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Abstract 

The present article proposes an epistemic approach to relativity, termed information relativity theory, and 

utilizes it to infer about two quantum phenomena: quantum phase-transition and matter-wave duality. We 

propose a theoretical model of physical systems in which two an observer in the "rest" reference-frame 

receives information on measurements taken in another frame moving with constant velocity v relative to 

the observer's "rest" frame. We avoid questions pertaining to the true state of Nature. We only ask how 

physical measurements taken in the "moving" frame are transformed when they are received in the 

observer's "rest" frame. We constrain the analysis to simple one-dimensional, one-body inertial systems, 

in which information in communicated between the reference frames using an information carrier with 

known velocity 𝑣𝑐 (𝑣𝑐 > v). We make no other assumptions, thus our approach is completely epistemic. 

For systems of the above described type we derive the relativistic time, distance, mass, and energy 

transformations, relating measurements transmitted by the information sender, to the corresponding 

information registered by the receiver. The resulting terms are simple and beautiful with Golden Ratio 

symmetries. For β = 
𝑣

𝑣𝑐
 << 1, all the derived transformations reduce to Galileo-Newton terms. For bodies 

approaching the observer, the theory predicts time and length contraction, and increase in mass density, 

while for bodies distancing from the observer, it predicts time and length extension, and decrease in mass 

density. Strikingly, the relativistic kinetic energy density of a distancing body as a function of velocity β 

displays a non-monotonic pattern, with a unique maximum at a normalized velocity β = Φ, where Φ is the 

golden ratio (≈ 0.618). For 𝑣𝑐 = c, where c is the velocity of light, we show that the theory could not be 

forbidden by Bell's Inequality and demonstrate its power in predicting and explaining two key quantum 

phenomena: quantum phase-transition, and matter-wave duality. We conclude by summarizing the 

theory's main features and alluding to its applications in various fields of physics, including cosmology.  
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1. Introduction 

The present article aspires to make a contribution to important ongoing efforts to construct a unitary 

theory of physics, which is capable of predicting and explaining the dynamics of moving bodies at 

all scales, form quantum to cosmic scales. We do not pursue the superior goal of constructing an 

ontic theory of reality like in Special Relativity [1] or Doubly Special relativity [2-4] and its various 

formalisms (see [5]). Instead we pursue a modest goal of constructing an epistemic view of reality. 

We do not ask what the real nature of the physical world is, but how such reality is reflected in our 

observations and measurement. We deal only with observable or measurable physical variables. We 

analyze the simple yet general case of a physical system in which two observers move with constant 

linear velocity (v) with respect to each other, while communicating information about physical 

observables, such as time durations of events and  lengths of objects. We assume that one observer’s 

measurements are communicated to the second observer by an information carrier with a constant 

velocity 𝑣𝑐 with respect to the information transmitter's rest-frame. For rendering the situation 

practical, we assume 𝑣𝑐 >  𝑣. We make no additional assumptions. We are interested in the 

following epistemic question: How would observations taken in "moving" reference frame vary upon 

its receipt by an observer stationed in the "rest-frame"? Although we do not speculate about the true 

state of Nature, the above question is of great importance to empirical investigation of the physical 

reality, since it speaks in it language. Moreover, we shall demonstrate that our approach is powerful 

in providing new insights and making good predictions regarding two key quantum phenomena:  

quantum phase transition and matter-wave duality. Other explanations and predictions of the theory 

in other fields of physics, including cosmology, will be alluded to briefly in the concluding section.  

We start in in the following section by presenting a detailed derivation of the theory's 

transformations and discuss their main properties. In section 3 we present the theory's prediction and 

explanations of quantum criticalness and quantum phase transition. In section 4 present the theory's 
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predictions and explanation of matter-wave duality. In section 5 we summarize, allude to other 

applications of the theory in various fields of physics and draw some general conclusions.   

 

2. Theory of information relativity 

We consider a simple preparation in which the time duration of an event, as measured by an observer 

A who is stationary with respect to the point of occurrence of the event in space, is transmitted by an 

information carrier which has a constant and known velocity 𝑣𝑐, to an observer B who is moving 

with constant velocity 𝑣 with respect to observer A. We make no assumptions about nature of the 

information carrier. Aside from the preparation describes above throughout our entire analysis no 

further assumptions are made. Moreover, we do not undertake any logical step or mathematical 

calculation, unless the variables involved in such steps or calculation are experimentally measurable. 

2.1 Relativity of time  

We ask: what is the event duration time to be concluded by each observer, based on his or her own 

measurements? Formally, we consider two observers in two reference frames 𝐹 and 𝐹′ distancing 

from each other with constant velocity v. For the sake of simplicity, but without loss of generality, 

assume that the observers in 𝐹 and  𝐹′ synchronizes their clocks, just when they start distancing from 

each other, such that 𝑡1 = 𝑡1
′ =0, and that at time zero the points of origin of 𝐹 and  𝐹′ were 

coincided (i.e., 𝑥1=𝑥1
′ = 0). Suppose that at time zero in the two frames, an experiment started in 

𝐹′at the point of origin, terminating exactly Δt′ seconds according to the clock stationed in 𝐹′, and 

that promptly with the termination of the experiment, a signal is sent by the observer in 𝐹′ to the 

observer in 𝐹. The "experiment" can be any event at the origin with duration of Δt′ (as measured in 

𝐹′).     

After Δt′ seconds, the point at which the event took place stays stationary with respect 𝐹′ (i.e., 𝑥2
′ 

=𝑥1
′= 0), while relative to frame 𝐹 this point would have departed by 𝑥2 equaling:  
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𝑥2= 𝑣 Δ𝑡′                                ……. (1) 

Notably, in eq. 1 the left side includes a measurement of distance taken in F, while the right side 

includes a measurement of time duration taken in 𝐹′. The validity of equation could be verified by an 

experimentally feasible method. As example, if the observer in F conducts an identical experiment, 

to the experiment conducted in 𝐹′. Because the laws of physics are the same everywhere, he or she 

will conclude that when the event at 𝐹′ has terminated, 𝐹′ was at a distance of 𝑥2= 𝑣 Δ𝑡′ away as 

measure in F.   

If the information carrier sent from the observer in 𝐹′ to the observer in 𝐹 traveled with velocity 𝑉𝐹 

relative to 𝐹, then it will be received by the observer in 𝐹 after a delay of: 

𝑡𝑑 = 
𝑥2

𝑉𝐹
=  

𝑣 Δt′  

𝑉𝐹
  =  

𝑣 

𝑉𝐹
  𝛥𝑡′                       ……. (2) 

Since 𝐹′ is distancing from 𝐹 with velocity v, we can write: 

𝑉𝐹 = 𝑉0 – 𝑣                                               …… (3) 

Where 𝑉0 denotes the information carrier's velocity in the light-source rest frame (𝐹′). Substituting 

the value of 𝑉𝐹 from eq. 3 in eq. 2, we obtain: 

𝑡𝑑   = 
𝑣 Δt′  

𝑉0 – 𝑣   
  =  

 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡′                 …… (4) 

Due to the information time-delay, the event's time duration Δt that will be registered by the observer 

in 𝐹 will be: 

Δt = Δ𝑡′ + 𝑡𝑑=Δ𝑡′ + 
 1

 
𝑉0
𝑣

– 1   
 Δt′=(1 + 

 1

 
𝑉0
𝑣

– 1    
) Δt′=(

 
𝑉0
𝑣

 
𝑉0
𝑣 – 1  

)  
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= ( 
1

 1– 
𝑣

𝑉0
   

) Δt′    …(5) 

Denoting 
𝑣

𝑉0
 = β eq. 5 becomes:  

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 𝛽    
                                                  … (6) 

For 𝛽 << (𝑣 << 𝑉0) eq. 6 reduces to the classical Newtonian equation Δ𝑡 = Δ𝑡′,  while for 𝛽 → 1 (𝑣 

→ 𝑉0), Δ𝑡 → ∞ for all positive Δ𝑡′.  

For a communication medium to be fit for transmitting information between frames in relative 

motion, a justifiable condition is to require that the velocity of the carrier is larger than the velocity 

of the relative motion, i. e. 𝛽 < 1.        

It is especially important to note further that the above derived transformation applies to all carriers 

of information, including acoustic, optic, etc. For the case in which information is carried by light or 

by electromagnetic waves with equal velocity, we have 𝛽 = 
𝑣

𝑐
, where c is the velocity of light in the 

light-source rest frame. Without loss of generality, because the present paper treats only systems 

involving transmission of information by light or other electromagnetic waves, in what follows we 

shall set 𝑉0 = c.  

Note that eq. 6, derived for the time travel of moving bodies with constant velocity, is quite similar 

to the Doppler Effect formula, derived for the wave-length (frequency) of waves emitted from 

traveling bodies. In both cases the direction of motion matters. In the Doppler Effect [6, 7] a wave 

emitted from a distancing body will be red-shifted (longer wavelength), whereas a wave emitted 

from an approaching body with be blues-shifted (shorter wavelength). In both cases the degree of red 

or blue shift will be positively correlated with the body's velocity. The same applies to the time 

duration of an event occurring at a stationary point of a moving frame. If the frame is distancing 
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from the observer, time will be dilated, whereas if the frame is approaching the observer will 

contract. Interestingly, while eq. 6 predicts that the time dilation for distancing bodies approaches 

infinity when β→ 1, it puts a theoretical limit on the time contraction to for approaching bodies, 

since for β→ -1, it predicts a time contraction of exactly 
1

2
.   

2.2 Relativity of distance 

To derive the distance transformation, consider the two reference-frames F and 𝐹′ discussed above.  

Without loss of generality assume as before that when 𝐹 and  𝐹′ start distancing from each other 𝑡1 = 

𝑡1
′ =0, and 𝑥1=𝑥1

′ = 0. Assume further that 𝐹′ has onboard a rod placed along its 𝑥′ axis between the 

points 𝑥′ = 0  and 𝑥′ = 𝑥2
′  (see Figure 1) and that the observer in 𝐹′ uses his clock to measure the 

length of the rod (in its rest frame) and communicates his measurement to the observer in F. As 

before, assume that the information carrier from frame 𝐹′ to frame F is light or another 

electromagnetic wave with velocity c (as measured in the light source rest frame). To perform the 

measurement of the rod's length, at 𝑡1
′ = 𝑡1 =0 a light signal is sent from the rare end of the rod, i.e., 

from 𝑥′ = 𝑥2
′  to the observer at the point of origin 𝑥′ = 0.    

 

Figure 1: Two observers in two reference frames, moving with velocity v with respect to each other. 

F 𝑭′ 

𝑭𝒑 

𝑥𝑝 

𝒚𝒑 

𝒛𝒑 

  𝒙′ = 𝒍𝟎 
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Denote the reference frame of the first light photon by 𝐹𝑝 (see Fig 1) and the time duration in 𝐹𝑝 for 

the light photon to arrive the observer in 𝐹′ by 𝛥𝑡𝑝.  If the signal arrives to the observer in 𝐹′ at time 

𝑡′ = 𝑡2
′ , then he or she can calculate the length of the rod as being 

𝑙0 = 𝑥2
′  = c 𝑡2

′               …… (7) 

Using eq. 6 𝑡2
′  as a function of 𝛥𝑡𝑝 can be expressed as:  

𝑡2
′   =  

1

 1– 
−𝑣

𝑐
   

 𝛥𝑡𝑝  = 
1

 1+ 
𝑣

𝑐
   

 𝛥𝑡𝑝                          …… (8) 

Which could be rewritten as: 

𝛥𝑡𝑝 = (1 + 
𝑣

𝑐
) 𝑡2

′                      …… (9) 

Because 𝐹′ is departing F with velocity v, the light signal reach and observer in F at time 𝑡2 

equaling:  

𝑡2 = 𝛥𝑡𝑝 + 
𝑣𝑡2

𝑐
 =  𝛥𝑡𝑝 + 

𝑣

𝑐
  𝑡2                   …… (10) 

Substituting the value of 𝛥𝑡𝑝 from eq. 9 in eq. 10 yields: 

𝑡2= (1 +
𝑣

𝑐 
) 𝑡2

′  + 
𝑣

𝑐 
 𝑡2,                                                               ….. (11) 

Which could be rewritten as: 

𝑡2 = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
 𝑡2

′                      …… (12) 

Substituting the value of 𝑡2
′  from eq. 7 we get:    

𝑡2 =  
(1+ 𝑣𝑐 ) 

(1− 𝑣𝑐 ) 
 
𝑙0

𝑐
     ….. (13) 
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Thus, the observer in F will conclude that the length of the rod is equal to:  

l = c 𝑡2  = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 

 𝑙0    ….. (14) 

Or: 

𝑙

𝑙0
 =  

1+ 𝛽

1− 𝛽
       ….. (15) 

Where 𝛽= 
𝑣

𝑐 
.  

The above derived relativistic distance equation predicts distance contraction only when the two 

reference-frames approach each other. On the other hand, it predicts distance extension when the 

reference-frames distance from each other. Thus, for particles distanced from another particle with 

high velocity β, the eq. 15 predicts that its spatial dimension along the travel axis will incur a 

relativistic "stretch". This means that at sufficiently high 𝛽, two particles, although distanced from 

each other, could remain spatially connected. This is a crucial feature of information relativity 

distinguishing it from all current theories, which presuppose that two particles which are distancing 

from each other become spatially disconnected. 

The relationship between relativistic distance and time could be easily derived from equation 6 and 

15 yielding: 

𝑙

𝑙0
 = 2 

𝛥𝑡

𝛥𝑡0
 - 1          …. (16) 
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Which means that the relativistic distance 
𝑙

𝑙0
 is a simple linear function of the relativistic time 

Δ𝑡 

  Δ𝑡0
, 

with slop =2.  Figure 2 depicts the relativistic time and distance as a function of β. As examples, for 

β = 
1

4
, 

1

3
, 

1

2
,

2

3
,

3

4
, for 

Δ𝑡 

  Δ𝑡0
 and 

𝑙

𝑙0
 we get (

4

3
 , 

3

2
, 2, , 3, 4), and (

5

3
, 2,  3, 5, 7), respectively.  

 

 

Figure2: Relativistic time and distance as a function of β 

 

2.3 Relativity of mass and kinetic energy  

Let us assume that that the rod has a total rest-mass 𝑚0 distributed uniformly along the x axis. 

 According to eq. 15 an approaching rod will contract causing the mass density along the x axis to 

increase. On the other hand, a distancing rod will extend causing its mass density along the x axis to 

dilute. Denote the body’s density in its rest-frame by 𝜌′, then its mass density distribution will be 

given by 𝜌′ = 
𝑚0

𝐴 𝑙0 
 , where A is the area of the body’s cross section, perpendicular to the direction of 

movement. In F the density is given by: ρ = 
𝑚0

𝐴𝑙 
 , where l is the object’s length in F. Using the 

distance transformation (eq. 15) we can write:   
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ρ = 
𝑚0

𝐴𝑙 
 = 

𝑚0

𝐴  𝑙0 (
1+ 𝛽

1− 𝛽
) 

 = ρ0 (
1− 𝛽

1+ 𝛽
)            ``         …. (17) 

Or, 

𝜌

𝜌0
 =  

1
𝑙

𝑙0
⁄

  = 
1+ 𝛽

1− 𝛽
                       ... (18) 

As could be seen from eq. 18 the relativistic mass density is inversely proportional to the 

distance transformation. It is predicted to increase for approaching bodies and a decrease for 

distancing bodies. The relativistic kinetic energy density is given by: 

 

𝑒𝑘 = 
1 

2
 ρ 𝑣2= 

1 

2
 ρ0 𝑐2  

(1− 𝛽) 

(1+ 𝛽)
 𝛽2 = e0 

(1− 𝛽) 

(1+ 𝛽)
 𝛽

2
                                 …. (19) 

Where e0 = 
1 

2
 ρ0 c2. 

For β →0 (or v << c) eq. 18 reduces to 𝜌 = 𝜌0  and eq. 19 reduces to e =
1 

2
𝜌0 𝑣

2, which are the 

classical Newtonian expressions.  

 

Figure 3. Kinetic energy density as a function of velocity 
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As shown by Figure3 the relativistic kinetic energy density for approaching bodies is predicted to 

increase with β, up to infinitely high density values as β → -1. Strikingly, for distancing bodies the 

kinetic energy displays a non-monotonic behavior. It increases with β up to a maximum at velocity β 

= 𝛽𝑐𝑟 , and then decreases to zero at β = 1. Calculating 𝛽𝑐𝑟 is obtained by deriving eq. 25 with respect 

to β and equating the result to zero, yielding:  

β
2
 + β – 1 = 0                      … (20) 

Which solves for: 

𝛽𝑐𝑟 = 
√5−1

2
 = Φ ≈ 0.618                      … (21) 

Where Φ is the famous Golden Ratio [8, 9]. Substituting 𝛽𝑐𝑟 in the energy expression (eq. 19) yields: 

 (𝑒
𝑘

)𝑚𝑎𝑥 =  𝑒0   𝛷2 1−Φ 

1+ Φ
                     …. (22) 

From eq. 20 we can write: Φ2 + Φ – 1 = 0, which implies  1 −  Φ =  Φ2 and 1+ Φ = 
1

Φ
.   

Substitution in eq. 22 gives: 

 (𝑒𝑘)𝑚𝑎𝑥 =  Φ5 e0   ≈ 0.09016994  e0                        …. (23) 

Table 1 depicts the four derived transformations. In the table, the variables 𝛥𝑡0,  𝛥𝑥0, and 𝜌0 denote 

measurements of time duration, distance, and the body's mass density in the rest frame, respectively, β 

= 
𝑣

𝑐
, and 𝑒0 =  

1

2
 𝜌0  𝑐

2. 
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Table 1 

Information Relativity Transformations 

Physical Term Relativistic Expression 

Time 𝛥𝑡

𝛥𝑡0
=  

1

1−𝛽
          .... (I) 

Distance 

 

𝑙

𝑙0
= 

1+𝛽

1−𝛽
        …. (II) 

Mass 
 𝜌

𝜌0
 = 

1−𝛽

1+𝛽
             .... (III) 

Kinetic energy  𝑒𝑘

𝑒0
=  

1−𝛽

1+𝛽
 𝛽2      ... (IV) 

 

 The transformations in the table have nice and important properties: (1) they are beautiful, 

with astonishing Golden Ratio symmetries. (2) They are very simple. (3) They are scale independent 

with respect to the size of the investigated physical system, and thus apply to the dynamics of very 

small and very large bodies (4) they depend only on the ratio between the relative velocity v and the 

velocity of the information carried (5) for low velocities (𝛽 << 1), all the transformations reduce to 

the classical Newtonian formulas.  

2.4 Symmetries 

Before we apply the theory to quantum phenomena, we like to make a brief note about the aesthetic 

golden ratio of the derived transformations. This type of symmetry, is found in abundance in nature 

and in technology and the arts, including in the structure of plants [10-12], physics [13-15], structure 

of the human brain [16], music [17-18], aesthetics [8, 9, 19], and more. The Golden Ratio symmetry 

manifest in the kinetic energy function is also manifest, albeit in a more subtle way, in the 

transformations of time, distance and mass density. As examples, it could be verified that: 
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Δ𝑡 

  Δ𝑡0
(𝛽 = Φ) = Φ +2 ≈ 2.618          ….(24) 

𝑙

𝑙0
(β= Φ) = 

1

2Φ−1
 ≈ 4.236          …. (25) 

𝜌

𝜌0
 (β = Φ) = 2 Φ -1 ≈ 0.236             … (26) 

Notably 
Δ𝑡 

  Δ𝑡0
(𝛽 = Φ) - 

𝑙

𝑙0
(β= Φ) = 

1

2Φ−1
 – (Φ +2) = Φ +1 ≈1.618.  Other simple symmetries are also 

revealed. For example, it is easy to show that the derivatives with respect to β of the relative time: 

𝜏 ≜
Δ𝑡 

  Δ𝑡′  
= 

1

 1– 𝛽    
 satisfies the simple recursion:  

{
𝜏(𝑛)  =  𝑎𝑛 𝜏(𝑛−1)

                            
𝑎𝑛 =  𝑛 𝑎𝑛−1

  (n = 1, 2, 3, …; 𝑎0 ≜ 1)               … (27) 

Where 𝜏(𝑛) denotes the n
th

 derivative of 𝜏 with respect to β; which could be simplified to yield:  

 𝜏(𝑛)  =  𝑛! 𝜏𝑛+1   (n = 1, 2, 3, 4).                 …… (28) 

For the first five derivatives we get: 𝜏(1) =  𝜏
2

;   𝜏(2) = 2 𝜏3;  𝜏(3) = 6  𝜏4; 𝜏(4) = 24  𝜏5; 𝜏(5) =

120  𝜏6; (𝜏 = 
1

  1– 𝛽    
). The distance transformation has also some nice symmetries. Denoting 

𝑙

𝑙0
 (β) 

by δ (β), we can write: 

𝛿 (𝛽) δ (-β) = 1            …. (29) 

Using relationship in eq. 15 we can also write: 

δ (β) = 
1+ 𝛽

1− 𝛽
 = 

1

1− 𝛽
1

1+ 𝛽

 =  
𝜏(𝛽)

𝜏(−𝛽)
             …. (30) 
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Moreover, calculating the n
th

 derivative of  δ (β)  with respect to β yields: 

 𝛿(𝑛)  =  2𝑛! 𝜏𝑛+1   (n = 1, 2, 3,  …).       …… (31) 

Which by using eq. 28 yields: 

 𝛿(𝑛)  =  2𝜏(𝑛) (n = 1, 2, 3,  …)           …. (32) 

3. Application to quantum physics 

Ostensibly theories of local realism are forbidden by Bell's inequality from being candidates for 

reproducing the confirmed predictions of quantum mechanics [20, 21]. However, information 

relativity uncovers a novel type of locality not accounted for by Bell's Theorem and its many tests 

[22-26]. As remarked in section 2 and shown in detail in [27], at sufficiently high velocities the 

predicted relativistic extension or "stretch" can produce spatial locality even when the temporal 

locality, forbidden by Bell's theorem, is impossible. To substantiate our claim we shall demonstrate 

hereafter that information relativity can predict and explain quantum phenomena. The two 

phenomena discussed hereafter were chosen as examples because their explanation lends itself by 

direct interpretation of the derived energy density term. The prediction and explanation of quantum 

entanglement are more elaborate and are given elsewhere [27].         

3.1 Quantum criticalness and quantum phase transition 

Investigation of the theory's prediction of quantum criticalness and quantum phase transition could be 

inferred directly by looking at Fig. 3. As could be seen in the figure for the range (-1 <β < Φ) the 

relationship between the relativistic kinetic energy density and velocity is semi-classical, in the sense 

that higher velocities of approaching bodies are associated with higher kinetic energies density. At a 

critical β = Φ, the positive monotonicity breaks down and higher velocities are associated with lower 

kinetic energy density. This reversal in the dependence of kinetic energy density is a product of the 

relative effects of velocity and matter density on the energy density of a distancing body (β > 0),  up 
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to with the first dominating up to β = Φ the velocity's positive effect (proportional to β
 2

) dominates 

the negative effect caused by the relativistic dilution of matter density (see eq. III). For β = Φ the two 

opposing effects become equal and for β > Φ the effect of matter density dilution dominates the effect 

of increase in velocity, causing matter to behave in non-classical manner. The seeming contradiction 

between the explanation above and the law of energy conservation will be clarified in the following 

section. The critical velocity β = Φ is characterized by several fascination symmetries, in the 

transformation of time, distance, matter density and energy, which we shall say more about in the 

concluding section.  

Strikingly the above prediction of quantum criticalness at the Golden Ratio confirms with a recent 

experimental result by Coldea et al. [14] who demonstrated that applying a magnetic field at right 

angles to an aligned chain of cobalt niobate atoms, makes the cobalt enter a quantum critical state, in 

which the ratio between the frequencies of the first two notes of the resonance equals the Golden 

Ratio. Moreover, the obtained value of the normalized kinetic energy density  (𝑒𝑘)𝑚𝑎𝑥/ e0 =  Φ5  

  ≈ 0.09016994  is precisely equal to Hardy’s maximum probability of obtaining an event which 

contradicts local realism [28].  These findings which lend strong confirmation to the above analysis 

suggests that in theory matter in inertial movement like the one discussed here any matter will 

undergo a quantum phase transition at point characterized by Golden Ration symmetries in its 

physical structure and matter-energy.                          

   

3.2 Matter-wave duality 

The concept of matter-wave duality is central to quantum theory, ever since 1924, when Louis de 

Broglie introduced the notion in his doctoral dissertation [29, 30]. This feature of quantum dynamics 

has been demonstrated in many double-slit experiments on photons, electrons, atoms, and molecules 

[31-34]. The quantum mechanical model of De Broglie, although insightful and successful in 

accounting for the experimental evidence, remains largely hypothetical. In particular, de Bruglie's 
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assumption for the existence of matter's wave is a mere conjecture, and so is his assumption regarding 

the coexistence at any given time of both the wave and matter components. 

Here we show that information relativity theory sheds a new light on matter-wave duality by 

demonstrating how it evolves quite naturally from relativistic considerations. For this purpose 

consider a particle of rest mass 𝑚0 which travels along the positive x axis, with constant velocity v 

away from an observer. We define the wave energy density 𝑒𝑤 as the difference between the 

Newtonian classical kinetic energy density term and its relativistic term. That is:  

𝑒𝑤 ≜  𝑒0 -  𝑒𝑘  = 
1

2
 𝜌0 𝑣𝑐

2 𝛽2   - 
1

2
 𝜌0 𝑣𝑐

2 
1−𝛽

1+𝛽
 𝛽2   

 =  (
1

2
 𝜌0 𝑣𝑐

2) 
2𝛽3

1+𝛽
 = 

2 𝛽3

1+𝛽
  𝑒0        .. (33) 

Where  𝑒0 = 
1

2
 𝜌0 𝑣𝑐

2.  

The accompanying wave energy density alongside with the matter kinetic energy density is depicted 

in Fig.4. 

 

Figure 4. Matter energy and wave energy as functions of velocity 
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As conjectured by de Broglie, for bodies moving with fixed velocity β the matter and wave energies 

are in a state of equilibrium. As figure 4 shows, the predicted wave-energy component of the total 

energy carried by a moving body is rapidly increasing with velocity (see Fig. 4). At relatively low 

velocities, the bulk of the particle's energy is carried by its matter while at high enough velocities the 

particle's energy is carried by its accompanying wave. The energy carried by matter and the energy 

carried by the wave are predicted to be equal precisely at β = 
1

3
, after which the matter becomes very 

diluted and the accompanying wave becomes the primary carrier of the total energy.  

 While our relativistic approach to matter-wave duality is completely different from the one taken by 

de Broglie, the two models show much similarity. However, our relativistic approach has two 

important advantages: 1. it is not based on conjectures or assumptions. 2. It gives a complete and 

testable description of the dynamic interplay between a body's matter and its accompanying wave, as 

carriers of the body's total energy.  

Summary and general remarks 

We considered an inertial physical system in which signals about physical measurements of time and 

other physical variables conducted in one reference frame are transmitted to a receiver moving with 

relative constant velocity v, by an information carrier with a constant velocity 𝑣𝑐 with respect to the 

transmitter's rest frame (𝑣𝑐 >  𝑣).  Without making any further theoretical assumptions or putting 

constraints on the systems variables, we derived relativistic time, distance, mass, and energy 

expressions, relating measurements transmitted by an information sender, to the corresponding 

information registered at the receiver. The derived relativistic distance expression violates the 

Lorentz principle for distancing bodies, by predicting length extension instead of contraction, but this 

feature is the one which renders the theory applicable to quantum phenomena, enabling it to 

reproduce quantum results pertaining to quantum criticality and matter-wave duality. In another 

paper [27] we demonstrated that the proposed model leads to the prediction that at sufficiently high 
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velocities, distancing bodies can maintain spatial locality, interacting with each other proximally and 

not at a distance, indicating that at in a typical EPR preparation particles distancing from each other 

at sufficiently high velocities can become physically entangled, thus resolving the issue of "spooky 

action at a distance" [34] in favor of Einstein's local realistic view of physical reality.     

We mention briefly that the same set of transformations in Table, without alteration or addition of 

other variables or free parameters yields excellent predictions of several phenomena and 

experimental findings concerning the dynamics of small particles, including the Michelson-Morley's 

"null" result, the relativistic lifetime of decaying muons, Sagnac effect, and neutrino velocities 

reported by OPERA and other collaborations [35, 36]. 

For application of the model to cosmology detailed elsewhere, we expressed the set of 

transformations in Table 1 in terms of redshift instead of velocity. In the constructed cosmological 

model β is interpreted as the recession velocity of some cosmological structure, such as a galaxy 

receding from Earth, while emitting light or other electromagnetic waves that are received by an 

observer on Earth. Using Doppler's formula we found that the recession velocity β in terms of 

redshift z could be written as: 𝛽  = 
𝑧

1+𝑧
 [37]. The resulting transformation in terms of z for time, 

distance and matter density are the simple functions z+1, 2z +1, and 
1

2𝑧+1
, respectively. The kinetic 

and wave energy in terms of redshift are plotted on a logarithmic scale in Figure 5. What is of 

interest in the present paper is the similarity between the dynamics described here for the quantum 

sector and the dynamics revealed at the cosmic scale. The simplicity and golden ration beauty of the 

theory's cosmological model could not be ignored. The cosmological model in Fig.5 predicts that the 

density of normal energy reaches a maximum at redshift and wave energy (which we refer to in the 

model's cosmology as the "unobserved" or "dark" energy" are predicted to be equal at redshift z = 
1

2
, 

which corresponds to a recession velocity of β = 
1

3
 .      
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Figure 5: Densities of matter kinetic energy and wave energy as functions of redshift z 

In other papers [37, 38] we show that the above summarized model is successful in accounting for 

several important cosmological findings, including the pattern of recession velocity predicted by 

inflationary theories, the amounts of matter and dark energy in various segments of redshift, reported 

in recent ΛCDM cosmologies, the GZK energy suppression phenomenon. The main point to be 

stressed here is that the proposed model of information relativity, just like Newton-Galileo physics 

does not "discriminate" between physical systems depending on their scale or magnitude. Put 

succinctly, we argue that the laws of physics, agreed to be the same everywhere, are also the same 

for everything (i.e., for all bodies of mass regardless of their size and rest mass).       

 We conclude by underscoring the simplicity and beauty of the derived expression.  Isaac Newton, 

Albert Einstein, Paul Dirac, Robert Penrose, and others, have emphasized the importance of the 

mathematical simplicity and beauty in theorizing about the physics of the world, which they believed 

to be harmonious and simple. Such emphasis seems needed today given the intolerable complexity 

and ugliness of most current theories and the apathy of physicists to increasing mathematical 

complexity. We believe the appearance of Golden Ratio and other beautiful symmetries in numerous 

phenomena in physics and in life forms might be associated with some optimal self-organization 

processes common to all dynamical systems in equilibrium.  

 𝑒𝑘

𝑒0
=  

𝑧2

(𝑧+1)2(2𝑧+1)
   

 𝑒𝑤

𝑒0
=  

𝑧3

(𝑧 + 1)2(2𝑧 + 1)
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