Introduction

In this paper, I develop a simple analog electrical circuit. And I use this circuit to solve some classical problems in special relativity.

Definitions

\[m_0, m_T \] Rest mass and moving mass
\[c \] speed of light
\[v \] mass velocity relative to the lab
\[\beta = \frac{v}{c} \] slip
\[L \] Inductance
\[\alpha \] Inductor quality factor
Step 1

The electrical analog circuit for Relativistic Mass
And hidden parameters in Special Relativity

According to Special Relativity, elementary particles have a rest mass \(m_0 \). When the particle moves with a "slip" \(\beta \) it's mass \(m_r \) is growing according to

\[
m_r = \frac{m_0}{\sqrt{1 - \beta^2}}
\]

Because of the square root in the equation, the "slip" \(\beta \) is limited to \(-1 < \beta < 1\) which means that the particle velocity is always less than the speed of light.

Now I multiply both side of eq.1 by \(\alpha \) and get rid of the square root

\[
\alpha^2 m_r^2 = \alpha^2 m_0^2 = \frac{\alpha^2 m_0^2}{(1 - \beta)(1 + \beta)} = \frac{\alpha^2 m_0^2}{2} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]
\]

Eq.2 in contrary to eq.1, is a "continuous function" with only two "bad" points \(\beta \neq \pm 1 \) According to eq. 2 we can pass the speed of light,

Step 2

Deriving an Electrical Equivalent Circuit that helps understand Special Relativity

Let go back to eq. 2 and write it as follows

\[
\alpha^2 m_r^2 = \alpha^2 m_0^2 + \alpha^2 m_i^2 = \frac{\alpha^2 m_0^2}{2} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]
\]

Equation 3 is divided into two parts that now on must be treated separately

\[
\alpha^2 m_r^2 = \frac{\alpha^2 m_0^2}{2} \left[\frac{1}{1 - \beta} \right]
\]

\[
\alpha^2 m_i^2 = \frac{\alpha^2 m_0^2}{2} \left[\frac{1}{1 + \beta} \right]
\]

The total relativistic mass is computed using Pythagoras

\[
\alpha^2 m_r^2 = \alpha^2 m_0^2 + \alpha^2 m_i^2
\]
The following graph is for m'_T against β

Step 3

Making the equation a bit more physical

In eq.1 or eq. 2 we don't see any familiar physical phenomena. And the idea that speed of light is the same in all directions is not intuitive. So, I am going to turn those equations into conventional, not weird and intuitive physical equations that every student meets during his studies.

To do so, let define

$$j = \sqrt{-1}, \quad f_0 \quad \text{to be any frequency}, \quad \omega_0 = 2\pi f_0, \quad T_0 = \frac{1}{f_0}, \quad k_0 = \frac{2\pi}{\lambda_0}$$

$$6) \quad \frac{1}{L_0} = \frac{\alpha^2 m_0^2}{2}, \quad \frac{1}{L_\pm} = \alpha^2 m_\pm^2, \quad \frac{1}{L_+} = \alpha^2 m_+^2, \quad \frac{1}{L_T} = \alpha^2 m_T^2$$

let substitute those definitions in eq. 4, and divide each equation by non zero term $j\omega_0$.

I define some new terms such as: Z_0, Z_\pm, Z_+, Z_T and put them in eq. 3 and eq. 4

$$\alpha^2 m_\pm^2 = \frac{\alpha^2 m_0^2}{2} \cdot \left[\frac{1}{1-\beta} \right]$$

$$7) \quad \frac{1}{Z_0} = \frac{\alpha^2 m_\pm^2}{j\omega_0} = \frac{1}{j\omega_0 L_\pm} = \frac{1}{j\omega_0 (1-\beta) L_0} \cdot \frac{\alpha^2 m_0^2}{2} = \frac{1}{j\omega_0 (1-\beta) L_0}$$

What we get is something more familiar to electrical engineers.
\[\alpha^2 m_r^2 = \alpha^2 m_T^2 + \alpha^2 m_s^2 = \frac{\alpha^2 m_0^2}{2} \left[\frac{1}{1-\beta} + \frac{1}{1+\beta} \right] \]

\[\frac{1}{Z_T} = \frac{1}{Z_-} + \frac{1}{Z_+} = \frac{\alpha^2 m_T^2}{j\alpha_0} + \frac{\alpha^2 m_s^2}{j\alpha_0} \]

\[\frac{1}{Z_T} = \frac{1}{j\alpha_0 L_T} + \frac{1}{j\alpha_0 L_-} + \frac{1}{j\alpha_0 (1-\beta)L_0} + \frac{1}{j\alpha_0 (1+\beta)L_0} \]

and from the last line in eq 8

\[\frac{1}{L_T} = \frac{1}{L_-} + \frac{1}{L_+} = \frac{1}{(1-\beta)L_0} + \frac{1}{(1+\beta)L_0} \]

According to electrical engineering the last equation describes the equivalent value \(L_T \) of two inductors \(L_- \) and \(L_+ \) in parallel. But it is wrong to compute parallel value of inductors that react with different frequencies.

\[\frac{1}{j\alpha_0 L_T} = \frac{1}{j\alpha_0 L_-} + \frac{1}{j\alpha_0 L_+} = \frac{1}{j[\alpha_0 (1-\beta)]L_0} + \frac{1}{j[\alpha_0 (1+\beta)]L_0} \]

equation 9 and 10 are correct numerically but wrong physically because the frequencies are not the same in \(L_- \) and \(L_+ \).

This lead to the conclusion that professor Albert Einstein missed something that will be explained now.

Every electrical engineer will say that \(L_T, L_-, L_+ , L_0 \) are electrical inductors.

And The impedance of an inductor is given in general by

\[Z = j\omega L \]

And the current passes through the inductor is given by Ohm's law

\[I = \frac{V}{Z} = \frac{V}{j\omega L} \]

we found in eq. 8 that

\[\frac{1}{Z_T} = \frac{1}{Z_-} + \frac{1}{Z_+} \]

but this equation is wrong because of the different frequencies in each inductor.

The reason for that is that the frequency of the current and voltage must be the same

and the same frequency must also appear in the impedance of the inductor

This is because for an inductor

\[v = L \frac{di}{dt} \]
So we must compute the currents in each inductor separately according to the electrical circuits in the picture below and eq. 15

\[
\begin{align*}
I_0 &= j\omega_0 L_0 \\
V_- &= V e^{j\omega_0 (1-\beta)t} \\
I_- &= \frac{V_-}{Z_-} = \frac{V_-}{j\omega_0 L_-} = \frac{V_-}{j\omega_0 (1-\beta)L_0} = \frac{V e^{j\omega_0 (1-\beta)t}}{j\omega_0 (1-\beta)L_0} \\
I_+ &= \frac{V_+}{Z_+} = \frac{V_+}{j\omega_0 L_+} = \frac{V_+}{j\omega_0 (1+\beta)L_0} = \frac{V e^{j\omega_0 (1+\beta)t}}{j\omega_0 (1+\beta)L_0} \\
I_0 &= \frac{V_0}{Z_0} = \frac{V_0}{j\omega_0 L_0} = \frac{V e^{j\omega_0 t}}{j\omega_0 L_0}
\end{align*}
\]

where

\[16\]

\[
\begin{align*}
V_0 &= V e^{j\omega_0 t} \\
V_- &= V e^{j\omega_0 (1-\beta)t} \\
V_+ &= V e^{j\omega_0 (1+\beta)t}
\end{align*}
\]

The conclusion is that when the mass is moving and \(\beta \neq 0 \) we have two frequencies.

So

\[16\]

\[I_T = I_- + I_+\]

The "current" \(I_T \) is a superposition of two different currents \(I_- \) and \(I_+ \) with different frequencies and amplitudes?

Before continuing with the theory let solve some classical examples

Time Dilation

Consider a pendulum clock sitting stationary in the frame \(S_0 \) the pendulum ticks at intervals of \(T_0 \). This means that the tick events in frame \(S_0 \) occur at the same place.

In a moving frame \(S \), the interval between ticks is due to time dilation

\[
T = \frac{T_0}{\sqrt{1-\beta^2}}
\]
And every tick occurs at a different place.

If
\[\beta \leq 1 \quad \text{then} \quad T \geq T_0 \]

A moving clock runs more slowly. The correct interpretation is that time itself runs more slowly in moving frames.

Muons Life Time

Time dilation is tested most accurately in particle accelerators where elementary particles routinely reach speeds close to \(c \). The effect of time dilation is particularly vivid on unstable particles which live much longer in the lab frame than in their own rest frame. For example, the muons are unstable particles. They decay into an electron, together with a couple of neutrinos, with a half-life of \(\tau_0 \approx 2 \cdot 10^{-6} \, s \). Muons are created when cosmic rays hit the atmosphere, and subsequently rain down on Earth.

Yet to make it down to sea level, it takes about \(T \approx 7 \cdot 10^{-6} \, s \), somewhat longer than their lifetime. Given this, why are there any muons detected on Earth at all? Surely they should have decayed. The reason that they do not decay is because the muons are traveling at a speed close to the speed of light. From the muon’s perspective, the journey takes only \(T_0 \approx 7 \cdot 10^{-7} \, s \), and \(T_0 \leq \tau_0 \) is less than their lifetime.

The equation of time dilation are represented in a more intuitive form

\[\alpha T = \frac{\alpha T_0}{\sqrt{1 - \beta^2}} \]

squaring and dividing by \(j \omega_0 \)

\[
\frac{1}{j \omega_0 L} = \alpha^2 T^2 \quad \frac{1}{j \omega_0} = \alpha^2 T_0^2 \quad \frac{\omega^2 T^2}{j \omega_0 (1 - \beta^2)} = \alpha^2 T_0^2 \quad \frac{1}{j \omega_0 2} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right] = \frac{1}{j \omega_0 L_0} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]
\]

where

\[L_0 = \frac{2}{\alpha^2 T_0^2} \quad , \quad L = \frac{1}{\alpha^2 T^2} \]

and therefore the two inductors in parallel are

\[
\frac{1}{j \omega_0 L} = \frac{1}{j \omega_0 (1 - \beta) L_0} + \frac{1}{j \omega_0 (1 + \beta) L_0}
\]

and the inductors with their voltage source

\[
\frac{V_{j \omega_0}}{j \omega_0 L} = \frac{V_{j \omega_0 (1 - \beta) T}}{j \omega_0 (1 - \beta) L_0} + \frac{V_{j \omega_0 (1 + \beta) T}}{j \omega_0 (1 + \beta) L_0}
\]
Numerical Example

The average lifetime of μ-mesons with a speed of $0.95c$ is measured to be $
\tau \approx 6 \cdot 10^{-6} s$. Compute the average lifetime of μ-mesons in a system in which they are at rest

$$\tau = \frac{\tau_0}{\sqrt{1 - \beta^2}}$$

$$6 \cdot 10^{-6} s = \frac{\tau_0}{\sqrt{1 - 0.95^2}}$$

$$\tau_0 = 6 \cdot 10^{-6} s \sqrt{1 - 0.95^2} = 1.87 \cdot 10^{-6}$$

But if we use the electric analog circuit

$$\frac{\alpha^2 T^2}{j\omega_0} = \frac{\alpha^2 T_0^2}{j\omega_0 (1 - \beta^2)} = \frac{\alpha^2 T_0^2}{j\omega_0 2 \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]} = \frac{1}{j\omega_0 L_0} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]$$

$$L_0 = \frac{2}{\alpha^2 T_0^2}, \quad L = \frac{1}{\alpha^2 T_0^2}$$

$$\frac{V_jo\omega}{j\omega_0 L} = \frac{V_{j\omega_0 (1 - \beta^2)}}{j\omega_0 (1 - \beta)L_0} + \frac{V_{j\omega_0 (1 + \beta)}}{j\omega_0 (1 + \beta)L_0}$$

$$\frac{L_0 V_jo\omega}{j\omega_0} = \frac{L V_{j\omega_0 (1 - \beta^2)}}{j\omega_0 (1 - \beta)} + \frac{L V_{j\omega_0 (1 + \beta)}}{j\omega_0 (1 + \beta)}$$

$$\frac{2}{j\omega_0 \alpha^2 \tau_0} = \frac{1}{j\omega_0 \alpha^2 \tau^2} \left[\frac{1}{1 - \beta} + \frac{1}{1 + \beta} \right]$$

$$\alpha = 1 \quad \beta = 0.95$$

$$\frac{2}{\tau^2} = \frac{1}{(6 \cdot 10^{-6})^2} \left[\frac{1}{1 - 0.95} + \frac{1}{1 + 0.95} \right]$$

$$\tau_0 \approx \sqrt{\frac{1}{(6 \cdot 10^{-6})^2} \left[\frac{1}{1 - 0.95} + \frac{1}{1 + 0.95} \right]} = 1.874 \cdot 10^{-6} s$$

Of course we get the same result
Conclusion

For particles that move close to the speed of light Time dilation can be computed with:

\[L_0 = \frac{2}{\alpha^2 T_0^2} \]

\[L = \frac{1}{\alpha^2 T^2} \]

\[V_{\omega \omega'} = \frac{V_{\omega_0 (1 - \beta) \omega}}{j \omega_0 L_0} \]

or

\[\frac{1}{L} = \frac{1}{(1 - \beta) L_0} \]

Those who learned electricity understand better the meaning of my equations.

Length Contraction

Length or more accurately "proper length" is defined as the distance between two coordinates measured at the same time. It is measured at the same time in the moving frame \(S\) and the rest frame \(S\).

According to Lorentz transformation:

\[t_B = t_A \quad \text{measured at the same time} \]

\[\Gamma_0 = x_B^\# - x_A^\# = \frac{(x_B - x_A) - v(t_B - t_A)}{\sqrt{1 - \beta^2}} = \frac{\Gamma - v(0)}{\sqrt{1 - \beta^2}} = \frac{\Gamma}{\sqrt{1 - \beta^2}} \]

\[\Gamma = x_B - x_A \]

It is clear that:

If \(\beta \leq 1 \) then \(\Gamma \leq \Gamma_0 \)

Professor Albert Einstein believed that Length contraction can not be measured (Ladder Paradox).

The solution of a problem with length contraction looks the same as a problem with time dilation.
Relativistic dynamics

A completely inelastic collision

Let’s apply the conservation of energy and momentum to a specific case. A ball of bubble gum with rest mass 16 kg, and another ball of bubble gum with rest mass 9 kg, speeds toward each other as shown:

Before collision

\[m_{oa} = 16 \text{ kg} \quad , \quad m_{ob} = 9 \text{ kg} \quad , \quad \beta_a = \frac{3}{5} \quad , \quad \beta_b = \frac{4}{5} \]

After collision: The two balls stick together. The total (horizontal) momentum and the total energy before and after collision are as follow (don’t miss any line because the solution is not conventional)

\[E = \frac{m_0 c^2}{\sqrt{1-\beta^2}} \]
\[E^2 = \frac{m_0^2 c^4}{1-\beta^2} = \frac{m_0^2 c^4}{2} \left[\frac{1}{1-\beta} + \frac{1}{1+\beta} \right] \]

\[m_{oa} = 16 \quad , \quad \beta_a = \frac{3}{5} \quad , \quad m_{ob} = 9 \quad , \quad \beta_b = \frac{4}{5} \]

\[E_a^2 = \frac{16^2 c^4}{2} \left[\frac{1}{1-\frac{3}{5}} + \frac{1}{1+\frac{3}{5}} \right] = (320 + 80) c^4 = 400 c^4 \]
\[E_b^2 = \frac{9^2 c^4}{2} \left[\frac{1}{1-\frac{4}{5}} + \frac{1}{1+\frac{4}{5}} \right] = (202.5 + 22.5) c^4 = 225 c^4 \]

\[E_T^2 = E_a^2 + E_b^2 = 400 c^4 + 225 c^4 = 625 c^4 = 25^2 c^4 = \frac{m_{oa}^2 c^4}{2} \left[\frac{1}{1-\beta_a} + \frac{1}{1+\beta_a} \right] \]

\[\beta_T \text{ after collision} = 0 \quad , \quad m_{oa} = 25 \]

The momentum is computed twice, so keep paying attention

\[p_a = \frac{m_{oa} \beta_a c}{\sqrt{1-\beta_a^2}} = \frac{16 \left(\frac{3}{5} \right) c}{\sqrt{1-\left(\frac{3}{5} \right)^2}} = 12c \quad , \quad p_b = \frac{m_{ob} \beta_b c}{\sqrt{1-\beta_b^2}} = \frac{9 \left(-\frac{4}{5} \right) c}{\sqrt{1-\left(-\frac{4}{5} \right)^2}} = -12c \]

\[m_{oa} = m_{oa} + m_{ob} = 16 + 9 = 25 \text{ kg} \]

\[p_T = p_a + p_b = \frac{m_{oa} \beta_T c}{\sqrt{1-\beta_T^2}} \]

\[p_T = \frac{(m_{oa} + m_{ob}) \beta_T c}{\sqrt{1-\beta_T^2}} = \frac{25 \beta_T c}{\sqrt{1-\beta_T^2}} = 12c - 12c = 0 \quad \rightarrow \quad \beta_T = 0 \]

The total momentum after collision is zero. Therefore after collision masses doesn’t move
Now I solve the same example using electrical analog circuit

\[
\alpha^2 p_a^2 = \frac{\alpha^2 m_0^2 \beta_a^2 c^2}{1 - \beta_a^2} = \frac{\alpha^2 m_0^2 c^2 \beta_a^2}{2} \left[\frac{1}{1 - \beta_a} + \frac{1}{1 + \beta_a} \right] = \frac{1}{L_{\alpha 0}} \left[\frac{1}{1 - \beta_a} + \frac{1}{1 + \beta_a} \right]
\]

\[
L_{\alpha 0} = \frac{2}{\alpha^2 m_0^2 c^2 \beta_a^2}, \quad L_a = \frac{1}{\alpha^2 p_a^2}
\]

\[
1 = \frac{1}{(1 - \beta_a)L_{\alpha 0}} + \frac{1}{(1 + \beta_a)L_{\alpha 0}}
\]

assume \(\alpha = 1 \)

\[
p_a^2 = \frac{16^2 c^2 \left(\frac{3}{5} \right)^2}{2} \left[\frac{1}{1 - \left(\frac{3}{5} \right)} + \frac{1}{1 + \left(\frac{3}{5} \right)} \right] = 144c^2 = 12^2 c^2
\]

\[
\alpha^2 p_b^2 = \frac{\alpha^2 m_0^2 \beta_b^2 c^2}{1 - \beta_b^2} = \frac{\alpha^2 m_0^2 c^2 \beta_b^2}{2} \left[\frac{1}{1 - \beta_b} + \frac{1}{1 + \beta_b} \right] = \frac{1}{L_{\beta 0}} \left[\frac{1}{1 - \beta_b} + \frac{1}{1 + \beta_b} \right]
\]

\[
p_b^2 = \frac{9^2 c^2 \left(\frac{16}{25} \right)}{2} \left[\frac{1}{1 - \left(-\frac{4}{5} \right)} + \frac{1}{1 + \left(-\frac{4}{5} \right)} \right] = 144c^2 = 12^2 c^2
\]

The sum and difference of the momentum are hidden in the next expressions

\[
\alpha^2 p_a^2 - \alpha^2 p_b^2 = (\alpha p_a + \alpha p_b)(\alpha p_a - \alpha p_b) = (12c + 12c)(12c - 12c) = 0
\]

We know also that energy and momentum depend according to

\[
E^2 = p^2 c^2 + E_0^2 \quad \text{where} \quad E_0 = m_0 c^2
\]

\[
E_a^2 = p_a^2 c^2 + E_{a0}^2
\]

\[
400c^4 = p_a^2 c^2 + \left(16c^2 \right)^2
\]

\[
p_a^2 c^2 = 400c^4 - 256c^4 = 144c^4 \quad \rightarrow p_a = 12c
\]

\[
E_b^2 = p_b^2 c^2 + E_{b0}^2
\]

\[
225c^4 = p_b^2 c^2 + \left(9c^2 \right)^2
\]

\[
p_b^2 c^2 = 225c^4 - 81c^4 = 144c^4 \quad \rightarrow p_b = 12c
\]
And if we compute the sum and difference of energy and momentum we get again previous results
\[E^2 = p^2 c^2 + E_0^2, \quad E_0 = m_0 c^2 \]
\[E_a^2 = p_a^2 c^2 + E_{a0}^2, \quad E_b^2 = p_b^2 c^2 + E_{b0}^2 \]
and the energy sum is;
\[E_{T+}^2 = p_T^2 c^2 + E_{T0}^2 \]
so
\[E_{T+}^2 = p_{T+}^2 c^2 + E_{T+0}^2 = E_a^2 + E_b^2 = (p_a^2 + p_b^2) c^2 + E_{a0}^2 + E_{b0}^2 \]
\[E_{T+}^2 = p_{T+}^2 c^2 + E_{T+0}^2 = 400c^4 + 225c^4 = (p_a^2 + p_b^2) c^2 + 256c^4 + 81c^4 \]
\[625c^4 = (p_a^2 + p_b^2) c^2 + 337c^4 \]
\[288c^4 = (p_a^2 + p_b^2) c^2 \]
\[p_a^2 + p_b^2 = 288c^2 \]
\[p_a = 12c, \quad p_b = 12c \] as before

~~~

Now, let find the energy and momentum difference
\[ E_{T-0}^2 = E_{a0}^2 - E_{b0}^2, \quad p_{T-}^2 = p_a^2 - p_b^2 \]
\[ E_{T-}^2 = p_{T-}^2 c^2 + E_{T-0}^2 \]
\[ E_{T-}^2 = (E_a^2 - E_b^2) = (p_a^2 - p_b^2)^2 + (E_{a0}^2 - E_{b0}^2) = (p_a - p_b)(p_a + p_b)c^2 + (E_{a0}^2 - E_{b0}^2) \]
\[ E_{T-}^2 = 400c^4 - 225c^4 = 175c^4 = (p_a^2 - p_b^2)^2 + 256c^4 - 81c^4 = (p_a - p_b)(p_a + p_b)c^2 + 175c^4 \]
\[ (p_a - p_b)(p_a + p_b)c^2 = 0 \quad \rightarrow \quad p_a = p_b \]

**Conclusions**

It is well understood that the electrical analog circuit help solving problems in special relativity.
The analog electrical circuit also explain special relativity not the way professor Albert Einstein did

To see detail of this explanation you have to read a short paper

http://vixra.org/abs/1602.0282

**Special Relativity Electromagnetic and Gravitation Combined Into One Theory**