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Abstract

A new model that describes the diffraction effect is presented, based on 
the concept of streamlined flow similar to that in fluid or aerodynamics. 
The field's energy follows curved paths around the diffracting obstacle, 
unlike the complicated network of straight interfering rays used in the 
Huygens-Fresnel wavelet concept or Young's explanation of diffraction 
as scattering of radiation from the aperture rim. Streamline Diffraction 
Theory (SDT), based on the equation of continuity In Maxwell's 
formulation for electromagnetic fields, suggests that it is possible to 
rectify or de-diffract (DD) the field by simple focusing methods near the 
aperture edge, thereby obtaining superresolution in the focused image, 
and non-diverging beams such as lasers. These concepts are describe 
qualitatively and heuristically, and some simple experiments that 
demonstrate DD are given.

Key Words Diffraction, de-diffraction, resolution, superresolution,
waves, lasers.

1. What is diffraction?

 Light and other electromagnetic radiation, sound and matter waves, 
electron and other particle beams and all other wave fields in nature 
exhibit the effect of diffraction: a wave field is restricted either by the 
size of the emitting source or by an obstacle placed in its path. As a 
result, the geometry of the field is changed. First noted by Leonardo da 
Vinci [1], the effect was called "diffractio" by Grimaldi [2] in a book 
published in 1665, using the Latin words for "breaking away". Somehow
light breaks or bends when it meets the obstacle. When the obstacle is 
a diffraction grating or a hologram, diffraction can have very useful 
applications in spectroscopy or holography. Diffraction, however, also 
prevents the sharp focusing of telescopes, radar systems, scanning 
microscopes, ultra-sound, and many other imaging instruments. These 
"diffraction limits" are accepted without question as the ultimate 
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focusing capability of an instrument. Diffraction causes the divergence 
of laser and particle beams, and again there seems nothing that can be 
done about this.

 Can one cancel such a natural effect? Gravity is another universally 
present natural effect, and yet it is routinely "cancelled" in satellite 
environments when the force of gravity is exactly counterbalanced by 
the centrifugal force and "zero-gravity" is the result. Similarly the 
gravitational force acting on floating bodies is "cancelled" by the equal 
and opposite pressure of the surrounding fluid. In this sense, de-
diffraction (DD) attempts to counter the diffraction distortion of the field
by an equal and opposite bias implemented by special focusing 
methods.

 In Sec. 2 the outline of Streamline Diffraction Theory (SDT) will be 
presented, in which the effect is treated as a streamlined flow field, 
analogous to that of a fluid or gas. According to this model, energy 
spreads in curved pathways, aptly described by the Arabic word for 
diffraction, in'itaf [or huyud], which implies smooth bending. This 
fanning out of the field can be observed whenever there is a release of 
physical restrictions: reeds growing out of the ground; the tail of the 
peacock; or a crowd emerging from a gate and into an open space. In 
Sec. 3 it is shown how SDT can conform to the three other basic models
currently given to explain diffraction: A) the spread of Huygens-Fresnel 
wavelets from every part of the aperture; B) the scattering of a 
boundary wave first proposed by Young; and C) the statistical 
distribution of photons according to Heisenberg's uncertainty principle. 
It is to be noted that the first two models were made before Maxwell's 
time, and are not based an any verified physical phenomena. It will also
be shown that quantum effects are now discounted as the cause of 
optical diffraction. The question of superresolution, or the attempts to 
focus beyond the diffraction limits, will be treated in Sec. 4, while the 
DD proposal will be given in Sec. 5. Simple experimental results 
demonstrating SDT and DD will be presented in Sec. 6, and some of the
many applications of DD will be listed in Sec. 7, which concludes this 
speculative first published paper on de-diffraction.

2. Streamline diffraction theory

Fig. 1. Water wave diffraction from a plane reflector three wavelengths
wide.



Fig. 2. Diagram and photograph of streamline and vortex formation in a
fluid

flowing past a sharp obstacle. After S. Goldstein [36].

Fig. 3. Diagram of a field diffracted at an aperture. The streamlines
show the direction of energy flow. The dashed circles show the

interference pattern of two point sources located at the aperture edges
and show how scattering from the edge provides an equivalent

geometry to streamline formation.

The study of light and that of flowing water have an interesting 
relationship, and it is not by accident that diffraction is often 
demonstrated as the spreading of water waves, as in Fig. 1. Al-Hassan 
Ibn Al-Haytham (Hazen) [3] who first  described the orderly passage of 
light rays through the lens of the eye, also studied the flow of the river 
Nile and proposed building a dam to control its flow. Leonardo's studies 
of flowing water clearly illustrate the formation of wakes, a question 
that will be detailed below, while J.C. Maxwell formulated 
electromagnetic radiation after first studying streamlined potential flow 
[4]. This is not surprising, since many different phenomena in nature 
often obey the same laws. In fluid mechanics or aerodynamics the 
conservation of matter at a point is expressed by the equation of 
continuity [5],

                                                          
(1)

where (ρ) is the density of an incompressible fluid or gas, and (v) is the
velocity vector. In electromagnetic theory, Maxwell's equations express 
the conservation of charge at a point by an identical continuity 
equation:

                                             (2)

where (ρe) is the charge density, (je) is the current density equal to σ 
(E + v x B) comprising the conductivity (σ), the electric and magnetic 
components of the field, and the velocity vector. Born and Wolf 
remarked: "A description of propagation of light in terms of a 
hydrodynamical model is often helpful in connection with scalar 
diffraction fields, as it gives a picture of the energy transport in a simple
and graphic manner" [6].

The equation of continuity provides the fundamental theoretical basis of 
SDT because it describes the direction of the velocity vector. When the 
field is limited either at the source or by an obstacle in its path, it 
compensates for the interruption of flow by a systematic distortion. 
Figure 1 shows that diffraction is nothing more than a topological 
transformation of the field, whereby the straight ripples become 
ellipsoidal as soon as the aperture plane is passed, and thereafter 
expand regularly as parallel ripples until infinity. It will be seen in Sec. 5
how the essence of DD is to prevent the distortion of the first wavefront 
after the aperture plane, and after that the field does not encounter any
other obstacle and will continue undistorted.

The wavefronts of a field are the surfaces of equal phase, and they are 
familiar in optical terminology. In a flowing fluid or gas, however, the 



energy density can be constant in time and no waves produced. Energy 
flows along streamlines, and the velocity vector is always tangent to 
these streamlines. By definition, there is no energy flow between 
adjacent streamlines. Typical streamlines in fluid flow are shown in Fig. 
2, for the case where the flow bends around an obstacle, at the same 
time causing the formation of a vortex. The streamline function (Ψ ) is 
given by:

dΨ = -vd x +  udy ,                                                (3)

where u,v are the velocity components for x and y. For incompressible 
flow ∂ρ ⁄ ∂t = 0 along any given streamline, and the equation of 
continuity in terms of the streamlines becomes

                         (4)

which can be differentiated in either order, automatically satisfying the 
continuity Eq. [7]. Streamlines describe smooth or laminar flow, but it 
often happens that the field rotates around itself (eddy or vortex) or 
moves randomly in regions of turbulent flow. It is useful to remember 
these concepts when dealing with the diffracted field.

According to electromagnetic theory the direction of energy flow from a 
closed region is given by the Poynting vector

S (E x B )                                                  (5)

but when the field experiences turbulence or vortices are formed near 
the diffracting edge or in the focal region, S cannot be defined locally. 
But for our purposes here it is sufficient to say that S defines the 
velocity vector, is tangent to the streamlines, and is normal to the 
wavefronts measured one wavelength apart along the streamlines. Both
the streamlines and the wavefronts are thus equivalent descriptions of 
the same field, as shown schematically in Fig. 3. In fluid flow, Fig. 3 is 
known as a flow net, made up of the streamlines and the orthogonal 
equipotential lines of constant velocity potential Φ. A similar pattern 
occurs in statics, and electrical fields are used to model fluid flow [37].

In the electromagnetic case, Braunbek and Laukien [8], plotted an H-
polarized plane wave diffracted by an infinitely thin perfectly conducting 
half-plane, based on Sommerfeld's well-known solution of this 
diffraction case [9], shown in Fig. 4. The interesting thing about 
Sommerfeld's solution is that mathematically it yields a cylindrical wave 
scattered by the edge, interfering with a geometrical undiffracted wave. 
In physical terms, however, there is no trace of this cylindrical wave, 
and the energy flow follows the streamlined pattern.

While the wavefronts of Figs. 3. and 4 are generally parabolic, the 
streamlines are hyperbolic, inclined at angles θ to the normal direction. 
The evanescent ray (θ = 90°) is parallel to the diffracting obstacle, and 
its existence was experimentally proven by microwave tests [30]. The 
central streamline of a symmetrical aperture lies on the optical axis (θ =
90°) for a normally incident wave. Away from the edge, the streamlines 
are bent less and less, so that it can be said that most of the diffraction 
distortion is initiated within a wavelength from the edge. Fig. 5 shows 
the same streamlines as Fig. 4, but this time superposed with the 
intensity patterns of the field. It might seem paradoxical that while the 
energy is moving behind the aperture, the intensity pattern radiates in 
the opposite direction, starting from the edge and spreading towards 
the open portions of the aperture, as in Fig. 6 (a). This can be explained
as follows:

As the field bends it becomes warped (just as a piece of cloth develops 
folds when bent) and a standing intensity pattern is created. This is 
exactly equivalent to the wake created by a fluid flowing through a gate.
The effect can be easily demonstrated with water flowing rapidly past a 
fixed plate. The stationary intensity waves are created, but the 
streamlines (shown by the path taken by soap-suds or floating particles 
in the water) go across these waves smoothly, as illustrated in Fig. 6 
(b). That is how the well-known intensity pattern caused by diffraction 
shown in Fig. 7 is created



Fig. 4. The streamlines (arrows) and the wavefronts normal to them of
an H-polarized field diffracted by an infinite half-plane. Note turbulence

and vortex formation

in the reflected portion of the field (bottom left).

Fig. 5. The streamlines (arrows) and amplitude contours of the same
field shown in Fig. 4.

Figs. 4 and 5 are adapted from Braunbek and Laukien [8].



Fig. 6. (a) Intensity contours forming the wake of a diffracted field. The
streamlines cross these contours at various angles. (b) The streamlines

of the field carry energy in one direction,

 but form standing intensity contours in the other direction.

Fig. 7. The amplitude of a diffracted plane wave three wavelengths
behind an aperture

compare with Fig. 6 (a). The shaded part is the shadow region

Again, the standing intensity pattern seems to radiate from the 
diffracting edge, but there is no physical basis for saying that energy 
radiates from the edge, since energy cannot move across streamlines. 
Scattering from the edge, while a useful mathematical model, simply 
does not occur from a diffracting obstacle.

Another confusing question raised by SDT, that of interference, must 
now be examined. Two or more waves can interfere linearly; diffraction 
is currently almost universally treated as being the result of interfering 
straight rays emerging from the aperture. Yet in the streamlined flow 
described above, the energy propagates along separate streamlines, 
and as in Fig. 1 the diffracted wavefronts absolutely never meet and 
there is no interference of any kind! This recalls Dirac's statement that 
"each photon interferes only with itself " [10]. When the diffracted field 
is focused, the streamlines and wavefronts do merge, but it is the 
merging of the intensity patterns that causes the typical focused spread 
functions, and not just the interference of an infinite number of rays 
integrated at an observation point. This is not to deny of course that 
waves can interfere, but to stress that physically, the relationship 
between diffraction and interference is quite different from current 
models. Figure 8 shows the image in the focal plane of a circular 
aperture diffracting a focused plane wave, known as the Airy function. 
Most of the energy is focused into the central bright disc having angular 
radius



                     (6)

 where D is the diameter of the aperture and λ the wavelength of the 
field. Eq. (6) is known as the Rayleigh limit of angular resolution of an 
optical instrument, since if two Airy functions are superposed at a 
distance of less than RA, the two spread functions will merge into one 
point, defining the "diffraction limits" of the instrument's power of 
resolution.

Fig. 8. Airy function is the image of a distant point object focused by a
circular lens or mirror.

Fig. 9. Photograph of focused and diffracted water waves produced by a
parabolic reflector.

The Airy disc is surrounded by weak rings of decreasing intensity 
spreading out to infinity in all directions. The wavefronts of the focused 
field are shown in Fig. 9, but only the bright central intensity pattern 
can be seen, while the standing waves that cause the ring system are 
not visible in this photograph. It is interesting to compare the shape of 
the wavefronts of Figs. 1 and 9. Focusing simply creates phase 
retardation in a diffracted pattern, making a dent the shape of the 
reflector or lens, and this pattern is transmitted from wavefront to 
wavefront, but without affecting the "lost" energy spreading out away 
from the geometrical focus.

Having explained the diffraction phenomena in terms of SDT, we must 
now show that this model agrees with the highly developed and 
successful theories currently in use.

3. Other diffraction theories

SDT differs from currently accepted theories of diffraction in two related
ways. The first is the question of interference mentioned above, and the



second is that in the currently accepted theories the "energy propagates
along straight rays, while in SDT the streamlines are curved. This 
curvature of course has nothing to do with relativistic gravitational 
attraction that causes light to bend in the region of a massive galaxy, 
where the deflection is given by α =2.9-28M/b where M is the mass of 
the object and b the distance to the ray of light*. In general, diffraction 
theories may be classified in the following categories:

Fig. 10. Huygens-Fresnel  wavelet formation (HFP).

Fig. 11. Boundary diffraction waves (dashed lines) and the geometrical
rays (solid lines) (BDW).

Fig. 12. Streamline formation (SDT).

Fig.13 Huygens-Fresnel-Principle (HFP), Boundary Diffraction
Wave(BDW) theory,

 and Streamline Diffraction Theory (SDT) all explain the same
propagation vector S,

but only SDT is physically realistic.



 3.1 Theories based on Huygens-Fresnel wavelets concept   Many
rigorous diffraction theories currently in use are based on Huygens' 
principle [11] that a wavefront is formed when each element of the 
preceding wavefront emits a spherical wavelet. This idea was adapted 
by Fresnel, and the Huygens-Fresnel Principle (HFP) was the basis of 
the first successful model to describe diffraction phenomena [12]. 
Kirchhoff refined this concept using potential theory [13], but the basic 
concept remained unchanged: diffraction is caused by the interference 
of an infinite number of rays emitted from every part of the aperture, as
in Fig. 10. Each point emits most strongly in the forward direction, but 
the rays lose their amplitude by a factor of (1 + cosθ)/2, known as the 
inclination factor. It was later shown that Fourier analysis can be used 
to describe this model, whereby the intensity of the field at a certain 
point is the Fourier transform of the aperture function [24]. These 
models based on HFP can accurately predict the field if the point of 
observation and D are both much larger than A. Yet it is widely accepted
that there is no physical basis for HFP: photons simply do not explode 
into photonettes and spread in all directions the moment they cross an 
imaginary line in the aperture plane.

 3.2 Theories based on Young's boundary wave concept  Another 
group of successful diffraction models is based on Thomas Young's 
famous double slit interference experiment, when the waves leaving the
slits interfere to form bright and dark fringes [14]. Young suggested 
that the edge of the diffracting aperture is a source of a scattered 
boundary diffraction wave (BDW) which interferes with the original so-
called geometrical wave, yielding the final field, as in Fig. 11. 
Sommerfeld [9], starting out with Maxwell's equations, showed that a 
cylindrical wave from the edge can emerge from the mathematical 
treatment involved. Rubinowics also demonstrated that HFP and BDW 
are equivalent [15], while more recently Keller put forward his 
Geometrical Theory of Diffraction [16], based on BDW, which was 
extended by Miyamoto and Wolf [17]. Again, these mathematical 
models are not based on any demonstrable physical principles: apart 
from the impossibility of energy crossing from one streamline to 
another, photons of the 2πR region of the rim of a circular aperture 
must interfere with the photons emitted by the entire vπ2 area of the 
aperture which is physically impossible in terms of the available energy. 
The great interest in the relationship between the aperture and the 
image planes must have distracted from the study of the actual 
streamlined path taken by the photons, as in Fig. 12.

 Since HFP, BDW and SDT all describe the same phenomena, they must 
all be mathematically related, but it is beyond the scope of this paper to
develop a  complete proof. Instead, Fig. 13 shows how the three models
can account for the formation of the same Poynting vector normal to the
elliptical wavefront. As S rotates around the wavefront at different 6 it 
gives the various Fourier orders of the field.

3.3 Diffraction theory based on quantum effects   With the 
emergence of Heisenberg's uncertainty principle, it was tempting to try 
and explain optical diffraction and interference as just a statistical 
probability distribution of the field. While such an explanation seems to 
fit the observed facts fortuitously [18], "attempts to find quantum 
effects in the physical optical fields of diffraction and interference-"were 
convincingly negative "[19]. Marcuse, however finds that quantum 
effects do provide an ultimate limit to the resolution by about an order 
of magnitude less than the Rayleigh limits [20]. This question was 
addressed during a discussion of Toraldo di Francia's superresolution 
proposal, and the conclusion was that "the only correct quantum 
electrodynamical version of [Heisenberg's] principle imposes no relevant
restrictions on resolving power to begin with" [21], which seems to 
confirm that diffraction is basically a problem in classical and not 
quantum optics*.

4. Superresolution

An ideal imaging instrument gives a perfect image for any object [22], 
and theoretically all the relevant information to reconstruct a finite 
object can be found on the aperture plane, since its Fourier transform 
on the aperture is an analytic function [23]. The moment the radiation 
emerges from the aperture, however, it experiences diffraction 
spreading out, and the resulting point spread function (PSF) is not a 
point or circle one wavelength in diameter, but rather the Airy function 
for Fraunhoffer (far-field) diffraction, and a system of luminous rings for
Fresnel (near-field) diffraction from a circular aperture. Numerous 
studies have shown that this diffraction in the presence of noise makes 



it impossible to obtain resolution better than that of the Rayleigh limits 
[32]-[34].

Fig. 14. Diagrams showing the focused and unfocused fields passing an
aperture.

 De-diffraction lenses are shaded in (e) and (f).

 Why is the focus not sharp? In terms of SDT the answer is simple and 
direct: the field experiences a topological transformation, mostly near 
the edge, which continues to spread out as the field propagates. Figs. 
14 (a), (b) show how, in the absence of diffraction, an ideal imaging 
instrument should focus a field or transmit a beam without divergence. 
In real life, however, the focused field (c) spreads out in all directions 
(compare with Fig. 9). An open aperture, such as that of a laser, 
experiences the well-known divergence of its Gaussian profile by an 
angle of about (λ/D), but the total energy spreads through 180° 
(compare Fig. 1 with Fig. 14 (d)). The portions of the wavefront that 
can never reach the focal point are the lost Fourier components, which 
can be thought of as containing the high-frequency spatial information 
of the object function [24]. The resulting image will appear out of focus,
since it will be a convolution of the object function with the PSF. Despite
all these theoretical difficulties, it is so important to obtain the best 
resolution possible that various attempts at superresolution were made.

 The work of Schelkunoff to increase the directivity (supergain) of 
microwave antenna arrays [25] can be considered the pioneering 
attempt at superresolution. G. Toraldo di Francia adapted these ideas to
optical apertures, suggesting that the normally open aperture of a lens 
or mirror can be divided into a chosen number N of annular zones 
changing the amplitude and phase of the incoming radiation [21]. 
Acting somewhat like a zone plate, this superresolving filter enables the 
field to be focused to an arbitrarily thin central maximum, surrounded 
by a dark ring free of radiation. It was found, however, that increasing 
the number N of the zones, would make the central peak fainter as well 
as thinner, concentrating the radiation into the surrounding rings, and 
creating a giant side lobe [26]. Freiden, working on the parallel problem
of image restoration, has proposed one superresolving filter function, 
shown in Fig. 15 (a), (b), together with the resulting spread function 



[27]. Because of the very limited size of the dark field surrounding the 
faint maximum, together with the great difficulties of manufacturing the
required phase and amplitude changes, these filters seemed of little 
practical value in solving the problem of resolution [28].

Fig. 15. (a) Complex amplitude distribution of a superresolving filter.
The dashed lines show the limiting case when N=∞ and there is a

continuous change of phase. The solid line gives the case for N= 40.

(b) The point spread function for the filter shown in (a) when N=40
(solid line), and of an uncoated aperture of the same size (dashed line).

After Freiden [27].

What would happen if  N is made infinite? As N approaches infinity, all 
the radiation will be concentrated in one giant side-lobe at θ= 90°. But 
with N infinite, the aperture can be regarded as completely open, and if 
so, the phase changes will consist of the smooth envelope of the phase 
and amplitude modulations shown in Fig. 15 (a). In that case, wouldn't 
the image function experience an inversion and the radiation become 
continuously focused to a very thin and very bright central maximum 
with no side lobes at all? This is the question which was posed by the 
author [29], not at first in terms of such a filter, but in an attempt to re-
focus the outwardly diffracted streamlines, as will be discussed in the 
following section.

5. De-diffraction

The streamline diffraction pattern of Fig. 3 is reminiscent of the rays 
from a distant object diverged by a concave lens. The central ray is 
transmitted without change, but the rays become more and more bent 
as the edge is approached, where the evanescent ray is formed.

.It is well known that by adding a convex lens to a concave lens of equal
diameter, curvature and index of refraction, the resulting plate with 
parallel sides will transmit the rays unchanged. Why not think of the 
whole diffraction process as the action of an imaginary, generally 
concave "diffraction lens"? To cancel the divergence of the field 
produced by this "lens", its convex equivalent, a de-diffracting DD lens, 
is added to the open aperture. The resulting pair would then consist of 
an imaginary, generally concave "diffraction lens" and an actual DD 
lens; their combined action should cancel the diffraction effect, as in 
Fig. 16 (a), (b), and Fig. 14 (e), (f).



               Imaginary “diffraction lens”         Real de-diffraction lens

              (a)                                        (b)

Fig. 16. (a) Diffraction can be conceived of as the action of an imaginary
"diffraction lens"

(b) The cancellation of diffraction can be conceived as the action of a
compound lens

 made up of the imaginary lens (a) and a real DD lens

Intuitively this refocusing would consist of trying to prevent a plane 
wavefront, arriving normally at the aperture, from becoming the 
elliptical wavefront one wavelength away. Once the wave passes the 
aperture without distortion, no other obstacle will be in its path, and it 
will not diffract anew. In more analytical terms [31], and referring to 
Fig. 17, we can describe the process as follows.

Fig. 17. Geometry of de-diffraction from an aperture.

An aperture a-a is centered around the origin in an infinite thin screen 
found on the X-axis, with the plane wave arriving from below with 
wavefronts (λ) apart from and parallel to the X-axis. The portion a-a of 
this wavefront experiences the diffraction transformation, and spreads 
out to become the wavefront (3). It is obvious that the screen's 
presence causes this distortion.

Let us now heuristically remove the screen completely and ask: "What 
wavefront D(x) between a-a can create (3) in free space?" Using the 
principle of optical reversibility,D(x) can be thought of as the wave 
created when (3) moves backwards towards the origin. D(x) is thus 
defined by the envelope of Huygens wavelets (2) of radius (A) drawn 
from centers (1) evenly distributed all along (3). In the -y regions these
centers can be drawn from the lines (3a) shown in the figure.

Having obtained D(x), we can say that

 i) (The diffracting screen) transforms a-a into (3)

ii) D(x) transforms a-a into (3)

 iii) Therefore D (x) is equivalent to (The diffracting screen)

iv) D(x) - D(x) = a-a and not (3)

 Similarly,



 vi) (The diffraction screen) - D(x)=a-a and not (3).

In other words step (vi) says that introducing a phase retardation -
D(x) will exactly oppose the diffraction effect. The process of focusing 
can be thought of as a phase retardation, so that (DD) is an equal and 
opposite refocusing of the field to oppose the diffraction "focusing" 
effect. Once -D(x) passes the aperture a truncated plane wave (6) is 
created. This "liberated" wave, following the law of conservation of 
momentum, moves parallel to itself and does not experience any further
sideways spread: DD enables the creation of a new type of undiffracted 
wave not found in nature. From purely geometrical 
considerations, D(x) must be of the form of the +x portion of a Lame 
oval or so-called superellipse [35], [38]:

                                (7)

giving

                    (8)

In real optical systems, DD can be accomplished by first accurately 
determining the shape of the first diffracted wavefront (3), and then 
trying to fit the best possible D (x)to suit the geometry of the situation, 
which will change not only according to the physical structure of the 
aperture, but also with such parameters as the field's state of 
polarization, coherence, and intensity distribution. Computer analysis 
for current flow is recommended for finding the wavefront (3).

Once D (x) is found it can be implemented as a phase change, which 
means a corresponding physical change in the shape of the reflector or 
lens, so that a plane wave entering the system will arrive at the 
aperture as - D(x) and thus emerge undiffracted. It is to be noted that 
introducing - D(x) at the aperture allows a field passing the aperture to 
emerge without distortion in a truncated form. In open apertures such 
as those of a laser, the emerging beam should propagate without 
divergence. If focusing is required, however, D (x) can be simply 
subtracted from the phase change normally required for geometrical 
focusing.

For example, the addition of the DD lens to the lens and aperture of Fig.
14 (c), (d) will yield a DD focused field e, and a non-diverging beam/. 
From Eq. (8) it can be seen thatD(x) has a maximum thickness of A; so 
for a DD laser, the DD lens will be no more than a very thin film with a 
very accurate profile near the edge. In a focused wavefront, the image 
function should be no more than A in width, giving a much brighter and 
thinner central maximum than the Airy disc, with no ring system, 
having an angular radius Rs=λ/(2F) where F is the focal length or image
distance. The resulting gain in resolution will be, from Eq. (6):

                           (9)

which can be considerable for systems with a large/number FID. 
Superresolution would change the design of imaging instruments so that
mere size of a lens or reflector would not have any effect on the 
resolution, but only on the energy-gathering capabilities of the system. 
Large focal lengths to improve the gain G might be needed. DD should 
not be confused with the concept of apodization [39]. In the latter case 
only the amplitude of the field near the edge is changed, not its phase. 
This causes the rings of the Airy pattern to disappear, but without 
reducing the width of the central disc.

6. De-diffraction experiments

Several experiments were performed with ultrasound radiation, with 
water waves in a ripple tank and by vision through a thin slit to verify 
the basic premises of SDT and DD. While these experiments provide 



preliminary proof of the correctness of this new approach, they must be 
repeated with electromagnetic fields using much more sophisticated 
equipment and mathematical treatment than are used here.

Nevertheless the author feels confident that the theoretical analysis 
above has been verified by the following and other experiments.

Fig. 18. Intensity profiles of a reflected ultrasound field. A plane
reflector (A) yields an spreadfunction(D)

The superelliptical reflector (B) yields a sharper and more intense
spread function (C). Both reflectors were 61 mm wide, λ=8.3 mm and

the images were sensed at a distance of 63 mm from the reflector.

Fig. 19. Streamline formation of an ultrasound field reflected by a
parabola. The geometrical (undiffracted) rays are shown in solid lines,

and the width of thecalculated spread function

shown by the small arrow at the focus.

6.1 DD of ultrasound waves   A point source of ultrasound radiation A
=8.3mm was used to emit a field reflected from a plane reflector, and 
then separately from a two-dimensional reflector of the same width, but
with a super-elliptical profile D(x). The resulting amplitudes were 
measured along a line perpendicular to the .y-axis, and the results 
plotted in Fig. 18 (c),(d). It is clear that by merely curving the edges of 
the reflector inwards by about a wavelength, considerable concentration
and increased intensity in the reflected radiation is achieved. It might be
objected that this is nothing but an ordinary focusing of the field, 
comparable to the correction of aberrations. But that is exactly what DD
is: just a refocusing of the field near the edge. In other ultrasound 
experiments, a directionally-sensitive sensor was used, and the focused 
field plotted, confirming the presence of the streamline pattern, as 
shown in Fig. 19, the field of a parabolic reflector.



Fig. 20. Photograph of unfocused de-diffracted water waves. The
superelliptical reflector emitted energy mostly in the forward direction.
Compare with Fig. 1 for a normally diffracted field from an aperture of

the same size.

Fig. 21. Photograph of de-diffracted focused water waves. The
superparabolical reflector (the figure is a parabola added to a

superellipse) concentrated the energy towards the focus. Compare with
Fig. 9 for a normally diffracted field from a parabolic reflector of the

same size.

6.2 Water wave experiments.   Diffraction of water waves was 
simulated by a vibrating plate in a ripple tank illuminated with a light 
source flickering at the same frequency, effectually freezing the 
resulting pattern for observation and photography. By varying the shape
of the plate, the diffracted wavefronts from an open aperture (flat plate)
or a parabola or superparabola (a parabola function added to D(x)) can 
be easily obtained. It was instructive to observe the effect of real-time 
changes in the reflector shape on the resulting wavefront, which 
mimicked the reflector's shape and transmitted this shape as it 
propagated forward. Thus, when the edges are bent inwards, the whole 
system of succeeding wavefronts up to the focal point will be "tucked 
in". A reflector with D=32 mm and A = 10.5 mm of shape D(x) was 
successfully used to create a DD wave shown in Fig. 20, which should 
be compared with Fig. 1 of a flat plate of the same width. In the latter 
case the energy spreads out over 180° but in the DD beam the energy 
is concentrated within about 30°, with no disturbance on either side, 
convincingly proving the success of de-diffraction. With better 
procedures, there seems to be no reason why the wave of Fig. 20 
should not be focused only in the forward direction, simulating the field 
of a DD laser, as in Fig. 14 (f). Note in Fig. 20 how the first wavefront is
truncated on either side, while that of Fig. 1 is stretched over the width 
of the obstacle. The simulation of DD for a focused field, Fig. 21, was 
less successful, since a small FID ratio had to be used, yielding a small 
gain according to Eq. (8), and also because of difficulties in 
manufacturing a smooth two-dimensional superparabola. Nevertheless, 
even with the simple equipment used in this experiment, some 
improvement in the focus can be observed, and, equally important, 



there is a significant reduction of energy in the shadow regions.

6.3 Vision through a pinhole or slit   According to SDT, an aperture 
acts like a converging lens as in Fig. 16 (a). This can be confirmed 
experimentally when a person with myopic (nearsighted) vision looks 
through a pinhole of about 1 mm diameter made in a sheet of black 
paper. At the center of the hole the acuity is improved noticeably. The 
pinhole acts like a converging eyeglass lens to correct vision.

Similarly, a slit of about 1 mm width acts like a cylindrical converging 
lens. A person who has astigmatism can correct his or her vision by 
looking through the slit inclined at the same angle as the astigmatic 
distortion of the eye.

In this regard one speculates whether human or animal eyes have any 
DD mechanism. In "soft-edged" lasers with a curved (streamlined) 
edge, the beam concentration is enhanced [40]. Is there a similar effect
at the rim of the eye's iris?

                   

Fig. 22. (a) An example of a DD unfocused superelliptical reflector with
a  profile

 D(x) for an aperture D and wavelength λ=D/5.

(b)An example of a DD focused superparabolic reflector whose profile

 is a parabola P (x) having a focal length f =D, added to the superellipse

D(x), for an aperture D and wavelength λ=D/5.

7. Conclusions

A new outline streamline diffraction theory has been proposed which 
shows that, based on Maxwell's equations, a field experiences a 
topological transformation when it encounters an obstacle, or is 
restricted at the source. On the basis of SDT it was suggested that a 
systematic refocusing of the field through a phase-change - D(x) will 
exactly counter the diffraction effect, yielding a DD field which can be 
transmitted in the forward direction or focused to a superresolved point.
The preliminary treatment given here will have to be developed with 
more rigor.

An apparent anomaly raised by SDT is the slowing down of the field as it
bends. This means that the original or mainstream velocity is c along 
unbent pathways, but there is a slowing down (a blue shift?) as the 
streamlines bend more severely. This is confirmed in Fig. 4. 
Experimental confirmation of this effect will complete the analogy 
between the diffracted scalar electromagnetic field and the 
hydrodynamical model.

The success of DD means the improvement of a wide range of imaging 
instruments such as cameras, binoculars, telescopes, scanning 
microscopes, microwave antennas, radio telescopes, phase-array radar, 
ultrasound imaging, sonar and other acoustical systems, the prevention 
of divergence .in lasers, electron and particle beams and others. DD 
concepts can even be applied to sea-walls to allow small boats to pass 
near these walls without bending away from their intended path. The 
effect of using DD concepts in the design of integrated optical devices, 
optical fiber connections and optical memories and computers remains 
to be studied.
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“Diffraction to De-Diffraction” (1993  published 2003 at
 http://jp.arxiv.org/abs/physics/0303073  ). The opinion stated in
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athttp://jp.arxiv.org/abs/physics/0303082 ).
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