowing it with the
usual functional analytic meaning in terms of Nevanlinna spaces, we give it a
very beautiful and simple geometric representation. This allows one to couple it
to gravity in an infinite number of ways; suffice it to say that not all candidates
are suitable as the quantum causality constraint turns out to be quite powerful.
So, what we propose is a natural, in a slightly weaker sense than Verch and
Fewster, construction of the two point function; this fixes the free theory. We
shall make an explicit construction for the theory of spin-0, 12 , 1 particles. Also,
we treat in detail how one should define interacting theories between both types
of particles. Obviously, to further deepen the part played by the observer one
should couple the system to a measurement apparatus but at least all transition
amplitudes have a spacetime significance meaning they transform as scalars un-
der coordinate transformations something which does not happen in standard
quantum field theory. In my view this is a serious step forwards towards defining
process physics and I am somewhat happy to see that the basic quantities in
the theory do not have to be framed in the language of differential operators.
Everything has a geometric significance which should make it not too difficult
to lift the theory to discrete spacetimes such as causal sets for example.

The history of quantum field theory is a long one and I have never found the
field viewpoint very compelling; the way it is explained the best is by Weinberg
[8]. He derives it from a few physical principles including Poincaré covariance;
now one may very well argue that Poincaré covariance should not be taken
too seriously since it is tied to Minkowski spacetime but at least I know that
the resulting theory on Minkowski is the correct one. Also, it shows that the
field viewpoint may not be a paradigm at all but something which is tied to
Minkowski. This is the point of view taken in this paper; but we do more than
that. We derive the general point of view, which reduces to the Minkowskian
one, from new physical principles which are in retrospect much more logical and
beautiful than those of Weinberg which are still tied to the operational 3 + 1
picture of quantum mechanics. In other words, we develop a “nouvelle cuisine”
to talk about those things which were previously thought to belong to quantum
mechanics. We do not speak about wave functions, operators, path integrals,
action principles at all, but we derive precisely the same thing from something
which is much more elementary and easy to swallow than all these previous
concepts. This is a big step forwards in our understanding of nature and the
reader should think about it well; it is not as trivial as it looks.
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2 The nonrelativistic particle theory extended.

Sometimes, when you are stuck with a problem, it is good to broaden ones
horizon and investigate more closely slight generalizations of what you know
to be true; the lessons one can draw from such exercise might provide for the
crucial insight on how to solve one’s problem or even just to figure out if there
is a problem in the first place at all. What we will do in this section, constitutes
a small extension of the work performed in a previous article of this author
[1], more in particular we shall highlight in a better way the conclusions to be
drawn from that paper. In particular, we asked ourselves the question about
the covariance of nonrelativistic quantum mechanics for point particles; more
specifically we would like to have that the interpretation of the wave function
Ψ is observer independent. For that Ψ need to transform as a scalar or density
of factor 1

2 under spatial coordinate transformations (see [1] for details). In the
first case, we arrived at the conclusion that the correct momentum covector
was given by the covariant derivative ∇tµ which is the Levi Civita derivative
associated to the spatial metric. The latter may be time dependent and hence
we have a time dependent scalar product given by

〈Ψt|Φt〉t =

∫
Ψt(x)Φt(x)

√
ht(x)dx

where ht(x) is the determinant of the spatial metric. The correct Hamiltonian
is then given by

Ht(x) = −(ht)
µν(x)∇tµ∇tν

and one may want to extend the wave function to the complexified cotangent
bundle. That is, one considers covariant tensors Ψµ1...µn for arbitrary n and
extends the scalar product in a trivial way, again see [1] for details. Now,
obviously, the Hamiltonian Ht(x) constitutes a Hermitian operator with respect
to the scalar product 〈 | 〉t but in order for time evolution to preserve the norm
one should consider the following Schrodinger equation

i
d

dt
Ψt(x) =

(
Ht(x)− i ḣt(x)

2ht(x)

)
Ψt(x)

and therefore, the Hamiltonian gets a non-Hermitian correction by means of
a multiplication operator. Therefore, the real physical Hamiltoninan H ′t(x) =

Ht(x) − i ḣt(x)2ht(x)
is a non-Hermitian operator and one can therefore not even

speak anymore about the vacuum or lowest energy state, not even in a time
dependent sense. In case one would only consider Ht(x) one obtains time de-
pendent lowest energy states; likewise, in order to define Hermitian momentum
operators, deviations from standard wisdom should be considered and they are
given by

P = −inµ∇tµ −
i

2
∇tµnµ

where n is any vector field in space. The standard momentum operators which
one gets from a straightforward quantization are not Hermitian and cannot
provide for the right Hamiltonian, see [1]. The important lesson to be learned
here is that standard Hermitian quantities in the classical theory do not need to
correspond to Hermitian quantities in quantum theory and therefore, the entire

3



rationale behind the Born rule and vacuum states dissapears. This strongly
suggests that what we should hold dear are things which might be defined in
an independent way from operators and vacuum states; for the free theory,
these are the two point functions and finding out the raison d’etre behind those
precisely constitutes the novel insight we are looking for. This is the content of
the next section.

3 The free relativistic theory revisited.

We have learned by now that Hermitian operators do probably not constitute
the right framework for quantum theory and the only real object of importance
is the two point function W (x, y); in the following, we shall give the latter
a nice geometric interpretation which can be straightforwardly generalized to
curved spacetime. The viewpoint explained in [1] was that iW (x, y) can be
regarded as a projection operator where W (x, y) = W (y, x) and i(W −W ) = E
where E is the Pauli-Jordan operator which can be seen as the identity operator
on the space of solutions to the Klein-Gordon equation. This is a functional
analytic point of view which is of considerable difficulty due to the indefinite
character of the inner product and associated the arbitrareness in the choice of
W . Here, we will take a very different turn and focus on the geometry of the
two point function and put the probability interpretation on the second place.
In Minkowski, the two point function is given by

W (x, y) =

∫
d3p

(2π)3 2Ep
eip.(x−y)

where the signature of the metric is (− + ++) and p0 = Ep =
√
~p2 +m2.

Another way to write it is

W (x, y) =

∫
d4p

(2π)3
eip.(x−y)δ(p2 +m2)θ(p0)

where θ(x) = 1 if x ≥ 0 and 0 otherwise. The delta and theta function by them-
selves are nothing mysterious, the factor eip.(x−y) has so far been understood as
something which was a unique feature of Minkowski spacetime being an eigen-
function of the momentum operators and a solution to the Klein Gordon equa-
tion. Actually, as Weinberg beautifully explains, the Klein-Gordon equation can
be derived from these functions; this urges one to stop for a while and take those
functions more seriously. W (x, y) is supposed to be a relational quantity in the
sense that it relates the creation of a particle at x to the annihilation of it at y
so therefore one should look for such a way to define the exponential function.
One can do this and it works as follows: let γ(t) be any path between x and y,
ea be a globally defined vierbein which is future oriented (meaning e0 defines a
future oriented timelike vector), then one can freely switch between a Lorentz
vector ka at x and its spacetime counterpart kµ(x) = kaeµa(x). Now, let us de-
fine a function φ(x, ka, y) where kaea(x) ∈ TMx, hence φ : T ?M×M→ U(1)
by φ(x, ka, x) = 1 and

d

dt
φ(x, ka, γ(t)) = −iγ̇µ(t)kµ(t)φ(x, ka, γ(t))
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where kµ(t) is the parallel transported covector of kµ(x); that is

D

dt
kµ(t) = 0

and kµ(0) = kµ(x). Now, as one can show for Minkowski spacetime, φ(x, ka, y)
defined in this way equals eik(x−y) and is therefore independent of the curve
γ joining x and y. From now on, we work with a consistent family of curves,
meaning that the curve joining y to x is the reverse of the curve joining x to
y and there is precisely one curve joining every pair of points (and trivially,
when x = y the curve is just a point). We pose for now no differentiability
or continuity property on the class of curves; from the definition, one has the
following two properties

|φ(x, ka, y)|2 = 1, φ(y, ka? , x)φ(x, ka, y) = 1

where ka?e
µ
a(y) = kµ(1) where we will assume that γ(1) = y. Now, it is our

intention to define the two point function in a general time orientable curved
spacetime by means of

Wγ(x, y) =

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)φ(x, ka, y).

From the equality
φ(x, ka, y) = φ(y, ka? , x)

and the fact that the mapping ?(x, y);T ?Mx → T ?My : ka → ka? is an or-
thochronous Lorentz transformation, it follows that

W (x, y) = W (y, x)

as it should. So far, our analysis does not depend upon the paths joining x to
y; the following demand however leaves in general just one option open:

W (x, y) = W (y, x)

for all x ∼ y where ∼ stands for being spacelike related. This is our demand
of quantum causality, it says that the amplitude for propagation of a particle
between two spacelike separated points x and y does not depend upon the order
of the points. We now show that if γ is a geodesic between x and y, then
this demand is automatically satisfied. By definition this geodesic must be a
spacelike geodesic (it may be possible for timelike separated points to be joined
by a spacelike geodesic such as occurs on the timelike cylinder); hence

φ(x, ka, y) = e−ikaw
a

where wawa = 2σ(x, y), wa is tangent to the geodesic at x and σ(x, y) is Synge’s
function. Equivalently,

φ(x, ka, y) = eiσ(x,y),µe
µ
a(x)k

a

as the reader may show or wa = −eaµ(x)σ,µ(x, y). To prove that the associated
two point function satisfies indeed quantum causality, consider the reflection
around wa, the latter is a Lorentz transformation, preserving the sign of k0
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if ka is a causal vector and maps kawa to −kawa; hence, W (x, y) = W (x, y)
which proves our assertion. In the case of general paths, the reader may easily
see that this reflection of ka does not need to flip the sign of w(t)(k(t)) as this
quantity is not preserved under general transport; the very preservation requires
the geodesic equation to be fullfilled. One can now wonder to what extend the
Klein Gordon equation still plays a roll; consider that W (x, y) ≡ W (σ,µ(x, y))
satisfies(
�′ −m2

)
W (x, y) = igα

′β′
σ,µβ′α′

∂

∂σ,µ
W (x, y)−m2W (x, y)−gα

′β′
σ,µα′σ,νβ′

∂2

∂σ,µ∂σ,ν
W (x, y)

where primed indices refer to y and unprimed to x and all derivatives of σ
are covariant derivatives. The reader now notices that in the coincidence limit
y → x, we have that the left and right hand side reduce to zero where we
use Synge’s rule [σ,µβ′ ] = −gµβ and [σ,µα′β′ ] = 0 where the square brackets
indicate that the limit y → x is taken. Before we proceed, let us stress that our
point of view is relational in the sense that it is the way we have build the two
point function, the point of view of field operators was absolute in the sense that
propagation is derived concept of composite entities whereas here the bifunction
is fundamental. Notice also that the above formula gives our covariantization of
the flat spacetime equation and as anticipated the right hand side is in general
not zero; we will come to other, more substantial deviations later on. Let us also
notice that globally we will define W (x, y) by summing over all distinct geodesics
joining x and y; this small caveat ensures that we have to be a bit careful with our
statement regarding naturality. Our two point function is natural in the sense
that it only depends upon the geodesics joining the two points which is as “local”
as one may get. There is a useful information interpretation of our formula which
is that the information of the creation of a particle travels on geodesics possibly
exceeding the local speed of light: therefore, the interacting theory will be
constructed as a theory of interacting information currents. We now define the
Feynman propagator as ∆F (x, y) = W (x, y) if y ∈ J+(x), W (y, x) if x ∈ J+(y)
and W (x, y) = W (y, x) otherwise. It is obvious that the singularity structure of
our two point function is of Hadamard type and therefore identical to the one of
the standard Minkowski vacuum; this leads to infinite renormalizations which
one would preferably avoid. There are several ways of doing this and let us for
now concentrate on a physical way of doing so: that is consider the following
modification of W (x, y):

W (x, y) =

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)e−κRµνk

µkν−κRµ′ν′k
µ′
? k

ν′
? φ(x, ka, y)

if and only if x ∈ J±(y) and for x ∼ y our expression remains unchanged.
Here, we use the fact that kµ?(x,y)?(y,x) = kµ to deduce that W still satisfies

W (x, y) = W (y, x). Here we of course allude to an energy condition of the type
RµνV

µV ν > 0 for any non-spacelike vector and κ > 0 so that the above inte-
gral converges and hence we remove the singularity structure of the two point
function. Physically, this is very appealing since one would expect the gravita-
tional field to give an ultraviolet regulator for quantum physics which is exactly
what the above formula tells you. Minkowski spacetime with it associated in-
finite renormalization difficulties may then be seen as a singular limit where
the gravitational energy condition trivializes. Let me also comment on how the
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Heisenberg commutation relations are hidden in our formalism: W (x, x) is an
integral over all on shell momenta, each with an equal amplitude (in the non-
modified version) of one which basically means that if you nail the particle at
x, the momentum is going to be democratically uncertain. This is precisely the
content of Heisenberg’s commutation relation, the gravitationally modified two
point function hence imposes corrections to that backbone of quantum theory.
I think these gravitational modifications are certainly worthwhile studying as
they constitute natural candidates regarding the equivalence principle. Also, our
“equation of motion” for φ(x, ka, y) can be thought of as a covariant substitute
for the Schrodinger equation. Since the two point function W (x, y) = W (y, x)
for x ∼ y, exchanging the role of source and receiver is totally symmetric for
spacelike separated points, hence the exchange of two particles is which explains
Bose statistics. Hence, to violate Bose statistics, it is sufficient for information
to travel on different paths than geodesics which is the case for sure when an
external force such as the one associated to an observer intervenes.

Before we go over to the interacting theory, let us show in detail how Fermions
are included in the formalism. Again, we will almost completely abandon the
field viewpoint and concentrate almost exclusively on our story of propagators;
as is the case for the free field, it is just no good to simply take the results of
the free theory and generalize those. That would be too easy, we aim further
than that and try do derive the results of the free theory in flat Minkowski with-
out ever speaking about Hamiltonians, field operators, action principles and so
on. So, what I propose it the nouvelle cuisine for quantum theory: a purely
geometrical framework with a realist ontology. Since spin enters now the scene
and is a degree of freedom of the particle. we must look at finite dimensional
irreducible representations of SL(2,C), such a representation is given by the
Dirac representation and one has the γa matrices satisfying

γaγb + γbγa = 2ηab

and (γa)† = ηaaγa with a special role for γ0 since

γ0(γa)†γ0 = γa.

The generators of spin rotations J ab is given by

J ab =
−i
4
γ[aγb]

and the reader may verify that the spin connection is given by

ωkµj = iωµab(J ab)kj

where the k, j : 0 . . . 3 denote spinor indices. Since every component is complex,
this signifies there are 6 real degrees of freedom implying one has two particles
each with three real degrees of spin. Hence, the spin covariant derivative looks
like

∇sµ = ∇µ + ωaµb + iωµab(J ab)kl
where ωaµb is given by

ωaµb = −eνb∇µeaν
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and one may directly verify the antisymmetry property

ωµab = −ωµba.

Coming back to the main line of our story, we would like to introduce a function
φm(x, ka, y)ij′ where primed indices again refer to y and m is the mass of the
particle such that

W (x, y)ij′ =

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)φm(x, ka, y)ij′

denotes some propagator. Upper indices refer to spin properties of the vector,
lower indices to those of a covector and moreover, annihilation and creation
always go in a vector-covector pair. We agree that particle creation corresponds
to a covector while antiparticle creation corresponds to a vector. So, the above
propagator signifies the amplitude for an antiparticle to propagate from x, with
spin component i, towards y with spin component j′. Likewise, we should have

an amplitude ψm(x, ka, y)j
′

i to denote the propagation of a particle from x,
with spin i towards y with spin j′. Again, we will proceed in the same way
as before, arguing what the coincidence limit φm(x, ka, x) should look like and
then solve for the entire spacetime by using the Schrodinger equation associated
to (geodesic) paths γ:

D′s

dt
φ(x, ka, γ(t))ij′ = −iγ̇µ(t)kµ(t)φ(x, ka, γ(t)).

Indeed, the latter is our replacement for the Dirac equation and we will study
its solution later on. Let us start by the most straightforward principles of
which the first does not necessarily need to be satisfied in a general curved
spacetime but it is for sure true in Minkowski due to spatial homogeneity. That
is, the coincidence limit φm(x, ka, x)ij does not depend upon x and it transforms
in the adjoint representation of SL(2,C); both taken together imply that our
only building blocks are kaγ

a and m1 and since we only work with on shell
momenta, φm(x, ka, x) may be chosen of the form α(−ikaγa + βm1) where α
and β are complex numbers (the mass dimension should be zero so that the
limit of zero mass gives a nonvanishing result) and the −i has been inserted for
future convenience. Now, we arrive at our third and most important principle
which says that the creation and annihilation of both a particle and antiparticle
with the same four momentum should give a vanishing amplitude on shell, that
is:

φm(x, ka, x)ψm(x, ka, x) = ψm(x, ka, x)φm(x, ka, x) ∼ (k2 +m2).

This gives that φm(x, ka, x) = α(−ikaγa ±m1) and ψm(x, ka, x) = α′(−kaγa ∓
m1). Finally, we have our fourth condition which I call the positive energy
condition, which says that

1

4
Tr(iγ0φm(x, ka, x)) = k0 =

1

4
Tr(iγ0ψm(x, ka, x))

which states that the energy of a particle equals the zero’th component of its
momentum vector. This further limits α = α′ = 1; so we are left with

φm(x, ka, x) = (−ikaγa ±m1), ψm(x, ka, x) = (−ikaγa ∓m1)
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and we now agree that the particle particle propagator ψm(x, ka, x) should come
with positive mass. This ends our discussion of the coincidence limit; now, we
come to the integration of the Schrodinger equation. The latter is easy and

natural and before giving its solution, denote by (Λ
1
2 (x, y))j

′

i the spin holonomy

attached to the preferred geodesic(s) form x to y and similarly for (Λ(x, y))b
′

a the
associated Lorentz holonomy. Thus given our initial conditions, the solutions
to the equations read

φm(x, ka, y)ij′ = (−ika(γa)ir −mδir)((Λ
1
2 (x, y))−1)rj′φ(x, ka, y)

and
ψm(x, ka, y)j

′

i = (Λ
1
2 (x, y))j

′

r (−ika(γa)ri +mδri )φ(x, ka, y).

We will now prove a remarkable property which shows that quantum causality,
as it is usually understood, holds for this propagator. Indeed, the very structure
of our formulae suggest that there may be a relationship between ψm(x, ka, y)
and φm(y, ka

′

? , x) where as before, ka
′

? = (Λ(x, y))a
′

b k
b. Indeed, a small calcula-

tion reveals that

φm(y, ka
′

? , x)j
′

i = (−ikb((Λ(x, y))−1)ba′(γ
a′)j

′

k′ −mδ
j′

k′)(Λ(x, y)
1
2 )k

′

i φ(y, ka
′

? , x)

= (Λ
1
2 (x, y))j

′

l

(
−ikb(γb)li −mδli

)
φ(x, ka, y)

where we have used on the first line that Λ
1
2 (x, y) = (Λ

1
2 (y, x))−1; in the second

line, we used covariance of the gamma matrices under joint spin and Lorentz
transformations as well as the previous established formula for φ(x, ka, y). Now,
the way in which this formula becomes useful is by means of the particle and
antiparticle propagators:

Wp(x, y)j
′

i =

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)ψm(x, ka, y)j

′

i

and

Wa(x, y)ij′ =

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)φm(x, ka, y)ij′ .

Indeed,

Wa(y, x)j
′

i =

∫
T?My

d4k?
(2π)3

δ(k2? +m2)θ(k0?)φm(y, ka
′

? , x)j
′

i

= (Λ
1
2 (x, y))j

′

l

∫
T?Mx

d4k

(2π)3
δ(k2 +m2)θ(k0)

(
−ikb(γb)li −mδli

)
φ(x, ka, y)

and we concentrate now on points x ∼ y which are exclusively connected by
spacelike geodesics. In that case, we could write

φ(x, ka, y) = e−ikaw
a

where wa is the spacelike tangent at x to the geodesic connecting x with y.
Choosing now a Lorentz frame at x such that the vector w is parallel to the
three axis e3, we perform, as before, a reflection around w given by k3 → −k3
to obtain

Wa(y, x)j
′

i = (Λ
1
2 (x, y))j

′

l

∫
T?Mx

d4k

(2π)3
δ(k2+m2)θ(k0)

(
−ikb(γb)li + 2ik3(γ3)li −mδli

)
e−ik3w

3
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where e−ik3w
3

= φ(x, ka, y). Summing this formula with Wp(x, y)j
′

i gives

Wp(x, y)j
′

i +Wa(y, x)j
′

i = (Λ
1
2 (x, y))j

′

l

∫
T?Mx

d4k

(2π)3
δ(k2+m2)θ(k0)

−2i
∑
j=0...2

kj(γ
j)li

 e−ik3w
3

which is immediately seen, due to the antisymmetry of some part of the inte-
grand under k1, k2 → −k1,−k2, to reduce to

(Λ
1
2 (x, y))j

′

l (γ0)lii

∫
T?Mx

d3k

(2π)3
e−ik3w

3

which equals δ3(wa) which proves that

Wp(x, y)j
′

i +Wa(y, x)j
′

i = 0.

This is the well known statement that the amplitude for a particle with spin i to
travel form x to y and be annihilated with spin j′ equals minus the amplitude
for an antiparticle with spin j′ to travel from y to x where it is annihilated with
spin i. The very minus sign reveals that spin- 12 particles are fermions, mean-
ing that exchanging two particles comes with a minus sign; this constitutes
the proof of the spin statistics theorem in our setting at least for spin-0 and
spin- 12 particles. As before, we can now define the Feyman propagator for par-

ticle propagation ∆F,p(x, y)j
′

i = Wp(x, y)j
′

i (x, y) if y /∈ J−(x) and −Wa(y, x)j
′

i

otherwise; note that this definition could be framed more democratically when
x ∼ y. We also could define a Feynman propagator for anti-particle propaga-
tion as ∆F,a(x, y)ij′ = Wa(x, y)ij′ if y /∈ J−(x) and −Wp(y, x)ij′ otherwise. The

reader however immediately notices that ∆F,a(x, y)ij′ = −∆F,p(y, x)ij′ as is the
case in Minkowski quantum field theory. This concludes our discussion of the
free Fermi theory and the reader notices that all salient features of the standard
Minkowski theory have been saved. We can now, as in the previous case suggest
gravitational modifications of the two point function for causally related points
such that causality remains valid but the singularity structure of the propaga-
tor changes. The way to do this is exactly identical to the one suggested before
for the scalar two point function and therefore, we do not have to discuss this
further on here. Evidently, our propagator does not satisfy the Dirac equation
anymore and the reader is invited to investigate if the latter would still hold in
the coincidence limit y → x just as the Klein Gordon equation did for the scalar
two point function. We now turn to the investigation of spin-1 particles.

4 Spin one “gauge” particles.

In contrast to what one may expect, the two point function for massless spin-1
particles is extremely easy to guess, even when they carry another charge such
as is the case for non-abelian gauge theories. We do not speak anymore in
terms of gauge transformations which were necessitated by the quantum field
viewpoint [8] but we derive the main formula for the two point function and the
Feynman propagator from two simple demands. The reader should appreciate
the plain simplicity of the construction as the computation of the two point
function for non-abelian gauge fields in standard QFT is a matter of laborious
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work, the proof that gauge particles satisfy bosonic statistics is evident. Hence,
we are interested in computing a quantitity

Wαβ′

µν′ (x, y) =

∫
T?Mx

d4k

(2π)3
δ(k2)θ(k0)ψ(x, ka, y)αβ

′

µν′

and again, we derive the correct form of the two point function. Note here
that our group transformations are global transformations and therefore do not
depend upon the spacetime point; so, the indices α, β′ stands for the adjoint
representation of the compact simple Lie group, see Weinberg [8], whose algebra
is defined by

[tα, tβ ] = ifγαβtγ

where fαβγ is totally antisymmetric and the positive definite invariant Cartan
metric is given by gαβ . The fact that we do not make any distinction between
covariant and contravariant vectors is due to the possibility to raise and lower
indices with both metrics gµν and gαβ . Let us study the coincidence limit y → x

of ψ(x, ka, y)αβ
′

µν′ first. Since there is no mass parameter, the only object of mass

dimension zero which we can write down is a multiple of gµνg
αβ , the only other

term one can write down on shell has mass dimension squared and is given by

a multiple of kµkνg
αβ . So here, we make our first law, ψ(x, ka, y)αβ

′

µν′ has mass
dimension zero which is logical since it concerns a particle of zero mass. We can
absorb any positive, real constant in the definition of the Cartan metric, so we
obtain that

ψ(x, ka, x)αβµν = gµνg
αβ .

Writing out our Schrodinger equation is extremely easy

D′

dt
ψ(x, ka, γ(t))αβ

′

µν′ = −i [γ̇(k)] (t)ψ(x, ka, γ(t))αβ
′

µν′

and when γ(t) is a geodesic, the solution is given by

ψ(x, ka, y)αβ
′

µν′ = gµν′(x, y)φ(x, ka, y)gαβ
′

where gµν′(x, y) denotes the parallel transport of the metric along the geodesic.
The latter can be written as a composition of the Van Vleck matrix with Synge’s
function and since the metric is covariantly constant one has that gµν′(x, y) =
gν′µ(y, x). Inserting this into the formula for the two point function gives

Wαβ′

µν′ (x, y) = gµν′(x, y)gαβ
′
W (x, y)

which shows that the two point1 function for spin-1 particles transforming under
a global, compact symmetry group is determined by the two point function of
the scalar theory, a transporter and the Cartan metric. From our previous
results and the symmetry of the transporter as well as the Cartan metric it
follows that

Wαβ′

µν′ (x, y) = W β′α
ν′µ (y, x)

for x ∼ y so that our theory satifies quantum causality and has bosonic exchange
properties. Clearly, massless spin-1 particles are their own antiparticles as there

1The fact that we need the Cartan metric for the construction of the two point function is
precisely the reason why the Lie group had to be compact and simple in the first place.
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exists only one two point function and not two. Let us better understand the
magic which happened here; instead of following the quantization procedure of
a theory with a local gauge symmetry and impose a gauge, we simply took the
transformation group of the quantum numbers to be a global one. This is a
meaningful point of view since those numbers themselves do not correspond to
any force field, they are attributes of particles which is something different. It
is possible to introduce classical gauge fields and introduce a dynamical gauge
bundle so that we have to use the holonomies associated to this gauge field. This
would be new physics and I hold it entirely possible that the future may lead us
there; for now, we obtain on one sheet of paper a result which can be found in
every textbook and which requires a long introduction to derive. As mentioned
in the previous section, the structure constants fαβγ and Cartan metric gαβ will
be used to build interactions, everything is perfectly consistent with QCD and

QED. The Feynman propagator ∆αβ′

F µν′(x, y) is given by

∆αβ′

F µν′(x, y) = gµν′(x, y)gαβ
′
∆F (x, y)

which concludes the discussion for spin one particles. We now come to the
discussion of ghosts; first, let us ask ourselves why we insist upon spin-1 particles
to transform in the adjoint representation and spin- 12 in the defining one. The
general reason is that it allows us to write down intertwiners of the kind

(γa)ije
µ
a(x)(tα)mn

and as the reader may verify, this is the only way to couple spin-1 and spin- 12
particles. This leaves us with the question of coupling spin-0 particles to spin-1,
the relevant intertwiner is given by

fαβγ∇µ

where the derivative acts on the gauge boson propator only and therefore these
spin-0 particles should transform as a vector in the adjoint representation. Such
particles could be coupled to ordinary spin- 12 matter though by means of the
intertwiner

fαβγ(tα)mn δ
i
j

and it is very easy to derive the unique propagator having the correct transfor-
mation properties

Wαβ(x, y) = gαβW (x, y)

which proves that such particles, if they would exist, should behave like massless
bosons. What the standard quantization of gauge theories tells you is that
one should use “fermionic rules” for them and that they should not couple to
matter at all. In the next chapter, I will try to seek for a physical principle
leading to such conclusion as we will still need some novel input to correctly
relate the coupling constants of the different intertwiners. The correct Feynman
propagator reads

∆αβ
F (x, y) = gαβ∆F (x, y)

where we use the massless propagator and the reader should notice that we have
provided a reason originating from propagator considerations as to why these
particles should exist asopposed to a technical one originating from some gauge
fixing procedure within the Feynman path integral framework.
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5 Towards a definition of the interacting theory.

This last section differs from all others in the sense that it is not complete but
we work our way towards a fuller comprehension of the theory; rougly speaking,
we aim to define the theory by means of Feynman diagrams. One might call this
a perturbative definition albeit there is no real reason to do that: the point of
view which will be explained here is the one of “integrated” processes and some
of the very ideas behind it have been explained in [1]. What we shall not do is
simply to try to mimic the definition coming from the perturbative Minkowski
approach; indeed, as before, we will try to give a rationale for why things are
the way they are. Let me point out one important lesson already: I have so
far not commented upon the definition of the Feynman propagator, so let us do
this now. The latter concept reveals that information cannot propagate to the
relativistic past and that it does not matter in which direction it propagates
if the points are spacelike separated. So, in the real world, information does
travel faster than light, it just cannot travel into the relativistic past; this is my
version of the quantum causality condition. The reader should note that this
has nothing to do with operators anymore and with commutativity at space-
like distances; that requirement is stronger but roughly equivalent to the one
we are going to set up once we treat n-point functions. Before we proceed, let
us stress again how remarkable it is that so far we managed to sidestep any
language of action principles, path integrals, wave equations, operators, Grass-
mann numbers, gauge invariance, Hilbert spaces, Hamiltonians and have still
been able to reach the same conclusions from self-evident covariant Schrodinger
equations. Also, we partially found already a rationale for ghost particles with-
out ever speaking about expressing some determinant as a functional integral
over Grassmann fields transforming in the adjoint representation. Obviously, we
will need a novel justification for local gauge covariance and it is this amongst
others we shall be looking for in this section. Actually, we will derive local
gauge covariance from two logical principles involving the coupling of particles
to themselves and the gravitational field.

As is usual, we will assume that information interacts in points and we now
start with the task to write down all allowed irreducible intertwiners for two
point functions at those vertices. Let us therefore generalize our results and al-
low for spin-0, 12 particles to carry extra quantum numbers m,n in the defining
representation of a compact simple Lie group with an associated spin-1 particle
carrying a quantum number α, β in the adjoint representation; as usual, µ, ν
denote spacetime indices a, b Lorentz indices and i, j spin indices. We argue
that any interaction term between two identical paricles must vanish since they
belong to the free theory; in particular the coupling

gµν(x)gab

between two gauge particles is forbidden, it just produces a process of annihi-
lation and recreation of the same particle, with the same quantum numbers,
which is not an interaction but something which indeed belongs to the realm of
the free theory. Moreover, it has only mass dimension of two instead of four so
that we would need a coupling constant of dimension mass squared in a theory
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of massless particles. We have already seen the interaction term

g̃(γa)ije
µ
a(x)(tα)mn

between two spin- 12 particles and a gauge particle where g̃ defines the coupling
constant of the theory, this is the only irreducible matter-gauge coupling. For
the same reason as before do we expell matter-matter couplings of the kind

δmn δ
i
j

they are already included in the free theory and have mass dimension three
instead of four; there are still two other matter-matter coupling terms given by

(γa)ijηab(γ
b)kl (tα)mn (tβ)opg

αβ , (γa)ijηab(γ
b)kl δ

m
n δ

o
p

both of which we exclude by demanding that matter can only interact by means
of gauge particles, they are the transmitters of information; moreover, these
terms have mass dimension 6 instead of 4. Now, we arrive at the self-interaction
terms for non-abelian gauge bosons: we consider the following two irreducible
candidates

−ag̃fαβγ
(
∂κ

(
α
µ

))(
β
ν

)(
γ
λ

)
gµκ(x)gνλ(x)

and

−1

4
bg̃2fαβγf

α
β′γ′gµν(x)gκλ(x)

where the factor 1
4 has been included for symmetry reasons. Note that all of our

accepted irreducible interactions come with a mass dimension of four, one for
every gauge boson (the propagator has mass dimension two) and three for every
pair of spin- 12 particles (the propagator has mass dimension three), so g̃, a, b are
all dimensionless. These two candidates do not include all irreducible possibil-
ities, however, and the reader may want to write down the remaining terms of
mass dimension four. Those, however, do not consist out of antisymmetric pairs
of µ, ν indices given that our above two terms are build out of “commutators”.
This constitutes a part of the principle we are looking for: only self interaction
terms build from “commutator” terms are allowed for. They reflect that gauge
particles can only couple to the Lie algebra generators tα and the derivative ∇ν
and that all interactions must be constructed from commutators of these terms.
These facts are natural and have nothing to do with gauge invariance: saying
that ∇µ couples only antisymmetrically to the gauge particles in interaction
vertices boils down to saying that the gravitational force does not couple to the
gauge field during interactions. The commutator terms of the Lie algebra cou-
plings are the only thing one could write down since the latter constitutes the
intrinsic operation of the symmetry algebra. The previous principle does not
explain yet the values of a, b but it does say that a2 = b so we can get away with
them by absorbing a in the definition of the structure constants fαβγ . Therefore,
we have derived the correct couplings from the demands of (a) mass dimension
four (b) constructed from couplings to the Lie algebra generators and no cou-
pling to the gravitational connection. So, just like Weinberg argued, “gauge
invariance” is a consequence of deeper underlying physical principles and this is
precisely what I was aiming for. Remains to write down the interaction vertices
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for the “ghosts” as well as the scalar Brout-Englert-Higgs particles. The inter-
action terms for the ghost particles have been explained in the previous section
and we need to find a rationale as to why the coupling term to spin- 12 particles
should not exist as well as why the ghosts are fermions. Honestly speaking, I
have no good physical reason for this and neither does the standard derivation
in the path integral framework; there one simply observes that ghosts carry “the
wrong statistics” and hence should not be observed in nature. In other words,
one declares rather by fiat that one should not compute ghost-ghost and ghost-
gauge boson amplitudes. Let us agree from the beginning that if we knew why
ghosts should be unobservable and have the wrong statistics, then the coupling
to ordinary spin-12 particles would vanish since fermions do not interact directly
amongst one another. Let me propose a trick here which attaches to a scalar
particle its “ghost” Fermi-complement, that is define

Wαβ
p (x, y) = θ(x)θ(y)gαβW (x, y)

and
Wαβ
a (x, y) = θ(x)θ(y)gαβW (x, y)

with θ, θ forming the standard complex Grassmann algebra, then the word ghost
is rather well chosen since the square (but not the modulus squared) of these
amplitudes vanish. Moreover, if x ∼ y, then

Wαβ
p (x, y) +W βα

a (y, x) = 0

which reveals fermionic statistics. This reasoning is moreover perfectly fine
since, as the reader may verify,

Wαβ
p (x, y)W γδ

a (y, x) = 0 = Wαβ
p (x, y)W γδ

a (x, y)

where the conjugation also applies to the Grassmann algebra2, implying that
the amplitude for instantaneous particle-anti particle pair creation and annihi-
lation vanishes and therefore our novel principle explained in section three is
satisfied. This would answer our previous questions: we explained why ghosts
are unobservable which is connected to them having the wrong statistics. This
does not explain yet why we should include ghosts of scalar particles trans-
forming in the adjoint representation in our interaction framework. Strictly
speaking, the fact that for gauge invariant theories, one needs to fix the gauge
before quantization is something which has been added to the framework of
quantum mechanics due to Dirac’s analysis of how to deal with first and second
class constraints in Hamiltonian systems. In the meantime, one has developped
quantization methods which preserve manifest gauge invariance but give up on
manifest Poincaré covariance due to the choice of a grid for spacetime. I did not
enter into that representation of affairs since I find my point of view somewhat
more universal and applicable to wide range of circumstances. Therefore, I feel
free to add a novel principle to quantum theory which is the first nontrivial one,
which is that any theory of gauge spin-1 bosons should include the according
spin-0 ghost particles transforming in the adjoint representation. For quantum

2In case the conjugation did not apply to the Grassmann algebra, we would obtain the

result that Wαβ
p (x, y)W γδ

p (x, y) = 0 which is paramount to saying that the ordinary modulus
squared of the amplitude vanishes.

15



electrodynamics, this means one has strictly speaking one ghost, but it doesn’t
couple to anything since the structure constants vanish; it is only at the level of
non-abelian gauge theory that ghosts will really play a part. In the light of the
above, I leave the rather trivial discussion of spin-0 Higgs particles transforming
in the defining representation of the gauge group as an exercise for the reader.

This finishes for now our analysis of the structure of interaction vertices; we did
not impose yet any restriction upon the allowed diagrams and neither did we
say anything about the domain of integration for the intermediate vertices, nor
on how to apply the correct statistics rules. However, except for the domain
of integration, these matters are all fairly standard and we leave the detailed
discussion for the future.

6 Conclusions.

Albeit this paper is rather short, we did succeed in a couple of things: we derived
the spin-0, 12 , 1 theories from scratch and provided one with a fully covariant
interpretation of the two point function. The spin statistics theorem came
freely and chiefly relies on a positive energy criterion as well as some natural
constraint regarding simultaneous particle-anti particle creation. This is a great
advance and definetly a stronger result regarding this theorem than the one
obtained by Fewster who relied upon the flat spacetime result by conventional
techniques. I have shown how gravity may serve as a regulator to tame the UV
divergencies in the formalism and have defined, again from first principles, the
interacting theory. It is noteworthy that our theory is not a locally covariant
theory in any sense as Brunetti, Fredenhagen, Verch and Fewster intend to
construct but there is a sense in which our construction is natural and as “local”
as possible albeit global winding of geodesics on a closed space for example
may spoil the construction. Very few, if almost no limitations, on spacetime
exist; the only demand being that it must be almost everywhere time orientable
and that no closed timelike curves exist which would spoil the definiton of
the Feynman propagator. This is certainly a much better situation than the
one occuring in attempts to generalize field theory to curved spacetime; here,
global hyperbolicity is almost a paradigm. Our construction is intrinsically
four dimensional and all reference towards an observer, even in the choice of
state, has been removed; this was the prime rationale for the author to consider
alternative constructions. The very simplicity and naturality of the construction
is extremely encouraging; to reach all results obtained in this paper, Weinberg
[8] needs around 300 pages and this only for the flat theory, he does not reveal
how his results can be generalized to the case of a general gravitational field and
neither does he have any idea how the gravitational field may serve as an UV
regulator to obtain finite perturbative results. In my opinion, this means we did
something good here and explicit computations in a general curved background
satisfying appropriate energy conditions should follow.
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7 Acknowledgements.

I remind a discussion some 15 years ago where Rafael Sorkin tried to convince
me of the importance of two point functions in the construction of quantum
field theory where I was someone more insisting upon the operator picture. It
is somehow amusing to see that this viewpoint also dismisses the path integral,
something which Sorkin did not anticipate.
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