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Abstract

After reviewing the basics of the geometry of the cotangent bundle
of spacetime, via the introduction of nonlinear connections, we build an
action and derive the generalized gravitational field equations in phase
spaces. A nontrivial solution generalizing the Hilbert-Schwarzschild black
hole metric in spacetime is found. The most relevant physical consequence
is that the metric becomes momentum-dependent (observer dependent)
which is what one should aim for in trying to quantize geometry (gravity)
: the observer must play an important role in any measurement (observa-
tion) process of the spacetime he/she lives in.

Keywords : Gravity, Finsler Geometry, Born Reciprocity, Phase Space.

1 Introduction : Quantum Gravity and Curved
Phase Space

In the first introduction to Quantum Mechanics we are exposed to the Weyl-
Heisenberg algebra given by the commutators [xi,pj ] = ih̄δij of the coordinate
and momentum operators, and which hold the key behind Heisenberg’s uncer-
taintity principle via the relation ∆x ∆p ≥ 1

2 | < [x,p] > |, after taking
expectation values. Inspired from the results obtained in the very high en-
ergy limit of string scattering amplitudes [1], a lot of work has been devoted in
the past two decades to deformations of the Weyl-Heisenberg algebra [17], and
which is associated to a generalized uncertaintity principle (GUP) leading to
the notion of a minimal length scale (of the order of the Planck length). The
strings begin to grow in size when trans-Planckian energies are reached, rather
than probing smaller and smaller distances.

Most of the work devoted to Quantum Gravity has been focused on the
geometry of spacetime rather than phase space per se. The first indication
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that phase space should play a role in Quantum Gravity was raised by [2].
The principle of Born’s reciprocal relativity [2] was proposed long ago based on
the idea that coordinates and momenta should be unified on the same footing,
and consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
acceleration boosts/rotations transformations (where xi, pi; i = 1, 2, 3, 4 are all
boosted/rotated into each-other) and which leave invariant the infinitesimal line
interval of the 8D flat phase space, were given by [3] based on the group U(1, 3)
and which is the Born version of the Lorentz group SO(1, 3). The extension of
these transformations to Noncommutative phase spaces was analyzed in [12]

We explored in [7] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, six specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation of
photon trajectories due to the aberration of light; invariance of areas-cells in
phase-space and modified dispersion relations.

A discussion of Mach’s principle within the context of Born Reciprocal Grav-
ity in Phase Spaces was described in [14]. The Machian postulate states that the
rest mass of a particle is determined via the gravitational potential energy due
to the other masses in the universe. It is also consistent with equating the max-
imal proper force mPlanck(c2/LPlanck) to MUniverse(c

2/RHubble) and reflecting
a maximal/minimal acceleration duality. By invoking Born’s reciprocity be-
tween coordinates and momenta, a minimal Planck scale should correspond to
a minimum momentum, and consequently to an upper scale given by the Hubble
radius. Further details can be found in [14].

It is better understood now that the Planck-scale modifications of the parti-
cle dispersion relations can be encoded in the nontrivial geometrical properties
of momentum space [16]. When both spacetime curvature and Planck-scale de-
formations of momentum space are present, it is expected that the nontrivial
geometry of momentum space and spacetime get intertwined. The interplay
between spacetime curvature and non-trivial momentum space effects was es-
sential in the notion of “relative locality” and in the deepening of the relativity
principle [16]. Recently the authors [18] described the Hamilton geometry of
the phase space of particles whose motion is characterized by general dispersion
relations. Explicit examples of two models for Planck-scale modified disper-
sion relations, inspired from the q-de Sitter and κ-Poincare quantum groups,
were considered. In the first case they found the expressions for the momentum
and position dependent curvature of spacetime and momentum space, while for
the second case the manifold is flat and only the momentum space possesses a
nonzero, momentum dependent curvature.

The purpose of this work is to study deeper the geometry of the cotangent
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bundle in order to derive the analog of Einstein’s field equations in curved phase
spaces, and construct specific solutions. The curved phase-space geometry of the
cotangent bundle of spacetime can be explored via the introduction of nonlinear
connections which are associated with certain nonholonomic modifications of
Riemann–Cartan gravity within the context of Finsler geometry. The geometry
of the 8D tangent bundle of 4D spacetime and the physics of a limiting value
of the proper acceleration in spacetime [6] has been studied by Brandt [4].
Generalized 8D gravitational equations reduce to ordinary Einstein-Riemannian
gravitational equations in the infinite acceleration limit. We must emphasize
that the results found in this work are very different than those obtained earlier
by us in [13] and by [4] [11], [9], among others.

In the next section we review the geometry of the cotangent bundle of space-
time, build an action and derive the generalized field equations. In the final
section we find some nontrivial solutions generalizing the Hilbert-Schwarzschild
black hole solution in spacetime. The most relevant consequence is that the
metric becomes momentum-dependent (observer dependent) which is what one
should aim for in trying to quantize geometry (gravity) : the observer must play
an important role in any measurement (observation) process of the spacetime
he/she lives in.

2 Field Equations in Curved Phase Spaces

In the first part of this section we shall review the geometry of the cotangent
bundle case T ∗M (phase space) following the monographs by [11]. Readers
familiar with this material can proceed to the second part of this section where
we derive the field equations. A classical treatise on the Geometry of Phase
Spaces can be found in [8]. In the case of the cotangent space of a d-dim
manifold T ∗Md the metric can be equivalently rewritten in the block diagonal
form [11] as

(ds)2 = gij(x
k, pa) dxid xj + hab(xk, pc) δpa δpb =

gij(x
k, pa) dxid xj + hab(x

k, pc) δp
a δpb (2.1)

i, j, k = 1, 2, 3, .....d, a, b, c = 1, 2, 3, .....d, if instead of the standard coordinate
basis one introduces the following anholonomic frames (non-coordinate basis)

δi = δ/δxi = ∂xi + Nia ∂
a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =

∂

∂pa
(2.2)

One should note the key position of the indices that allows us to distinguish
between derivatives with respect to xi and those with respect to pa. The dual
basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dx
j , δpa = dpa − Na

j dx
j (2.3)
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where the N–coefficients define a nonlinear connection, N–connection structure.
An N-linear connection D on T ∗M can be uniquely represented in the

adapted basis in the following form

Dδj (δi) = Hk
ij δk; Dδj (∂a) = − Ha

bj ∂
b; (2.4a)

D∂a(δi) = Ckai δk; D∂a(∂b) = − Cbac ∂c (2.4b)

where Hk
ij(x, p), H

a
bj(x, p), C

ka
i (x, p), Cbac (x, p) are the connection coefficients.

Our notation for the derivatives is

∂a = ∂/∂pa, ∂i = ∂xi , δi = δ/δxi = ∂xi + Nia ∂
a (2.4c)

The N–connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations δαδβ − δβδα = W γ

αβδγ . The only nontrivial
(nonvanishing) nonholonomy coefficients are

Wija = Rija; W a
jb = ∂aNjb = − W a

j b (2.5a)

and
Rija = δjNia − δiNja (2.5b)

is the nonlinear connection curvature (N–curvature).
Imposing a zero nonmetricity condition of gij(x, p), h

ab(x, p) along the hori-
zontal and vertical directions, respectively, gives

Digjk = δi ggk −H l
ij glk −H l

ik gjl = 0, (2.6a)

Dahbc = ∂a hbc + Cabd hdc + Cacd hbd = 0 (2.6b)

Performig a cyclic permutation of the indices in eqs-(2.6), followed by linear
combination of the equations obtained yields the irreducible (horizontal, verti-
cal) h-v-components for the connection coefficients

Hi
jk =

1

2
gin (δkgnj + δjgnk − δngjk) (2.7)

Cabc =
1

2
hcd

(
∂bhad + ∂ahbd − ∂dhab

)
(2.8)

The additional conditions Dih
ab = 0, Dagij = 0, yield the mixed compo-

nents of the connection coefficients

Ha
bj =

1

2

(
hac δjhbc − hac hbd ∂

dNjc + ∂aNjb
)

(2.9)

Cjai =
1

2
gjk ∂agik (2.10)

For any N-linear connection D with the above coefficients the torsion 2-forms
are
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Ωi =
1

2
T ijk dx

j ∧ dxk + Ciaj dxj ∧ δpa (2.11a)

Ωa =
1

2
Rjka dx

j ∧ dxk + P baj dx
j ∧ δpb +

1

2
Sbca δpb ∧ δpc (2.11b)

and the curvature 2-forms are

Ωij =
1

2
Rijkm dxk ∧ dxm + P iajk dx

k ∧ δpa +
1

2
Siabj δpa ∧ δpb (2.12)

Ωab =
1

2
Rabkm dxk ∧ dxm + P acbk dxk ∧ δpc +

1

2
Sacdb δpc ∧ δpd (2.13)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadxj .

The distinguished torsion tensors are

T ijk = Hi
jk − Hi

kj ; Sabc = Cabc − Cbac ; T iaj = Ciaj = − T ia j

P a
b j = Ha

bj − ∂aNjb, P a
b j = − P a

bj

Rija =
δNja
δxi

− δNia
δxj

(2.14)

The distinguished tensors of the curvature are

Rikjh = δhH
i
kj − δjH

i
kh + H l

kj H
i
lh − H l

kh H
i
lj − Ciak Rjha (2.15)

P abcj = ∂a Hb
cj + Cadc P bdj −

(
δj C

ab
c + Hb

dj C
da
c + Ha

dj C
bd
c − Hd

cj C
ab
d

)
(2.16)

P akij = ∂a Hk
ij + Cali T klj −

(
δj C

ak
i + Ha

bj C
bk
i + Hk

lj C
al
i − H l

ij C
ak
l

)
(2.17)

Sabcd = ∂c Cabd − ∂b Cacd + Cebd Cace − Cecd Cabe ; (2.18)

Sibcj = ∂cCbij − ∂bCcij + Cbhj Ccih − Cchj Cbih (2.19)

Rabjk = δkH
a
bj − δjH

a
bk + Hc

bj H
a
ck − Hc

bk H
a
cj − Ccab Rjkc (2.20)
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Equipped with these curvature tensors one can perform suitable contractions
involving gij , hab to obtain two curvature scalars of the R,S type

R = δji R
i
kjl g

kl; S = δdb S
abc
d hac (2.21)

and construct a 2d-dim gravitational phase space action involving a linear com-
bination of the curvature scalars

S =
1

2κ′2

∫
ddx ddp

√
|det g|

√
|det h| ( c1 R + c2 S ) (2.22)

where c1, c2 are real-valued numerical coefficients (with the appropriate physical
units) and κ′2 is the analog of gravitational coupling constant in phase space.
We shall fix c1 = c2 = 1. The metric in the nonholonomic (non-coordinate
basis) is block diagonal as described by eq-(2-1). As a result the determinant
factorizes into a product giving for measure

√
|det g|

√
|det h|. Other measures

of integration are possible as well as many more actions besides (2.22). For
instance, one may add curvature and torsion squared terms. In natural units
h̄ = c = 1, the physical units are fixed by ensuring the action is dimensionless
and such that c1R has the same physical units as c2S.

The reason one is not adding to the action the other curvature contractions
involving the remaining components

δca P
ab
cj , δik P

ak
ij , δba R

a
bjk, δij S

jbc
i (2.23)

is that the latter two curvature contractions are antisymmetric in the jk, bc
indices, respectively. Thus a further contraction with gkl, hbc will be identically
zero, so one will not be able to include these curvature components into an
action linear in the curvature unless there are antisymmetric components to
the metrics. One could introduce antisymmetric metrics but for the moment
this would be the subject of a future investigation. The first two curvature
contractions in (2.23) could be contracted further if one had at our disposal a
second rank tensor with mixed upper and lower indices, but such tensor is not
available. One cannot use Niah

ab because the nonlinear connection does not
transform as a tensor.

Given the action linear in curvatures, the vacuum field equations associated
with the geometry of the cotangent bundle are

δS

δgij
= 0,

δS

δhab
= 0,

δS

δNia
= 0 (2.24)

When i, j = 1, 2, . . . , d, and a, b = 1, 2, . . . , d the number of field equations is

1

2
d(d+ 1) +

1

2
d(d+ 1) + d2 =

2d(2d+ 1)

2
(2.25)

which match the number of independent degrees of freedom of a metric gMN in
2d-dimensions. One should emphasize that there is no mathematical equivalence
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of the above eqs-(2.24) with the ordinary Einstein vacuum field equations in a
Riemannian spacetime of 2d-dimensions

RMN (X) − 1

2
gMN (X) R(X) = 0; M,N = 1, 2, 3, ......., 2d (2.26)

one of the reasons being is the nontrivial presence of the nonlinear connection
Nia(x, p).

The variation of the action δS is more complicated than usual due to the
fact that the variation does not commute with the elongated derivatives : the
commutator [δ, δ

δxi ](· · ·) ∼ (δNia) ∂
∂pa

(· · ·) 6= 0.

Furthermore, the integral
∫
ddx ddp

√
|g| |h| DM (JM ) is no longer a to-

tal derivative leading to boundary terms which can be dropped when the fields
vanish fast enough at infinity. The reason being that the covariant horizon-
tal derivative operator Di is defined in terms of the elongated noncommuting
derivatives δ

δxi = ∂xi + Nia
∂
∂pa

. For these reasons we shall bypass the more

complicated variational procedure of eqs-(2.24) and instead recur to the Bianchi
identities in order to derive the field equations.

The Bianchi identities in the absence of torsion for the horizontal and vertical
curvature tensors are [11]

(DiR)mjkl + (DkR)mjli + (DlR)mjik = 0 (2.27)

(DaS)mbcd + (DcS)mbda + (DdS)mbac = 0 (2.28)

In the presence of torsion the Bianchi identities are modified by the inclusion
of torsion-curvature terms in the right hand side, and the field equations are
more complicated. From the Bianchi identities in the absence of torsion (and
when the nonmetricity is zero) one can retrieve Einstein’s tensor, as usual, by
performing two successive contractions of the indices in eqs-(2.27,2.28) giving

Di( 2Rij − gij R ) = 0 ⇒ Di( Rij −
1

2
gij R ) = 0 (2.29)

Da( 2Sab − hab S ) = 0 ⇒ Da( Sab −
1

2
hab S ) = 0 (2.30)

Therefore, the field equations consistent with the Bianchi identities in the ab-
sence of torsion (and for zero nonmetricity) are given by

Rij −
1

2
gij R = T

(H)
ij , Sab −

1

2
hab S = T

(V )
ab (2.31)

where T
(H)
ij , T

(V )
ab are the conserved energy-momentum tensors in the horizontal

and vertical space, respectively. The vacuum field equations are then

Rij −
1

2
gij R = 0, Sab −

1

2
hab S = 0 (2.32)
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and which are equivalent to the Ricci flat conditions obtained after taking the
trace of eqs-(2.32)

Rij = 0, Sab = 0 (2.33)

We must supplement the above equations with the vanishing torsion con-
ditions

T ijk = Hi
jk − Hi

kj = 0; Sabc = Cabc − Cbac = 0,

T iaj = Ciaj = − T ia j = 0

P a
b j = Ha

bj − ∂a Njb = − P a
bj = 0

Rija =
δNja
δxi

− δNia
δxj

= 0 (2.34)

3 Some Solutions to Gravity in Curved Phase
Spaces

Next we shall find some solutions to the above eqs-(2.33) for the metric fields
gij(x, p), hab(x, p) in the absence of torsion (2.34) (and zero nonmetricity). In
the particular case when the nonlinear connection is Nia = 0, and the metric
components depend solely on x and p, respectively, gij(x), hab(p), while the
connection coefficients are given in eqs-(2.7-2.10), one can verify that all the
torsion components (2.34) are zero. Thus, a static spherically symmetric metric,
consistent with Born’s reciprocity principle (x↔ p), and which is a solution of
the field equations (2.33) in the 8D cotangent bundle T ∗M4 associated with a
4D spacetime is

(ds)2 = − (1− 2GM

r
) (dt)2 + (1− 2GM

r
)−1 (dr)2 + r2 (dΩ(x))

2 +

κ−4

(
−(1− 2M

pr
) (dE)2 + (1− 2M

pr
)−1 (dpr)

2 + (pr)
2 (dΩ(p))

2

)
(3.1)

the spacetime and momentum space infinitesimal solid angle elements are re-
spectively

(dΩ(x))
2 = r2 ( sin2θ(x) (dφ(x))

2 + (dθ(x))
2 ),

(dΩ(p))
2 = (pr)

2 ( sin2θ(p) (dφ(p))
2 + (dθ(p))

2 ) (3.2)

care must be taken not to confuse the angles. In particular, for the momentum
variables in spherical coordinates one has pr =

√
(px)2 + (py)2 + (pz)2 and

pz = pr cos(θ(p)), px = pr sin(θ(p)) cos(φ(p)), py = pr sin(θ(p)) sin(φ(p))
(3.3)

8



κ has mass units and can be equated to the Planck’s mass ; i.e. inverse of
the Planck scale L. The Newtonian gravitational coupling G = L2. The above
metric is the phase space counterpart of the Hilbert-Schwarzschild metric. If we
were to set κ =∞, the pre-factor in front of the second line in eq-(3.1) collapses
to zero and the momentum-space metric components would degenerate to zero.
To avoid a degenerate metric in the momentum space would require a cutoff
κ 6= ∞, and consequently L 6= 0. This requirement is compatible with the
minimal Planck length postulate of the literature [15], [16]. The metric solution
(3.3) is in a sense trivial since there is no entanglement among x and p. The
solution is simply a “diagonal” sum of a spacetime and momentum metric. As
expected, one finds

(i) when pr = 0, eq-(3-3) yields a singularity in momentum space, while
r =∞ leads to an asymptotically flat spacetime metric. The interesting feature
is that low values of the momentum correspond to the interior region (inside
the momentum horizon) of the momentum space. Meaning that the location
of the momentum horizon signals a natural infrared cutoff in the values of the
momentum .

(ii) when r = 0, eq-(3-3) yields a black hole singularity in the underly-
ing spacetime, while pr = ∞ leads to an asymptotically flat momentum space
metric.

One can construct a nontrivial phase space metric solution to the vacuum
field equations, and which is given in the block diagonal form described by the
second line of eq-(2.1), as follows

(ds)2 = − (1− 2GM

r
) (dt)2 + (1− 2GM

r
)−1 (dr)2 + r2 (dΩ(x))

2 +

κ−4

(
− ( 1− 2M

ρ(r, pr)
) (dE)2 +

(∂prρ(r, pr))
2

( 1 − 2M
ρ(r,pr) )

( dpr − Npr
r (r, pr) dr )2

)
+

κ−4 ρ(r, pr)
2 (dΩ(p))

2 (3.4)

where one has modified the phase space metric by introducing the nonlinear con-
nection Npr

r (r, pr) 6= 0 (after setting all the other components of Na
i = 0) and

inserting the function ρ(r, pr) which plays the role of the area radial-momentum
function. The area radial-momentum function ρ(r, pr) can be determined in ad-
dition to the nonlinear connection Npr

r (r, pr) by solving eqs- (2.34) as follows.
Firstly, an entire Appendix is devoted to show explicitly that the momen-

tum space metric components hab(x, p) solve the Ricci flat Sab = 0 flat eqs-
(2.33). The gij(x) components (Hilbert-Schwarzschild solution) solve the Ricci
flat Rij = 0 eqs-(2.33). The next step is to impose the zero torsion conditions
which will allow to determine ρ(r, pr) and Na

i (r, pr). Setting Npr
r (r, pr) 6= 0,

and all the other components Na
i = 0, simplifies dramatically the zero torsion

conditions (2.34). The nontrivial equations turn out to be

P pr
pr r =

1

2
hprpr (

∂

∂r
+ Npr

r

∂

∂pr
) hprpr −

∂Npr
r

∂pr
= 0 (3.5)
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P pt
pt r =

1

2
hptpt (

∂

∂r
+ Npr

r

∂

∂pr
) hptpt = 0 (3.6)

Therefore one ends up with the above two differential equations for the sought-
after two functions ρ(r, pr) and Npr

r (r, pr) after substituting

hptpt = − κ−4 (1− 2M

ρ(r, pr)
), hptpt =

1

hptpt
(3.7)

hprpr = κ−4 (∂prρ(r, pr))
2

(1− 2M
ρ(r,pr) )

, hprpr =
1

hprpr
(3.8)

into eqs-(3.5,3.6). The naive factorization condition ρ(r, p) = Ψ(r) Ξ(p); Npr
r (r, pr) =

prF (r) allows us to integrate the second equation (3.6) giving

ρ(r, pr) ∼ p exp

(
−
∫

dr F (r)

)
, Npr

r (r, pr) = pr F (r) (3.9)

Inserting these solutions into the first equation (3.5) yields after some algebra
F (r) = 0 and one ends up with the trivial solution Npr

r = 0 and ρ(r, p) = p.
Therefore, the naive factorization ρ(r, p) = Ψ(r) Ξ(p); Npr

r (r, pr) = prF (r)
leads to the trivial solutions Npr

r = 0 and ρ(r, p) = p. For this reason, one
must discard them and look for other non factorizable solutions; i.e. meaning
when there is a true entanglement of r and pr. Nontrivial solutions to the
field equations in the four-dim tangent bundle of a two-dim spacetime have
been found by [10]. They require arbitrary integrating functions and generating
functions.

In general, when the nonlinear connection is Nia(x, p) 6= 0, but still obeys
the zero torsion conditions (2.34), the metric components gij(x, p), hab(x, p)
obeying the field equations will have more flexibility and freedom to depend on
both the xi, pa coordinates of phase space. A special class of solutions consistent
with all the zero torsion conditions (2.34) when Nia(x, p) 6= 0 are of the form
gij(x), hab(x, p). The physical relevance of the solutions (3.4) is that when one
works with holonomic coordinates, the metric is no longer block diagonal as in
eq-(2.1), but instead is given by

(ds)2 =
(
gij(x) + hab(x, p) Nia(x, p) Njb(x, p)

)
dxi dxj +

hab(x, p) dpa dpb − Nib(x, p) h
ab(x, p) dxi dpa − Nja(x, p) hab(x, p) dxj dpb

(3.10)
Consequently the effective spacetime metric is now momentum-dependent; i.e.
observer dependent

geffij (x, p) = gij(x) + hab(x, p) Nia(x, p) Njb(x, p) =

gij(x) + hab(x, p) N
a
i (x, p) N b

j (x, p) (3.11)
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In particular, the metric (3.4) leads to momentum-dependent (observer depen-
dent) modifications of the radial components of the Hilbert-Schwarzschild solu-
tion

geffrr (r, pr) = grr(r) + hprpr (r, pr) N
pr
r (r, pr) N

pr
r (r, pr) (3.12)

where hprpr (r, pr) is given by eq-(3.8) and Npr
r (r, pr), ρ(r, pr) are solutions of

eqs-(3.5,3.6) . The possibility that the underlying spacetime geometry might
become observer dependent was envision also by Gibbons and Hawking long
ago.

We should note that this curved phase-space procedure is not the same as the
Rainbow gravity approach proposed in the literature after inserting, by hand,
extra momentum-dependent scalar factors f(E, p) into the spacetime metric
components in order to modify the energy-momentum dispersion relations. The
immediate extension of this work is to introduce matter. Brandt [5] has studied
the wave equations of scalar fields Φ(xµ, vµ) in the spacetime tangent bundle
and found that by complexifying the coordinates zµ = xµ+iL vµ a natural UV
(ultraviolet) regulator L in the space of solutions of the wave equations exists
at the Planck scale. The possibility that a fundamental physical theory might
provide a physical cutoff for field theory was speculated long ago by Landau
and others. The regularization of quantum fields in complex spacetimes have
been studied in particular by [19].

String and p-branes propagating in spacetime tangent bundle backgrounds
were briefly studied as well by Brandt [5]. Accelerated strings in tangent bundle
backgrounds were studied in further detail by [20]. The worldsheet associated
with those accelerated open strings envisages a continuum family of worldlines
of accelerated points. It is when one embeds the two-dim string worldsheet into
the tangent bundle TM background (associated with a uniformly accelerated ob-
server in spacetime) that the effects of the maximal acceleration are manifested.
The induced worldsheet metric as a result of this embedding has a null horizon.
It is the presence of this null horizon that limits the acceleration values of the
points inside string. If the string crosses the null horizon some of its points will
exceed the maximal acceleration value c2/L and that portion of the string will
become causally disconnected from the rest of string outside the horizon. We
also found a modified Rindler metric which has a true curvature singularity at
the location of the null horizon due to a finite maximal acceleration c2/L. This
might have important physical consequences in the construction of generalized
QFT in accelerated frames and the black hole information paradox.

APPENDIX : Momentum Space Schwarzschild-like solutions in D > 3

We will show below that the momentum space metric components of eq-(3.4)
obey the momentum space Ricci flat conditions Sab = 0. In this Appendix we
shall find the most general static spherically symmetric vacuum solutions to the
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momentum space Ricci flat Sab = 0 equations ( ) in any momentum space of
dimension D > 3. The phase space is 2D-dim. Let us start with the momentum
space line element with signature (−,+,+,+, ....,+)

(ds)2
(p) = − eµ(r,pr) (dE)2 + eν(r,pr)(dpr)

2 + ρ(r, pr)
2 h̃ab dξ

a dξb. (A.1)

where the area radial-momentum function is ρ(r, pr). The metric components
h̃ab correspond to a D − 2-dim homogeneous space. The indices of h̃ab span
a, b = 3, 4, ..., D − 2, whereas the temporal and radial indices are denoted by
1, 2 respectively. The only non-vanishing Christoffel symbols in momentum
space are given in terms of the following partial derivatives with respect to the
radial momentum pr variable, and are denoted with a prime. These derivatives
must not be confused with derivatives with respect to the radial variable r in
spacetime. Therefore our notation here is such that ρ′(r, pr) ≡ ∂prρ(r, pr); µ

′ ≡
∂prµ(r, pr), etc ... Eq-(2.8) yields

C1
21 = 1

2µ
′, C2

22 = 1
2ν
′, C2

11 = 1
2µ
′eµ−ν ,

C2
ab = −e−νρρ′h̃ab, Ca2b = ρ′

ρ δ
a
b , Cabc = C̃abc(h̃ab),

(A.2)

and the only nonvanishing momentum space curvature tensor components are

S1
212 = − 1

2µ
′′ − 1

4µ
′2 + 1

4ν
′µ′, S1

a1b = − 1
2µ
′e−νρρ′h̃ab,

S2
121 = eµ−ν( 1

2µ
′′ + 1

4µ
′2 − 1

4ν
′µ′), S2

a2b = e−ν( 1
2ν
′ρρ′ − ρρ′′)h̃ab,

Sabcd = R̃abcd − ρ′2e−ν(δac h̃bd − δad h̃bc).
(A.3)

The vacuum field equations are

S11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν′ +

(D − 2)

2
µ′
ρ′

ρ
) = 0, (A.4)

S22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν′ + (D − 2)(

1

2
ν′
ρ′

ρ
− ρ′′

ρ
) = 0, (A.5)

and

Sab =
e−ν

ρ2

(
1

2
(ν′ − µ′)ρρ′ − ρρ′′ − (D − 3)ρ′2

)
h̃ab +

k

ρ2
(D− 3)h̃ab = 0, (A.6)

where k = ±1, depending if h̃ab refers to positive or negative curvature. From
the combination e−µ+νS11 + S22 = 0 we get

µ′ + ν′ =
2ρ′′

ρ′
. (A.7)

The solution of this equation is
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µ+ ν = ln ρ′2 + C, (A.8)

where C is an integration constant that one can set to zero if one wishes to
recover the flat momentum space metric in the asymptotic region pr →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν′ρρ′ − 2ρρ′′ − (D − 3)ρ′2 ) = − k(D − 3) (A.9)

or

γ′ρρ′ + 2γρρ′′ + (D − 3)γρ′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) corresponding to a D − 2-dim homogeneous momentum
space of positive curvature ( k = 1) can be written as

γ = (1− βDM

(D − 2) ΩD−2 ρ(r, pr)D−3
) (

∂ρ

∂pr
)−2 ⇒

hprpr = eν = (1− βDM

(D − 2) ΩD−2 ρ(r, pr)D−3
)−1 (

∂ρ

∂pr
)2. (A.12)

where ΩD−2 is the appropriate momentum space solid angle in D − 2-dim and
βD is a suitable constant.

For the most general D − 2-dim homogeneous momentum space we may
write

−ν = ln(k − βDM

(D − 2) ΩD−2 ρD−3
) − 2 ln ρ′ (A.13)

Thus, according to (A.8) we get

µ = ln(k − βDM

(D − 2) ΩD−2 ρD−3
) + constant. (A.14)

we can set the constant to zero, and this means the momentum space line
element (A.1) can be written as

(ds)2
(p) = −(k− βDM

(D − 2) ΩD−2 ρD−3
)(dE)2 +

(∂prρ)2

(k − βDM
(D−2) ΩD−2 ρD−3 )

(dpr)
2 +

ρ2(r, pr) h̃ab dξ
a dξb (A.15)

In the case of a D − 2-dim sphere in momentum space we have k = 1, and the
angular part of (A.15) is simply ρ(r, pr)

2(dΩ(p))
2. When D = 4, one has βD =

16π so that βDM/(D − 2)ΩD−2 ρ(r, pr)
D−3 ⇒ 2M/ρ(r, pr). It is interesting

to observe that the only effect of the homogeneous metric h̃ab is reflected in
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the k = ±1 parameter, associated with a positive (negative) constant scalar
curvature of the homogeneous D − 2-dim momentum space. k = 0 corresponds
to a spatially flat D − 2-dim section. Concluding, we have shown in the static
spherically symmetric case, that the momentum space metric components in
eq-(3-4) obey the momentum space Ricci flat conditions Sab = 0.
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