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1 Introduction.23

In the debate of the foundation of quantum theory, Bell’s theorem [2] is considered an im-24

portant milestone.In order to study Einsteins incompleteness criticism [1], Bell formulated25

an expression for the correlation between distant spin measurements. With this formula-26

tion it was possible to answer Einstein’s question of completeness with an experiment. It is27

important to note here the following. The experimenters using Bell’s correlation form did28

not ”look under the hood” for extra parameters. They mainly employed statistics in spin29

measurement experiments without much physics theory about hidden variables. Moreover,30

Einsteins criticism initially did not include the spin. The reformulation of Einsteins crit-31

icism [1] into the entanglement between spins was provided by David Bohm [3] and [4].32

Bells formulation of the problem looked like a big step from philosophy to physics.33

For the ease of the argument, let us say that Einstein argued for extra hidden param-34

eters to explain spin correlation. Einstein insisted that the A wing of the experiment is35

independent of what is done in the B wing and vice versa [6].36

Without loss of generality we may write the quantum correlation as E(a, b) = a · b =37 ∑3
k=1 akbk. Here, the a ∈ R3 and b ∈ R3 are unit-length parameter vectors. The a and b38

vectors direct two paradigmatic Stern Gerlach magnets for spin measurement. In practical39

experiments other means are employed to measure spin. That doesn’t affect our computer40

model.41

According to Einstein, additional local hidden extra parameters ”somewhere” in the42

experimental system explain the quantum correlation. The restriction of locality was in-43

troduced because the entanglement correlation is independent of the distance between the44
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sites of measurement. The Einsteinian locality concept can be tested with the use of the45

Clauser, Horne, Shimony and Holt (CHSH) inequality. The inequality is derived [5] from46

Bells formula for the correlation [2], E(a, b). Bells formula reads47

E(a, b) =

∫
dλρλAλ(a)Bλ(b) (1.1)48

In equation (1.1) the probability density of the hidden variables, λ, is ρλ ≥ 0. In addition,49 ∫
dλρλ = 1. Physically, think e.g. of λ as a hidden, but locally confined, field. The local50

effect of the λ, e.g. an array (λ1, λ2), can be accomplished if e.g. λ1 is assigned and confined51

to the A wing and λ2 to the B wing of the experiment. Furthermore, the measurement52

functions Aλ(a) and Bλ(b) both project in {−1, 1} to represent binairy spin variables (e.g.53

up=1, down=-1). The a and b represent the already introduced unit parameter vectors.54

Given (1.1) we can study the following four term;55

S = E(1, 1)− E(1, 2)− E(2, 1)− E(2, 2) (1.2)56

The CHSH inequality |S| ≤ 2 can be derived from (1.2). See [5] and e.g. [6]. So for an57

E(a, b) in the form (1.1) we have by necessity |S| ≤ 2. However, note that the CHSH can be58

violated with E(a, b) = a ·b for certain proper (a, b) combinations of setting parameters. To59

be sure, the labels 1 and 2 in (1.2) refer to a and b vectors that can be set in the experiment.60

E.g. 1 on the A side, operated by Alice, is a1 = (a11, a
1
2, a

1
3) etc, with ||a1||2 = a1·a1 = 1. The61

|| · || is the Euclidean norm. Similarly the 2 is associated to a2 on the A side. Moreover,62

for B we have a similar assignments, b1 and b2. Below a numerical example of |S| ≤ 263

violating setting combinations will be given.64

In the present paper we first will show a somewhat restricted design and proof of65

concept. In the second place the design is extended such as to meet e.g. Weihs’s experiment66

[7].67

1.1 Correlation in experiment68

Here we answer the question how to obtain in experiment the E values to be used in69

(1.2). It is technically still impossible to measure directly the E(a, b) for a single pair. The70

correlation is therefore derived from counting measurement results. The results enter the71

raw product moment correlation [12] to approximate the correlation E(a, b).72

Suppose we measure 4N spin pairs. After the last measurement in the series, the cor-73

relation E(a, b) is computed approximately. We count the number of times SA(a),n =74

SB(b),n, is found i.e., N(a, b |SA(a),n = SB(b),n). In addition we count the number of75

times SA(a),n = −SB(b),n, i.e. N(a, b |SA(a),n = −SB(b),n). It is noted that ideally,76

N(a, b |SA(a),n = SB(b),n) + N(a, b |SA(a),n = −SB(b),n) = N(a, b) = N . Hence, we ob-77

tain the expression78

E(a, b) =
N(a, b |SA(a),n = SB(b),n)−N(a, b |SA(a),n = −SB(b),n)

N(a, b |SA(a),n = SB(b),n) +N(a, b |SA(a),n = −SB(b),n)
(1.3)79

This type of computation of E is also employed in the algorithm and its presented proof80

of concept.81
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2 Preliminaries in the computer design82

Commonly it is believed that a computer violation of the CHSH inequality |S| ≤ 2, see83

(1.2), with a local model is not possible. Peres [6] formulates it thus: ”......, a hidden84

variable theory which would predict individual events must violate the canons of special85

relativity....”. Furthermore, the program must mimic an important experiment in the test86

of locality performed by Weihs [7]. Note that Weihs’s experiment is related to but also87

differs from important work of Aspect [8]. In Weihs’s experiment strict locality condi-88

tions were closely approximated and a violation |S| > 2 was observed for violating setting89

combinations of a and b with a quantum correlation a · b.90

In [9], however, the present author already showed that there is a nonzero probability91

that a local hidden variables model may violate the CHSH. Objections to the probability92

loophole claim in [9] were raised in [11] but were answered in [13]. The present paper93

completes the rejection of what has been claimed in [11] and observes the metaphor re-94

quirements of [12].95

2.1 Settings and information hiding as a warrant of locality96

In the present paper, a local model is presented that can be implemented in a simple97

computer program and leads to S ≈ 1 +
√

2 for the following violating settings. On the A98

side Alice has 1 = 1√
2
(1, 0, 1) and 2 = (−12 ,

1√
2
, 12) at her disposal. On the B side, Bob has99

1 = (1, 0, 0) and 2 = (0, 0,−1). For the ease of the argument we inspect, E(a, b) = a · b. A100

simple computation then shows that for a quantum outcome we would see E(1, 1) = 1/
√

2,101

E(1, 2) = −1/
√

2 while E(2, 1) = −1/2 and E(2, 2) = −1/2. Hence, looking at (1.2),102

S = 1 +
√

2 > 2 is expected in an experiment. The setting parameters a and b are given103

a value when the A- and B-wing particles leave the source. In flight we allow B (Bob) to104

change his setting.105

Needless to say that infromation hiding between Alice and Bob is the algorithmic106

realization of strict locality. Furthermore, in the computer simulation A doesn’t know107

anything about B and vice versa. All computations are ”encapsulated” i.e. local, despite108

the fact that in the proof of concept, they occur in a single loop (Appendix A).109

3 Design of the algorithm based on a local model110

3.1 Random sources111

In the first place let us assume random sources to represent random selection of setting.112

We look at the randomness from the point of view of creating an algorithm. If there are113

N trials, i.e particle pairs, in the experiment then e.g. two independent random sources114

can be seen as two arrays with index running from 1 to N . If NN = (1, 2, 3, ..., N), then115

we define three random source arrays116

RAS = sample(NN )

RB = sample(NN )

RC = sample(NN )

(3.1)117
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Technically, the map NN 7→ R· is 1-1 but randomized. As an example, suppose we have118

N5 = (2, 3, 5, 1, 4) and so, N5,1 = 2. Then in the first trial n = 1, the N5,n - th element of119

another array, e.g. q = (0.1, 0.4,−0.9, 1.2, 1.0) is randomly selected, hence, q(n = 1) = 0.4.120

In the second trial, looking at N5, we see, N5,2 = 3 so q(n = 2) = −0.9, etcetera. Note121

that this two array procedure is similar to rolling a five-sided dice. If e.g. N5 is replaced122

by M10 and multiples are allowed, such as in e.g. M10 = (2, 3, 5, 1, 4, 4, 5, 1, 3, 3) this q123

”dice” will in 10 turns show three times the side with −0.9.124

In this way a random source N can be employed in a program and be looked upon as a125

physical factor giving rise to randomness. The ”freely tossing of a coin” is now replaced with126

”freely randomizing” the RX by filling it with sample(NN ). There can be no fundamental127

objection to this particular two array form of randomizing.128

3.2 Design time settings129

Experimentalists may claim the construction of their measuring instruments. Hence,130

servers in the experiment may be tuned in design time. There is no fundamental rea-131

son to reject design time to the designer of a computer experiment. There is also no reason132

in physics to reject the observers Alice and Bob access to the information in design time.133

Let us also note that there can be no fundamental reason to reject our proof design134

merely because one wants to set the a and b setting parameters at the proper time with135

the toss of a coin. If e.g. Alice has no access to the complete RA, i.e. is created and136

implemented in server A at design time, then there is no difference when Alice toss a coin137

at the n-th particle measurement or employs the RA,n in the selection of a. The question138

then transforms into the infrastructure of the servers which is a genuine locality issue.139

Furthermore, the designer may assume that one random source is shared by A and140

by S. This is the RAS . Because there is a flow of particles between the A and the S this141

sharing, i.e. RA = RS = RAS , cannot be prevented at run time in a real experiment. The142

latter is related to the infrastructure of servers in the numerical experiment.The an in the143

experiment are based on the a array. For instance a = (1, 2, 1, 2, 1, 2, ...). In design time144

the designer is allowed to introduce a spin-like variable σ ∈ {−1, 1}. In the sequence of145

trials, σn is selected from σ = (−1, 1,−1, 1,−1, 1, ...).146

We may note that, because of RA = RS the relation an = 1 + 1
2(1 + σn) occurs on the147

A side of the experiment. The setting an can be either 1 or 2 and is already presented in148

terms of selection unit parameter vectors in R3.149

Note that the σn can be send to Bob and to Alice without any additional information150

conveying its meaning. So, Bob cannot derive anything from σn even though the designer151

knows the relation. This is because Bob is only active in run time, not in design time.152

Finally, the source may also send a ζ ∈ {−1, 1} to both Alice and Bob. The ζn in the153

experiment is based on the RC = sample(NN ) and derives from a ζ array.154

The second random source, RB is used by B exclusively, the third random source, RC155

is used by the source exclusively. There appears to be no physical arguments why this is a156

violation of locality or cannot be found in nature.157
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3.3 Random sources R· and particles158

The source sends a σ ∈ {−1, 1} and a ζ ∈ {−1, 1}. to both A and B. In a formal format,159

[A(an)]← (σ, ζ)n ← [S]→ (σ, ζ)n → [B(bn)]160

Here, e.g. [A(a)] represents the measuring instrument A where Alice has the a setting.161

This setting ”runs synchronous” with σ in the source because of the ”shared” random162

source. The particle pair source is represented by [S].163

The σ and ζ going into the direction of A are equal to the σ and ζ going to B. Each164

particle is, in the algorithm, a pair (σ, ζ). We note that ζ derives from RC .165

3.4 A side processing of the (σ, ζ)166

Firstly, let us for the ease of the presentation define a σA,n = 1+σn
2 . The σn at the n-th167

trial from the source S is a result of the sharing of RAS .168

The way the information is used remains hidden to B in order to maintain locality in169

the model. So, secondly, we have the setting an = σA,n + 1. Furthermore, we define two170

functions ϕ−A,n = σA,n and ϕ+
A,n = 1− σA,n. The two functions, together with ζn produce,171

in turn, a function172

fζn(an) = ζnϕ
+
A,n − ϕ

−
A,n173

Note that fζn ∈ {−1, 1}. Hence, we can store the outcome of the computations on the A174

side immediately in an N -size array SA,n for trial number n and n = 1, 2, 3, ....N .175

3.5 B side processing of the (σ, ζ)176

In the first place, let us determine with the B associated die the setting bn. This results177

from the hypothetical random source RB. Then, secondly and similar such as in the case178

of A, but of course completely hidden from A, the (σ, ζ)n information from the source is179

processed. We have, σB,n = 1+σn
2 , then ϕ−B,n = σB,n and ϕ+

B,n = σB,n+(δ1,b−δ2,b)(1−σB,n).180

This leads to the function181

gζ(b) = ζϕ+
B +

1− ζ√
2
ϕ−B182

For gζn(bn) we may note that it projects in the real interval [−
√

2,
√

2]. If σB,n = 1 then183

gζn(bn) = 1 for ζn = 1 and
√

2−1 for ζn = −1. If σB,n = 0, then ϕ−B,n = 0 and gζn(bn) = ±1.184

Hence, in order to generate a response in {−1, 1}, a random λ2 from the real interval185

[−
√

2,
√

2] is uniformly drawn and SB,n = sgn(gζ(b) − λ2) in the n-th trial. We note that186

as long as Bob doesn’t know the meaning of σB, derived from σ and related to the RAS ,187

locality is warranted. Bob doesn’t have access to the design time information.188

3.6 Computer infrastructure189

In computer infrastructure terms one can imagine three cables from the source server190

running to the A server and three running from S to the B server. One cable, CSA(σ),191

carries the σ from S to A and the other cable, CSB(σ), carries σ from S to B. The σ’s will192

also contain synchronous running timing mechanisms that are set upon ”creation” of each193
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pulse running through the cable. Secondly, a cable, CSA(ζ), carries the ζ from S to A and194

a cable CSB(ζ) carries the ζ from S to B. The third cable, CAS(R) is only used by A to195

share the (information of) RA with S. This cable is open only once and carries only one196

”pulse” that conveys the random source at A.197

4 Conclusion & discussion198

In the paper a simple design is given that is able to violate the CHSH inequality with199

numerical values close to the expected quantum mechanics. Please note that no violation200

of locality is employed. B doesn’t know the meaning of the A-S shared information send201

to B. So the information from S to Alice is inaccessible to Bob. In fact, A server (Alice)202

and B server (Bob) process their common input (σ, ζ) differently without knowing of each203

other’s existence.204

The reader kindly notes that the construction is designed to explain the outcome of205

the A-S-B experiment such as in Weihs’s [7] and should not be confused with experimental206

configurations unequal to A(a)← S → B(b).207

In the appendix, the essential loop in the R program over n = 1, 2, 3...N is presented.208

This loop represents the course of events in the computer infrastructre described previously.209

In the explanation of entanglement with locality, three random sources RAS , RC and210

RB are employed. We note that nobody knows whether or not in the experiment the211

measuring instrument, A, and the particle source, S, share a random source yes or no.212

Moreover information from design time is not accessible in run time and there is a flow of213

particles between S and A. From S to A the flow is ”forced” by the experimenter. In this214

design, flow of information from A to S is enforced by nature on the experimenter. It is215

perhaps like ’tHooft once claimed: ”.... every no-go theorem comes with small print” [10].216

The initial conceptual weakness of the computer simulation presented here lies in the217

fact that, in real experiment, both Alice and Bob may change their settings when the two218

particles (σ, ζ)Awing and (σ, ζ)Bwing are created and are in flight heading to their targets219

A and B. In our computer model, only Bob may change his setting ”in flight”.220

Changing ”in flight” settings at Bob’s together with no access to design time is a221

very strong form of information hiding between Alice and Bob. Moreover, ”shared random222

sources” together with ”meaning-hidden information transport” via the particles and ”syn-223

chronized random clocks” cannot be rejected in nature beforehand. We think at minimum224

we have provided another way to look at the criticism raised by Einstein [1].225

As required by the author of [11] a computer simulation, be it initially a somewhat226

restricted in some details, rejects the criticism raised in [11]. We may claim this because227

our ”freezing the setting of a at particle creation” is a valid CHSH type of experiment. It228

would be strange to say that locality and causality cannot occur in an experiment where229

”in flight” changes in both wings are allowed whereas one must admit that locality and230

causality occurs when only B wing ”in flight” changes of setting may occur.231

Moreover, the σ in the computational model may act like a kind of clock σ(t). The232

synchronization of the A wing and B wing σ(t) clocks starts at creation of the particle in233
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the source. Then the separate σ(t) may synchronously change ”in flight” until (σ(t), ζ)n234

hits the measuring instrument. Hence Alice can have ”in flight” changes of a too.235

Because the metaphor requirements of [12] are met, a local hidden variables explanation236

of the correlation in a ”one wing freeze setting at particle creation & other wing freely in237

flight change of setting” type of experiment entails the following. Such a violation of the238

CHSH criterion would not have been possible without a probability loophole in the CHSH239

[9]. The freely selected settings e.g. of a can be accomplished by hiding the RA for Alice,240

i.e. create and implement at desgin time. Similarly, RB is hidden for Bob. In this way241

the selection of (a, b) is similar to the one where a coin is tossed. It is hard to see how a242

particle pair in a distant source would behave differently when Alice employs an unknown243

sequence RA for her setting selection, compared to the case where Alice employs a coin.244

Moreover, using the clock-type synchronization for both σAwing(t) and σBwing(t) in245

the complete design, allows both Alice and Bob setting changes during ”time of flight”246

of the particles. The latter comes the closest to a local explanation of the results from247

Weihs’s experiment [7]. This feature cannot be demonstrated in a proof of concept but one248

can see that the implementation of it in the server infrastructure will provide the solution.249

Hence, we are allowed to claim that the present paper corrects Peres’ statement [6], that250

violations of the CHSH inequality ”violate the canons of special relativity”.251
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Appendix A: Here the nucleus of the algorithm is shown.275

for (n in 1:N){276

#Source section277

zetah<-zeta[RC[n]]278

sygma<-sigma[RAS[n]]279

#A section280

aSet<-a[RAS[n]]281

aKeep[n]<-aSet282

phiAmin<-((sygma+1)/2)283

phiAplus<-1-((sygma+1)/2)284

f<-zetah*phiAplus-phiAmin285

scoreA[aSet,n]<-f286

#B section287

phiBmin<-((sygma+1)/2)288

bSet<-b[RB[n]]289

bKeep[n]<-bSet290

if(((sygma+1)/2)==1){291

phiBplus<-1292

}else{293

if(bSet==1){294

phiBplus<-1295

}296

if(bSet==2){297

phiBplus<-(-1)298

}299

}300

g<-zetah*phiBplus301

g<-g+((1-zetah)*phiBmin/sqrt(2))302

lambda_2<-runif(1)*sqrt(2)303

lambda_2<-sign(0.5 - runif(1))*lambda_2304

scoreB[bSet,n]<-sign(g-lambda_2)305

}306

– 9 –


	Introduction.
	Correlation in experiment

	Preliminaries in the computer design
	Settings and information hiding as a warrant of locality

	Design of the algorithm based on a local model 
	Random sources
	Design time settings
	Random sources R and particles
	A side processing of the (,)
	B side processing of the (,)
	Computer infrastructure

	Conclusion & discussion

