Conjecture on the infinity of primes obtained concatenating a prime \(p \) with \(p + 30k \)

Abstract. In this paper I make the following conjecture: for any \(p \) prime, \(p > 5 \), there exist an infinity of \(k \) positive integers such that the number \(q \) obtained concatenating to the right \(p \) with \(p + 30k \) is prime (examples: for \(p = 13 \), the least \(k \) for which \(q \) is prime is 2 because 1373 is prime; for \(p = 104729 \), the least \(k \) for which \(q \) is prime is 3 because 104729104819 is prime). It is notable the small values of \(k \) for which primes \(q \) are obtained, even in the case of primes \(p \) having 20 digits, so this formula could be a way to easily find, starting from a prime \(p \), a prime \(q \) having twice as many digits!

Conjecture:

For any \(p \) prime, \(p > 5 \), there exist an infinity of \(k \) positive integers such that the number \(q \) obtained concatenating to the right \(p \) with \(p + 30k \) is prime (examples: for \(p = 13 \), the least \(k \) for which \(q \) is prime is 2 because 1373 is prime; for \(p = 104729 \), the least \(k \) for which \(q \) is prime is 3 because 104729104819 is prime).

The sequence of the least \(k \) for which \(q \) is prime:
(for \(p \geq 7 \))

\[
\begin{align*}
: & \text{ for } p = 7, \quad q = 797 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 11, \quad q = 1171 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 13, \quad q = 1373 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 17, \quad q = 1747 \text{ is prime}, \quad \text{so } k = 1; \\
: & \text{ for } p = 23, \quad q = 2383 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 29, \quad q = 29179 \text{ is prime}, \quad \text{so } k = 5; \\
: & \text{ for } p = 31, \quad q = 3191 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 37, \quad q = 3767 \text{ is prime}, \quad \text{so } k = 1; \\
: & \text{ for } p = 41, \quad q = 41131 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 43, \quad q = 4373 \text{ is prime}, \quad \text{so } k = 1; \\
: & \text{ for } p = 47, \quad q = 47137 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 53, \quad q = 53113 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 59, \quad q = 59119 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 61, \quad q = 61121 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 67, \quad q = 67157 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 71, \quad q = 71161 \text{ is prime}, \quad \text{so } k = 3; \\
: & \text{ for } p = 73, \quad q = 73133 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 79, \quad q = 79139 \text{ is prime}, \quad \text{so } k = 2; \\
: & \text{ for } p = 83, \quad q = 83203 \text{ is prime}, \quad \text{so } k = 4; \\
: & \text{ for } p = 89, \quad q = 89119 \text{ is prime}, \quad \text{so } k = 1; \\
: & \text{ for } p = 97, \quad q = 97127 \text{ is prime}, \quad \text{so } k = 1;
\end{align*}
\]
for p = 101, q = 101161 is prime, so k = 2;
for p = 103, q = 103133 is prime, so k = 1;
for p = 107, q = 107137 is prime, so k = 1;
for p = 109, q = 109139 is prime, so k = 1;
for p = 113, q = 113143 is prime, so k = 1;
for p = 127, q = 127157 is prime, so k = 1;

[note the chain of 5 primes q (103133, 107137, 109139, 113143, 127157) obtained for k = 1 from 5 consecutive primes p]

(...)
for p = 104651, q = 104651104771 is prime, so k = 4;
for p = 104659, q = 104659104749 is prime, so k = 3;
for p = 104677, q = 104677104737 is prime, so k = 2;
for p = 104681, q = 104681104831 is prime, so k = 5;
for p = 104683, q = 104683104833 is prime, so k = 5;
for p = 104693, q = 104693104723 is prime, so k = 1;
for p = 104701, q = 104701104821 is prime, so k = 4;
for p = 104707, q = 104707104797 is prime, so k = 3;
for p = 104711, q = 104711104921 is prime, so k = 7;
for p = 104717, q = 104717104837 is prime, so k = 4;
for p = 104723, q = 104723104753 is prime, so k = 1;
for p = 104729, q = 104729104819 is prime, so k = 3;
(...)
for p = 982451501, q = 982451501982451561 is prime, so k = 2;
for p = 982451549, q = 982451549982451609 is prime, so k = 2;
for p = 982451567, q = 982451567982451597 is prime, so k = 1;
(...)

The value of the least k for 5 random 20 digit primes p:

for p = 48112959837082048697, q = 4811295983708204869748112959837082049237, prime, so k = 18;
for p = 54673257461630679457, q = 5467325746163067945754673257461630680777, prime, so k = 44;
for p = 29497513910652490397, q = 2949751391065249039729497513910652490847, prime, so k = 15;
for p = 12764787846358441471, q = 1276478784635844147112764787846358441741, prime, so k = 9;
for p = 71755440315342536873, q = 7175544031534253687371755440315342537023, prime, so k = 5.
Note the small value of \(k \) for which first prime \(q \) is obtained, even in the case of primes \(p \) having 20 digits! This formula could be a way to easily find, starting from a prime \(p \), a prime \(q \) having twice as many digits!