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Abstract

Out of interest, I took up the book of Rovelli and Vidotto to see
how far covariant Loop Quantum gravity had evolved over the years and
how its foundations are framed. I hoped that the authors had filled in
the necessary technical details which was somehow the promise of the
book, that it was an easy accesible, thorough introduction to the subject.
This report is my impression of the first 180 out of 250 pages, by then I
encountered several difficulties and issues with the theory which require
further explanation.

1 Introduction.

My experience with the Loop Quantum Gravity programme is that of a critical
observer and sideline participant and I have spent some amount of time on the
canonical quantization programme some 15 years ago. By then, I concluded
that this programme had no chance of producing any meaningful result due
to the problem of time which I shall briefly explain later on: I was sure that
quantum theory would have to be modified in order to take into account grav-
itational phenomena. More precisely, the novel language of quantum theory
should be one of spacetime and not one of space; this could be accomplished by
suitably modifying the path integral for example; hence my interest in causal
set theory, decoherence functionals and causal dynamical triangulations where
such modifications all take place. At first sight, the “loopies” did not seem to be
very willing to think in such direction and were therefore stuck in a programme
that certainly appeared to lead to nowhere, at least in my opinion. But times
change, people also change to some extend, which was the main reason for me
to take up this book and try to get a sense of its merit. Being someone who
is willing to look into the details and speak positively about a programme as
long as the details are fine even if I would suspect the overall enterprise to be
somewhat misguided or falling short to closer scrutiny, I thought that I would
certainly not be dissapointed. At least the book raised that hope to me when
the authors were talking about transition amplitudes associated to a spacetime
boundary formulation with boundary conditions at spacelike infinity if neces-
sary so that the boundary closes. This is certainly a way to revive “time” so I
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thought they would start to speak about spacetime geometry, “timelike” spin-
networks, SL(2,C) holonomies attached to general paths and so on. That, of
course, is not accomplished in the book and the reader gets that feeling very
early on in chapter 7 when one explains the four dimensional spin foam theory.
But nevertheless, this is not a technical error, but something which one would
suspect to cause serious trouble in the theory later on as it smells like a violation
of Lorentz covariance. I have tried to enter in a personal communication about
these issues with the author, but for some reason things did not go very well.
So, I will proceed in the best way possible and highlight those things I find
important; these may or may not be precisely the issues other people have in
mind. The subsequent book review is exclusively technical and not philosophi-
cal, given that I do somewhat sympathize with the conceptual framework: the
comments range from matters of presentation to issues which do need a more
substantial treatment.

2 Technical issues.

I will review some technical issues in the order in which they appear in the book
and still find unsatisfying regardless of some exchanges I have had about them
before. Some of these issues have been worked out in detail by me, others are
treated on a more general level indicating that the authors should do their best
to explain them properly: I leave it up to the reader to judge by himself which
comments he finds substantiated and which are merely cosmetical.

2.1 The magical circle.

Here, at page eleven, one tries to give an answer to the question of how to
quantize dynamical systems defined on a (group) manifold, this is certainly an
interesting question in its own right which did not receive much attention in the
literature. This book also does not develop a general theory but rather discusses
the example of a particle on a circle. The circle can be seen as a one dimensional
manifold with a nontrivial homotopy group: in such a case, standard wisdom
says one needs to quantize the system on the universal cover of the circle, which
is the real line and look at the eigenspaces of the translation operator over 2π.
Given an eigenvalue eiq of this operator, the corresponding “eigenvectors” are
given by

Ψ(x) = ei
qx
2π Φ(x)

with Φ(x+ 2π) = Φ(x). This makes all sense since

|Ψ(x)|2 = |Φ(x)|2

in either a well defined function on the circle and the Heisenberg relations hold
as usual, that is [

i
d

dx
, x

]
= i1.

So, at least for the circle, we have a well defined procedure and q may in prin-
ciple be an observable quantity; now, this does not answer the question for how
to quantize on more general, simply connected, manifolds albeit there is a nat-
ural prescription to do so: cover your manifold by coordinate charts (xα)i∈I ,
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replace all your momenta by covariant derivatives ∇iµ and work with covariant
Hamiltonians. To interpret the standard Heisenberg commutation relations, you
introduce a partition of the unity fi attached to this atlas and define the action
on a global function g by means of the standard action on the local represen-
tatives fig. So, somehow, the question of defining a particle dynamics on an
arbitrary manifold is connected to making quantum mechanics generally covari-
ant. The authors of this book do not consider this most natural answer and
prefer to keep a global coordinate θ: in that case, they note that at θ = 0, 2π the
Heisenberg commutation relation is not satisfied since the differential produces
a δ(θ) function. They propose to remedy this by considering functions which
are periodic in 2π, that is to quantize the relationship

{p, eiθ} = −ieiθ.

Now, for the circle, this can be done without any ambiguity whatsoever, simply
replace eiθ by the unitary multiplication operator UΨ(θ) = eiθΨ(θ). The rea-
son why this procedure is unique is because U(1) has precisely one irreducible
(unitary) representation which is, moreover, one dimensional. For higher dimen-
sional compact groups, one can set up many inequivalent Schrodinger pictures
in this way giving rise to a quantization ambiguity. Note that the above quanti-
zation deliniates a deep distinction with the procedure for non-compact groups,
such as the additive group (R,+) where the standard Poisson brackets hold

{p, g} = −1

where g ∈ R and therefore a real number. All this shows there is something
fishy about this nonconventional quantization as we will flesh out in more detail
later on.

2.2 The Holst action.

Here, we return to page to page 65 and clarify some claim; one works in the
Cartan formalism where one considers the vierbein eaµdx

µ which may be seen
as a one form valued local Lorentz vector and the one form valued Lorentz
antisymmetric connection ωIJµ dxµ where indices are raised and lowered with
respect to the flat Minkowski metric. The torsion tensor is defined as a two
form valued Lorentz vector

T I = deI + ωIJ ∧ eJ

and the curvature two form F as

F IJ = dωIJ + ωIK ∧ ωKJ .

The Holst action then is defined as

I =

∫
eI ∧ eJ ∧

(
1

2
εIJKL F

KL +
1

γ
FIJ

)
where γ accompanies the so called Holst term. The claim now is that this theory
does not depend upon γ as variation with respect to the connection produces
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the torsionless condition. Closer inspection reveals that variation with respect
to ωIJ gives

δI =

∫
eI ∧ eJ ∧

(
1

2
εIJKLDδω

KL +
1

γ
DδωIJ

)
where

DδωKL = dδωKL + ωKJ ∧ δωJL + δωKJ ∧ ω L
J

is the covariant derivative of the Lorentz antisymmetric, one form valued, tensor
δωIJ . Reshuffling some terms and using that the variations on the boundary

variables vanish so that the integral of DeI ∧ eJ ∧
(

1
2εIJKLδω

KL + 1
γ δωIJ

)
dissapears, we get the equation

D(
1

2
εIJKLe

K ∧ eL +
1

γ
eI ∧ eJ) = 0

which can be rewritten as

T [I ∧ eJ] + γεIJKLT
[K ∧ eL] = 0.

Now, one can show that for all values of γ 6= ± i
2 that there are 24 independent

equations and hence torsion vanishes; for the critical values of γ, torsion exists
since one only has 12 conditions instead of 24. This is a slight refinement of
the statement in the book, as I mentioned to Rovelli, and certainly no criticism.
The following two points however are somewhat more serious.

2.3 Generators of symmetries.

Now we come to one of my two main objections to the construction in the
book: from the Holst action above, it is easy to derive the Noether three form
CIJ(x) associated to the local Lorentz transformations. Under an infinitesi-
mal Lorentz transformation ΛKL = δKL + 1

2αIJ(J IJ)KL they are defined by the
following Lorentz valued three forms

CIJ(x) =

(
εKLRSe

K ∧ eL ∧ ωM [S +
2

γ
eR ∧ eS ∧ ωM [S

)
(J IJ)

R]
M

and the reader may easily verify that this expression is not gauge covariant
as is the case for the Noether currents in non abelian gauge theory. Now,
one should not confuse the Noether currents of a theory with the first class
constraints associated to the symmetry transformations, the former generate a
representation of the global gauge group which does not behave nicely under
local gauge transformations while the latter generate the local gauge group and
do transform covariantly. Also, it can be that the global generators are trivial:
for example in vacuum electromagnetism, the charge attached to the conserved
current vanishes exactly and provides a trivial representation of U(1). At this
point, since the Holst action is the starting point of the story, I would have
expected a detailed symplectic analysis of it, or at least a summary of the main
results; none of this appears in the book. There is no constraint analysis, no
representation of the diffeomorphism group, no local Lorentz transformations
and no study of the conserved Noether currents at all; this used to be the
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main work of Ashtekar when going from the ADM variables to the dreibein
or triad. Indeed, here one obtains nice, gauge covariant, expressions for the
Gauss constraint densities, the local generators of SU(2) transformations. Just
to give an impression to the reader that a constraint analysis will involve first
and second class constraints, let us start by counting that there are 40 local
variables eIa and ωIJb . The symplectic transformation is maximally degenerate
meaning all momenta determine constraint equations; indeed

πaI = 0 = π0
IJ , π

i
IJ =

(
1

2
εIJKLe

K
[ae

L
b] +

1

γ
eI[ae

J
b]

)
dxa ∧ dxb ∧ dxi

are all primary constraints. The equations of motion provide for the secondary
constraints:

0 = εIJKLe
J
[bF

KL
cd] +

2

γ
eJ[bF|IJ|cd]

giving the equations for eIa and

0 = −1

2
εIJKLd

(
eK ∧ eL

)
∧dt−γd (eI ∧ eJ)∧dt−2ε[I|SKL|e

K∧eL∧ω S
J] ∧dt+4γeL∧e[I∧ω L

J] ∧dt

for ωIJ0 . The reader is invited to work out the remaining equations for ωIJi and
we know upfront we have only 10 secondary, first class, constraints (and therefore
20 in general) associated to the Lorentz and diffeomorphism gauge symmetries
leaving plenty of second class constraints. Hence, we need to perform a Dirac
bracket quantization which could be rather involving: nevertheless, one should
just remind that one is going to find Lorentz covariant Gauss constraints which
are again spatial densities. I do think a detailed treatment of these issues would
certainly benefit the book so that we would understand why the following non-
local observables satisfy a local algebra, it must be because one takes integrated
versions of the Gauss constraints and this is not made clear at all. To see what I
mean, let us first return to the Euclidean 3-dimensional theory and let us think
a bit about formula (3.102) on page 78 before we jump to page 121 where part of
the Poisson bracket group algebra brackets are “proven”. The Poisson brackets
(3.102) are not the standard brackets but reveal properties one would expect
from the Dirac bracket; to my taste, the authors should be more precise in
effectively showing that the momentum constraint on the connection is indeed
of second class. The claim is indeed that one has found non-local expressions
Lil which should satisfy the local SU(2) Lie algebra structure and which are
defined by one forms instead of two forms which one would expect from general
considerations. Actually, the authors never provide an accurate definition of Lil
and claim it is fine to compute Poisson brackets in a gauge. Now, I do not know
what it means to calculate Poisson brackets in a gauge as the latter usually
do not leave a gauge invariant, something which we will illustrate now. So let
us take the “naive” definition, then it is indeed rather easy to derive, as the
authors do that,

{Ul, Lil′} = 8πGδll′Ul+τ
iUl−

on which they impose the “gauge condition” that Ul− = 1 which gives

{Ul, Lil′} = 8πGδll′Ulτ
i

and gives the impression that the Lil are going to generate the Lie algebra indeed.
However, both these formulae are not the same from the point of view of the
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Poisson brackets, one can only make such evaluation after all brackets have been
computed. Indeed, the very definition of Lil =

∫
sl
ei would immediately suggest

that
{Lil, L

j
l′} = 0

which is indeed consistent with our first formula since

{{Ul, Lil}, L
j
l } = 64π2G2Ul+{τ j , τ i}Ul−

which implies that

{{Ul, Lil}, L
j
l } − {{Ul, L

j
l }, L

i
l} = {Ul, {Lil, L

j
l }} = 0

where {τ j , τ i} is the anticommutator of τ i with τ j . It is however not com-
mensurable with {Ul, Lil′} = 8πGδll′Ulτ

i since applying the Jacobi relations

there would need a nontrivial bracket for {Lil, L
j
l′}. Now, as is common for the

constraints, one really needs a two dimensional integral instead of a one dimen-
sional one to generate the algebra: this suggests one to give the following proper
definition,

Lil =

∫
sl

U ije
j

where the U ij is the SO(3) matrix associated to the SU(2) holonomy defined
by well chosen paths from a vertex v, where the local SU(2) transformation
“lives”, to the point on the segment sl. A quick calculation reveals that

{Ul, Lil} = 8πGU ijUl+τ
jUl− = 8πGUlτ

i

since U ijτ
j = Ul−τ

iU†
l−

. The Poisson bracket

{Lil, L
j
l } = 8πGεijkLkl

indeed as one can verify by relying upon the formula

τiU
i
jv
j = U†(vjτj)U

and the fact that the commutator [τi, τj ] defines an infinitesimal rotation on the
Lie algebra. Therefore, with some more care, everything works out as it should;
again deepening the presentation along the lines suggested here would greatly
benifit the book. The reader must wonder where my objection is staying since
the above points are chiefly a matter of presentation and mathematical rigor; the
problem resides in what one intends to do with the linear simplicity constraint
explained on pages 67 and 68. The authors have a rather similar thing in mind
as happened for SU(2) and construct operators based upon two forms, which as
we have seen for SU(2) should be a three dimensional integration involving “pull
backs” to the reference point. The formula they arrive at is that their boost
vector Ki and angular momentum vector Li, where i is a restricted Lorentz
index running from one to three, should satisfy

Ki = γLi.

What I claim is that this conclusion would not hold if one were to use the correct
formula for the boost and angular momentum generators; indeed, it is easily seen
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that the constraint cannot hold between generators of the Lorentz algebra since
γ would need to be ±i (and the representation should be non-unitary) which is
forbidden. Therefore, I do not know what the Ki and Li represent and strongly
feel that a detailed analysis would be in place. Hence, the construction of the
Yγ map on page 141 seems like an ultimate attempt to save what can be saved
from this constraint and as “loopies” often do, they tend to implement them
weakly instead of strongly. The way I came to the presentation of the above
actually occured in that order, I quickly noticed that K and L could not be
generators because of the simplicity constraint, and therefore had to work the
SU(2) construction through to see if nothing went wrong there already. I have
some other, more general, remarks about chapter 7 too, but for now, we will go
back and continue the discussion started at the beginning and comment further
on group quantization.

2.4 Group quantization, generalizing the magic circle.

We refer to the defining Poisson brackets constituting the basis for group quan-
tization at page 97 which are

{Ul, Ul′} = 0, {Ul, Lil′} = 8πGδll′Ulτ
i, {Lil, L

j
l′} = 8πGδll′ε

ijkLkl .

As I mentioned before, one could entertain the possibility of further making
quantum theory more covariant, what this would mean regarding Dirac quan-
tization is currently unknown and a research topic of this author. The authors
still want to take Dirac quantization rather literally and propose to “straightfor-
wardly” quantize this algebra, But what do these Poisson brackets mean, how
should we read them? For example, if we literally want to keep Ul as an SU(2)
variable and Lil as a generator of the Lie algebra, then it might be natural to go
over to SU(2) valued wave functions such as Ψv which is a vector in the defining
representation attached to a vertex v; if v were to be the initial vertex of Ul
then the representation used is the defining one, if it were the final vertex, then
one uses the adjoint representation, if it were none of those, the representation
used is the zero representation of the Lie algebra. In this way, Ul is seen to
define a unitary multiplication operator with respect to the scalar product

〈Ψ|Φ〉 =
∑
v

〈Ψv|Φv〉

and the reader may have fun in identifying the complex vector representation
with the real quaternion algebra. The advantage of this construction is that
the multiplication operator leaves the space of gauge covariant states invariant
(where the covariance resides in the vector index) while the method in the
book does not leave the space of gauge invariant states invariant. There is
nothing unnatural about this construction and one may try to extend it to higher
tensors (be careful that only one endpoint of each edge may appear): if one is
liberal about one’s quantization procedure why not think in this direction? The
construction alluded to in the book, since it is never explicitely given, does not
respect the wholeness of Ul and goes over to normal, nonunitary representations
of the components of Ul in some spin j representation. More specifically, the
wave function

Ψ(Ul1 , . . . , UlL) = ψa1b1...aLbLj1...jL
Dj1
a1b1

(Ul1) . . . DjL
aLbL

(UlL)
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gets mapped to
Dj
AB(Ul)Ψ(Ul1 , . . . UlL)

which in components reads

Dj
AB(U)Dj′

ab(U) =
∑
k,c,d

{j′jk; aAc}{j′jk; bBd}Dk
cd(U)

where {j′jk; aAc} is the standard 3-j Wigner symbol. This gives rise to an
infinite number of inequivalent representations of the multiplication operator
depending upon the spin j, all of which may be seen to represent normal opera-
tors (since the delta functions on the group constitute their eigenvectors) which
do not leave the space of gauge invariant spin networks invariant. In short,
we have an infinite number of inequivalent Schrodinger representations where
the ambiguity resides in the multiplication operator only and ambiguities in
the differential operator should still be accounted for. Given these features and
the lack of motivation to prefer one picture over another, in either why not a
quaternion representation, I remain very unsatisfied about this method of group
quantization; it should be studied in more detail and alternative constructions
should be mentioned.

3 More general comments.

I have no further technical comments up till page 180 and hold the opinion
that the above comments on group quantization and identifying the correct
Lorentz generators constitute serious enough objections which should be further
answered. Perhaps, all those answers do exist but I cannot trace them back in
the book and I do not think it is the obligation of the reader to make extensive
computations or to research the literature. There is no reason why, in a four
dimensional theory, the projection on a three dimensional surface should break
the Lorentz group; actually, all group generators are spatial densities which
should be integrated over a spacelike three surface to give the correct result.
This is so for the full diffeomorphism algebra and is likewise the case for the
Gauss constraint; also, in the three dimensional theory does a two dimensional
integration not break SU(2) to U(1). One would expect the holonomies attached
to edges to be general SL(2,C) holonomies and this is unfortunately not the
case which is an indicator that Lorentz covariance is broken. By not giving exact
definitions of the algebra generators, the reader may get the wrong impression
that the choice of paths in calculating the holonomy do not matter while it is so
that the latter is very special indeed and one gets the wrong answer if the paths
do not match. There is another issue which I did not comprehend that well,
which is why the limit of large quantum numbers (spin in this case) should have
something to do with the classical limit. This appears to be outright nonsense,
it would be the same as saying that the limit of large momenta would determine
the classical limit of QED or QCD; given that it is, moreover, not very clear
what the physical significance of the spin network quantum numbers is, one
cannot just confuse the limit ~ → 0 with the limit of j → ∞. As always, I
am willing to refine my views if further substantial evidence is given that the
construction turns out the be all right but that is just not clear at all at this
point.
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