
Phase Transition by 0-Branes of U(1) Lattice Gauge Theory

Amir H. Fatollahi

Department of Physics, Alzahra University,

P. O. Box 19938, Tehran 91167, Iran

fath@alzahra.ac.ir

Abstract

The site reduction of U(1) lattice gauge theory is used to model the 0-

branes in the dual theory. The reduced theory is the 1D plane-rotator model

of the angle-valued coordinates on discrete world-line. The energy spectrum

is obtained exactly via the transfer-matrix method, with a minimum in the

lowest energy as a direct consequence of compact nature of coordinates. Be-

low the critical coupling gc = 1.125 and temperature Tc = 0.335 the system

undergoes a first order phase transition between coexistent phases with lower

and higher gauge couplings. The possible relation between the model and the

proposed role for magnetic monopoles in confinement mechanism based on

dual Meissner effect is pointed.
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According to string theory the gauge fields and coordinates are interchanged

upon the action of T-duality [1]. In particular, upon the compactification the gauge

fields arising from open strings would emerge as the transverse coordinates of Dp-

branes in the dual compactified space, leading to the correspondence [1, 2]

Ai ←→ Xi/l
2
s (1)

with ls as the string theory length; see [3] for another formulation of correspondence

between coordinates and gauge fields. Dp-branes are proposed to represent the

solutions of the effective field theory possessing charge and mass proportional to the

inverse string coupling λs. The dynamics of coordinates Xi’s in the weak coupling

limit is captured by the dimensional reduction of the ordinary U(1) gauge theory to

the world-volume of D-brane [1, 2]. In the case of D0-brane, all spatial components

of the gauge field would appear as the time dependent coordinates [1], resulting

S0 =

∫
dt

m0

2
ẋ2i , (2)

with m0 ∝ 1/g2 = 1/λs (g as gauge coupling) [1]. In the case of N Dp-branes the

transverse coordinates would appear as N dimensional hermitian matrices [4].

It is reasonable to ask about the consequences of the correspondence (1) proposed

by T-duality at strong coupling regime. In this way the lattice gauge theories are

the natural candidates, as they have shown their capacity to capture the essential

features expected at strong coupling regime [5]. As the underlying fundamental

string theory of lattice gauge theories is unknown, one may use (1) simply in a

formal way. It is remarkable to note that in the lattice formulation of gauge theories

the gauge fields appear to be periodic variables [5], just like the coordinates of

Dp-branes in the dual compact theory [1]. It is known that treating the gauge

fields as compact angle variables, such as those on lattice, reveal very non-trivial

aspects of gauge theories [5–9]. Accordingly, as a natural expectation by (1), it

seems reasonable to expect non-trivial aspects when the coordinates appear as angle

variables too. In fact, comparing with rather trivial form of (2), the lattice action

with the angle variable coordinates inserted would seem quite different. Later it

will be noticed that in a path-integral representation for compact coordinates, in

contrast to infinite extent coordinates, the normalization factor can not be absorbed

by a change of integration variable. As a consequence, this would cause that the

lowest energy develop a minimum.
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The pure gauge sector of U(1) gauge theory on Euclidean lattice is given by [5]:

Sgauge =
1

2g2

∑
n⃗

∑
µν

(
eifn⃗,µν − 1

)
(3)

in which the basic object for each lattice plaquette of size “ a ” is defined by

eifn⃗,µν := ei aAn⃗,µei aAn⃗+µ̂,νe−i aAn⃗+ν̂,µe−i aAn⃗,ν . (4)

with An⃗,µ as the gauge field at lattice site n⃗ in direction µ, and µ̂ as the unit-vector

along direction µ. It is assumed −π ≤ aA ≤ π [5]. In the continuum limit aA≪ 1,

defining Fn⃗,µν := fn⃗,µν/a
2, the action (3) reduces to [5]

Sgauge ≃ −
1

4g2
a4

∑
n⃗

F 2
n⃗,µν → −

1

4g2

∫
d4xF 2

µν . (5)

As mentioned earlier, in the formal use of (1), after removing the dependence on

spatial directions, the components of the gauge fields are interpreted as coordinates.

Assuming the following between dimensionless quantities:

aAi → xi/R (6)

leads to

fn⃗,0i → (xin+1 − xin)/R, exp(i fn⃗,ij)→ 1 (7)

In above “n ” represents the dependence on the discrete imaginary time, as the only

remaining coordinate of the original space-time lattice. By these, the action (3) is

reduced to the form

S0 =
1

g2

∑
n,i

(
cos

xin+1 − xin
R

− 1

)
(8)

which is the sum of copies of the 1D plane-rotator model of magnetic systems. In fact

the close relation between lattice gauge theories and spin systems was recognized

from the first appearance of these theories [5, 9], and has been used widely for

better understanding the gauge theory side. In particular, the so-called Villain

model [10], as an approximation to the plane-rotator model, was used for gauge

theory purposes [11–15]. Here the model is interpreted as a discrete world-line

endowed by the compact coordinates xi’s with

−πR ≤ xi ≤ πR (9)
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The action (8), in contrast to the rather trivial form of (2) by ordinary gauge theory,

treats the coordinates as angle compact variables. In the first place let us check the

continuum limit defined by:

aAi = xi/R≪ 1

xn+1 − xn → a ẋ∑
n

→ a−1

∫
dt

(10)

leading to

S0 ≃
−a

2g2R2

∫
dt ẋ2i (11)

The above describes the dynamics of a free particle with mass m0 = a/(g2R2) in the

imaginary time formalism. It is mentioned, as far as the dependence on coupling

constant is concerned, the mass corresponds to that of a 0-brane. Following [5] it is

useful to define the new variables

yi = xi/R (12)

taking values in [−π, π]. Then setting κ = 1/g2 the action (8) takes the form

S0 = κ
∑
n,i

(
cos(yin+1 − yin)− 1

)
(13)

As the action is fully separable for each direction, it is sufficient to consider only one

copy, dropping the index i hereafter. Following the original prescription introduced

for lattice gauge theories (Sec. IIIB of [5]), the action with discrete imaginary time

can be used to define the quantum theory based on the transfer-matrix V̂ , defined

by its matrix elements between two adjacent times n and n + 1 [5]. Specially for

dynamics of a particle it takes the form [16]:

⟨yn+1|V̂ |yn⟩ =
√

κ

2π
exp [κ (cos(yn+1 − yn)− 1)] (14)

in which the normalization prefactor has to be inserted to match the propagator

⟨x2, t2|x1, t1⟩ ∝
√
m0 exp

(
−m0(x2−x1)2

(t2−t1)

)
in the continuum limit [16]. Then the Hamil-

tonian of the system is related to the transfer-matrix V̂ by [5,16]

V̂ = e−a Ĥ (15)
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by which the eigenstates of Ĥ are those of V̂ , with eigenvalues given by [5, 16]

E = −a−1 lnλ (16)

where λ is the corresponding eigenvalue of V̂ . Provided that V̂ does not have

negative eigenvalues, the above would give a consistent description of the quantum

theory based on an action with discrete imaginary time [5,16]. Here we use the same

prescription for 0-branes emerged from lattice gauge theory as well. First, using the

identity for the modified Bessel function of the first kind [17]:

exp[κ cos(y′ − y)] =
∞∑

s=−∞

Is(κ) e
i s (y′−y) (17)

we have for (14)

⟨yn+1|V̂ |yn⟩ =
∞∑

s=−∞

√
κ

2π
e−κIs(κ) e

i s (yn−yn+1) (18)

by which one reads the normalized plane-wave ψs(x) =
1√
2π

exp(i s y) as eigenfunc-

tion (recall −π ≤ y ≤ π) with the eigenvalue

λs(κ) =
√
2πκ e−κIs(κ) (19)

By the known properties of Is-functions we have λs =
√
2πκ e−κIs(κ) ≥ 0. This

guaranties that the transfer-matrix approach defined by (14)-(16) would lead to a

consistent quantum theory by action (13). Also by Is(z) = I−s(z) the spectrum is

doubly degenerate for s ̸= 0. The energy eigenvalues are found by (16) and (19)

Es(κ) = −
1

a
ln
[√

2πκ e−κIs(κ)
]

(20)

The behavior of above at zero coupling limit κ = g−2 → ∞ can be checked by the

saddle point approximation for Bessel functions

Is(κ) = lim
κ→∞

1

2π

∫ π

−π

dy exp(κ cos y + i s y) ≃ eκ√
2πκ

exp

(
− s

2

2κ

)
(21)

by which for (20) we obtain

Es ≃
s2

2aκ
(22)
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Figure 1: The few lowest energies by (20) versus κ (E unit: a−1).

matching the energy E = p2/(2m0) of a free particle with momentum p = s/R along

the compact direction, and mass m0 = κ a/R2 by (11). So in the limit κ = g−2 →∞
the spectrum approaches to that of an ordinary particle. For the intermediate

coupling the spectrum is discrete. In the strong coupling limit κ = g−2 → 0, using

Is(z) ≃
1

s!

(z
2

)s

, z ≪ 1 (23)

we have

Es = (s+
1

2
)
ln g2

a
+O(s ln s) +O(g−2) (24)

in which the 2nd term is independent of the coupling constant and is relevant only

for s & ln g2 ≫ 1. Also at strong coupling

Es+1 − Es ≃
ln g2

a
≫ 1

a
(25)

The interesting observation by the spectrum (20) is about the energy of ground-

state, which has a minimum at κc = 0.790, corresponding to coupling gc = 1/
√
κc =

1.125; see Fig. 1. As expected the existence of minimum leads to a first order phase

transition. The one-particle partition function may be evaluated by the definition

Z1(β, κ) :=
∞∑

s=−∞

e−β Es(κ) (26)

or by means of the transfer-matrix method (β in a units) [16]

Z1(β, κ) = Tr V̂ β =

∫ π

−π

β−1∏
i=1

√
κ

2π
dyi exp

[
κ

β−1∑
n=0

(cos(yn+1 − yn)− 1)

]
(27)
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Figure 2: The G-M plots at four temperatures. The dashed pieces are not followed

by the system due to the minimization of G.

supplemented by the periodic condition y0 = yβ. In the present case the equivalence

of (26) and (27) is checked by numerical evaluations. The basic observation by the

compact angle variable in above is, in contrast to the situation with infinite extent

coordinates, the normalization factor can not be absorbed by a change of integration

variable. As the minimum of E0 is in variable κ, we needM as the thermodynamical

conjugate variable, defined by (T = β−1)

M(β, κ) := T
∂ lnZ1(β, κ)

∂ κ
(28)

which is also interpreted as the equation-of-state of the system. The Gibbs free

energy can represent the exact nature of the phase transition, defined by

G1 = A1 + κM (29)

in which A1 = −T lnZ1 is the free energy per particle. The isothermal G-M plots

are presented in Fig. 2. As seen, below the critical temperature Tc = 0.335 a−1 the

plots develop cusps, at which the system follows the path with lower G (solid-lines

in Fig. 2), by the minimization of G at equilibrium. As the consequence, for T < Tc

there is a jump in first derivative of ∂G/∂M , indicating that the phase transition is a

first order one. It is apparent by now that the above phase structure is quite similar

to the gas/liquid transition, for which G-P plots show exactly the same behavior.

In the similar way the equation-of-state (28) should be modified by the so-called
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Figure 3: The isothermal M -κ plots. The straight-lines are due to the Maxwell

construction, replacing the dashed parts.

Maxwell construction for P -V diagram, by which during isothermal condensation

the pressure (here M) is fixed. The results of the Maxwell construction for the

present model are plotted as isothermal M -κ curves in Fig. 3. The flat part at Tc

corresponds to values:

Tc = 0.335 : κ∗ = 1.403, M∗ = 0.064 (30)

corresponding to the coupling g∗ = 1/
√
κ∗ = 0.844. For isothermal curves below

Tc, the straight horizontal parts describe the coexistence phases of lower and higher

couplings during the phase transition. The interesting fact about the equation-of-

states modified by Maxwell construction is that M always remains non-negative,

that is M ≥ 0. This is specially important by expectations from the variable M at

weak coupling limit κ≫ 1, at which the 0-branes behave like ordinary particles. At

this limit, back to (27) and (28), we have

M ≃ 1

2
⟨ẏ2⟩ ∝ T

m0

(31)

where the proportionality is by the properties of free ordinary particles. In fact the

asymptotic tails in Fig. 3 for large m0 ∝ κ are explained by (31). The behavior

(31) for ordinary particles is valid for all masses, specially in the small mass limit,

leading to the vertical asymptote near m0 ≈ 0. The 0-branes by the present model

also have asymptotes at κ → 0, although with a different slope. In fact the main
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difference between the case with 0-branes in here and that of ordinary particles is

about the existence of a phase transition. In particular, by the present model and

below the critical temperature Tc, the two asymptotes by high and small masses

(high and small κ’s) are connected with a first order phase transition.

It would be interesting to see whether the present model provides a better un-

derstanding of the dynamics of U(1) magnetic monopoles, specially regarding their

role in confinement mechanism. Different studies, including those based on lattice

formulation of gauge theories, strongly suggest that the Abelain U(1) gauge theory

has two different regimes, separated by a phase transition. The two phases are sup-

posed to be the confined and Coulomb phases at strong and weak coupling limits,

respectively. Both theoretical studies on U(1) lattice gauge theories [5–7, 9, 11–15]

as well as several lattice simulations [21–26] have found strong evidence for such a

phase transition. According to the mechanism based on a dual version of Meissner

effect in superconductors, the monopoles have a very distinguished role in such a

phase transition [18–20]. Based on the proposed mechanism, at large coupling limit,

at which the monopoles have tiny masses, the collective motion of monopoles around

the electric fluxes prevents them to spread, leading to the confinement of the electric

charges. Instead at small coupling limit, where the monopoles are highly massive,

the electric fluxes originated from source charges are likely to spread over space,

leading to the Coulomb’s law. It is expected that there is a critical coupling gc at

which the transition from confined phase to the Coulomb phase occurs. The lattice

simulations suggest gc ≃ 1 [21–26].

It is far from the position to conclude that the present model by the reduced

lattice action can give a full explanation for the role of monopoles in the proposed

mechanism for confinement. However, one may try to gather pieces of evidences

in favor of such explanation. First, we mention that the effective mass by the

model has the same dependence on gauge coupling which is expected for monopoles:

m0 ∝ 1/g2. We further mention that the model suggests that the two regimes with

low and high coupling constants are related by a first order phase transition. The

behavior of system at low temperatures, where the main contribution to the partition

function is by the ground-state, is of particular interest. In the limit T → 0, due to

the Maxwell construction, we haveM = 0 for g < gc = 1.125. So as the consequence

of discontinuous nature of first order transitions, at low temperatures and below gc,

⟨v2⟩ is effectively zero; see Fig. 4. This behavior should be compared with (31),
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Figure 4: The isothermal M -g plots.

by which M increases gradually by lowering the mass at constant T . Hence, by

the role proposed for the collective motion of monopoles, at very low temperatures

and below gc the Coulomb phase stay unrivaled with ⟨v2⟩ = 0. On the other hand,

exhibiting a high-slope increase of ⟨v2⟩ at gc, the confined phase at low temperatures

should correspond to g > gc. This picture and specially the value of critical coupling

constant are in agreement with theoretical and numerical studies mentioned earlier.

As the final point, it is emphasized that the lattice gauge theory and the present

model are not belonging to a single theory, though are dually related. In particular,

in lattice gauge theory the spatial directions are discrete, while gauge fields and

momenta are compact periodic variables. Instead, the present model is describing

a kind of particle dynamics on a space with continuous compact spatial directions,

where field fluxes as well as momenta have to be discrete due to compactness of space.

These all are rather expected as two theories are related by the correspondence (1)

suggested by T-duality of string theory. We recall the crucial role of compact angle

variable nature of dynamical variables in both theories, as a further indication that

two sides share common features.
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