Meta-space Energy in the Grand Unification Scheme

Miguel A. Sanchez-Rey

Abstract
What is required and restricted by the grand unification scheme when it comes to energy for any variant?

March 25th, 2016
D-variants and Meta-energy

Energy, as D-variant, has meta-space energy states such that $E = \Delta + \nabla + ... \implies E = [\text{ }]$. [1] Using the geometric definition of GRS [grand unification scheme] then there are a finite amount of variants [of stringy] in meta-space that are related base on their charge monopoles [2]. If variants do not follow C2R then the variants breakdown as GRS is obligated to parametrization by the TrH Theorem [3].

If $W = [\text{ }] + [\text{ }] + ... [\text{ }]$ and $E = [\text{ }] \implies W = E$ such that W is energy of meta-space state in D_v. If $p[n] \xrightarrow{C2R} M$ where M is the measure, where $M \in W_{l,1}$ then $M = [\text{ }] = \text{Energy} = W_{l,1}$ in terms of C2R [4].

GRS requires, in terms of energy, that meta-energy states be reducible in the Wilson operator such that the potential and kinetic energy, for superpositional quantum states, is the limit of reducibility. In that manner C2R is obeyed as long as $M = [\text{ }]$ implying Energy = $W_{l,1}$.

References