
The P versus NP problem. Refutation.

Petr E. Pushkarev

July 5, 2016

Abstract

In the article we provides an response to the problem of equality of
P and NP classes, which is also called the Millennium problem. As a
result, given the complete result of equality. For theory of refutation we
use method of ”reductio ad absurdum”. We use tensor analysis which for
define objects, such considered relatively to the Turing machine compu-
tation. The goal was to give an answer to a problem that has affected
to degree of the proof calculation’s details. The result can be obtained
relative to the current problems of equality P and NP classes, but other
than that give an opportunity to explore the computational process more.

1 Introduction

The problem of problem of equality of P and NP classes as well as many math
problems has many solutions. Like for many mathematical problem, for this
problem there is one true solution and other solutions can be described.

We will do without consideration concrete works and just consider the ab-
stract description of the statements that are false. False mathematical solution
of problem of equality of P and NP classes can be summarized as follows state-
ment: imagine that there is an object relative to which classes P and NP are
not equal, since such object exists, the class is not equal. For us is not im-
portant which kind of object referred in such statements and how this object
determined. It is only important for us the train of such statements.

The statement that there is an object relative to which the classes P and
NP are not equal, along with classes inequality asserts the existence of such
an object. However, since such object exists relative to class inequality, corre-
spondingly, classes have to be any way unequal for the existence of such object.
For us, this approach may look false for many reasons. However, we will focus
on only one.

Since classes inequality determined a priori as a true, for us, this approach
says very little about the nature and presupposition of this equality. However,
nature of, presupposition of problematics, equality of classes P and NP seems
to us as major problem of their relations. This brings us to the need to choose
such an approach of solving the problem, that equally admit there equality and
inequality, and the answer to the problem by which would be the way of there
mathematical proof.

1

2 Method

As the right approach in our proof, we use the method of ”reductio ad absur-
dum”. A similar method was used by Aristotle and Bourbaki gives a formal
definition of the method in his work ”Theory of Sets” [1, Chapter 1, p. 33]. At
the same time, we rely on the theory of Gödel’s incompleteness theorems that
would identify this kind of absurd for us.

According to the method of ”reductio ad absurdum”, we construct our theory
as follows. First, we assume the equality of classes P and NP , then we get
an object of this assumptions - CIV space 6, after that we correlate with CIV
space objects which define classes P and NP 3 and we get an absurdity 7 which
determines the equal relation between classes P and NP for us.

The space CIV , that we get on the second stage of our theory, is possible to
get and use through the incompleteness of mathematics. Since mathematics is
incomplete, that any derivative of its objects should also comply to this property.
This allows us to correlate objects that define classes with space derived from
their assumptions.

3 Definitions and Alphabet

Let repeat the main definitions given by Stephen Cook in article ”THE P VER-
SUS NP PROBLEM” [2] in short.

Let Σ be a finite alphabet(that is, a finite nonempty set) with at least two
elements, and let Σ∗ be the set of finite strings over Σ. Then a language over Σ
is a subset L of Σ∗. For each string ω in Σ∗ there is a computation associated
with M with input ω.

The language accepted by Turing machine M , denoted L(M) by

L(M) = {ω ∈ Σ∗ |M accepts ω} (1)

Denote by tm(ω) the number of steps. For n ∈ N we denote by TM (n) the
worst case run time of M ; that is,

TM (n) = max{tM (ω) | ω ∈ Σn} (2)

M runs in polynomial time if there exist k such that for all n, TM (n) ≤ nk+k.
Class languages P is

P = {L | L = L(M) for some Turing machine M that runs

in polynomial time}
(3)

Checking relation R ⊆ Σ∗ × Σ∗
1, with witch associate a language LR over

Σ∗ ∪ Σ∗
1 ∪ {#} defined by

LR = {ω#y | R(ω, y)} (4)

R is polynomial-time iff LR ∈ P. NP class of languages defined by condition
that language L over Σ is in NP iff there is k ∈ N and a polynomial-time

2

checking relation R such for all ω,

ω ∈ L⇔ ∃y(|y| ≤ |ω|k and R(ω, y)) (5)

where |ω| and |y| denote the lengths of ω and y, respectively.
After repeat main definition introduce a little lemma:

Lemma 3.1. Σ∗ 6= Σ.

Proof. Let Σ∗ = Σ, then language L from Σ∗ will be equal language L from Σ.
That contradict to the definition of L.

4 Classes equality

For equality of classes P and NP must be fulfilled condition of equality,

A = B ⇔ ∀x : (x ∈ A)⇔ (x ∈ B) (6)

which implies that is

P = NP⇔ ∀L(M) : (L(M) ∈ P)⇔ (L(M) ∈ NP) (7)

That mean, that should be that kind of language Lciv which can be defined as
a strong NP and P at the same time,

Lciv = L(M) for some Turing machine M that runs

in polynomial time ∧ ω ∈ Lciv ⇔ ∃y(|y| ≤ |ω|k and R(ω, y))
(8)

where |ω| and |y| denote the lengths of ω and y, respectively.

5 Determination of computation

To discover equality P=NP, consider the process of Turing machine working
as a process with an already predetermined outcome.

In other words, present the process of calculation in an environment where
all possible languages previously was computed and all true results already
predicted. That can’t contradict with definition of Turing machine or with
any definitions from chapter 3, because working process and machine structure
stay the same. Changed only presupposition of machine for possibility of fully
predetermined computation outcome before any computation step, which made
possible for us that considering.

By true result, we mean an accepted result of computing ω in the best case
run time for M .

In that case, we can denote a three-dimensional computing coordinate system
and define the language L as a matrix in computing coordinates.

Remark. It will be true to note, that for each machine must exist its own co-
ordinate system and considering the computation language without machine
relativity unacceptable. As noted earlier, for the theory, we consider such con-
ditions of machine environment that allow us to make known the correct for best
case run presets and considered computation regardless of machine particularity.

3

step

�

m
calculation basis

Figure 1: computing coordinate system with calculation basis

The dimension of this system defined by number machine calculation step
— step, point in time — m and the value from the alphabet — ω.

So, now we can denote the language L as a matrix,

L =

step1 step2 · · · stepn
m1 m2 · · · mn

ω1 ω2 · · · ωn

 (9)

After we determine the language matrix, we can denote the computation of
an language L as a valence tensor (m,ω),

Computationi1 ···iω
j1···jm =

3

Σ · · ·
3

Σ
k1,··· ,km
h1,··· ,hω

Si1
h1
· · ·Siω

hω
T k1
j1
· · ·T km

jm

∼
Computationh1···hω

k1 ···km
(10)

Computation of Lciv is equal irrespectively to 7,

(Lciv ∈ P)⇔ (Lciv ∈ NP)→ Pω
mciv = NPω

mciv (11)

6 Computation equality

From equality condition of tensors it follows, that there should be a basis, rel-
ative to which all components of the tensor are equal. That basis for P=NP
equality we named CIV .

It is important to say, that the basis CIV is temporary object which exist as
exist equality of P=NP. CIV ’s analytical definition allows us to use it without
predetermination basis space which can or can’t exist. So, that possible to

4

suppose that computation space where P=NP is a space which specify by the
basis CIV .

Defining a basis CIV , we can express the calculation of any language L in
space where P=NP by replacing the main calculation basis for CIV ,

L =

stepciv1 stepciv2 · · · stepcivn

mciv
1 mciv

2 · · · mciv
n

ωciv
1 ωciv

2 · · · ωciv
n

c1,1 c2,1 · · · cn,1
c1,2 c2,2 · · · cn,2
c1,3 c2,3 · · · cn,3

 (12)

Replacing matrix of cn,3 have the same temporary nature as basis CIV . That
allow us express the calculation without definition anything about replacing
matrix. Also, we don’t definition of calculation basis for prof P=NP equality.

7 Refutes of equality

Corollary 1. Since the existence of the language L consisting from any ω is
possible, it is possible to chose that language, for such expression ω to space
specified by CIV is

ωciv : (ωciv ∈ Σ∗)⇔ (ωciv ∈ Σ) (13)

As mentioned before, we don’t strictly define the space where P=NP, but
we strictly define ω in chapter 3. That make following outcome acceptable for
us.

Corollary 1 as came from 12 contradict to Lemma 3.1 and fully refutes
equality P=NP Q.E.D.

8 Conclusion

The axiomatic result of corollary 1 that classes P and NP are not equal is
intuitive in many ways. Intuitively, it can be formulated as follows: not all
objects that were equally formed equal.

However, if the task of mathematics would be calculation the right answers,
it would be impassible to imagine how from the addition of oranges we have
reached the P versus NP problem.

References

[1] Nicolas Bourbaki. Theory of Sets. Springer Berlin Heidelberg, 2004.

[2] Stephen Cook. The p versus np problem. The millennium prize problems,
pages 87–106, 2006.

5

	Introduction
	Method
	Definitions and Alphabet
	Classes equality
	Determination of computation
	Computation equality
	Refutes of equality
	Conclusion

