Dynamics of Universe

Relative and absolute speed of light

Aberration of light - Apparent light speed Explanation of Michelson-Morley experiment

Michael Tzoumpas
Mechanical Electrical Engineer
National Technical University of Athens

Email: m.tzoumpas @ gmail.com

Abstract

On a previous paper (see http://viXra.org/abs/1410.0040) it is described the structure of the isotropic space of infinite dimensions by the electrically opposite elementary units (in short: units) and, also, it is described the spherical deformation of this isotropic space as a dynamic space of finite dimensions, the Universe. This first space deformation creates the cohesive forces, which cause the chaotic (huge) cohesive pressure. The allocation of these forces in the Universe, as a function of distance from the Universe center, will be developed in this paper.

The explanation of Michelson-Morley experiment is based on actual and apparent equal reduction of light speed. The actual reduction of light speed happens only when light is transmitted on material moving systems, on which the cohesive pressure P_{0} of the proximal space is reduced. The aberration of light can be used as a detection criterion of the absolute motion. Lorentz factor is the result of a mathematical settlement of the problem encountered with the Michelson-Morley experiment. This same reduction factor (Lorentz factor) appears also in the Theory of Dynamic Space at the Galilean transformations, by calculating the actual reduction of the light speed on material moving systems, without the second postulate of Relativity.

1. Dynamics of Universe

On a previous paper (see http://viXra.org/abs/1410.0040) it is described the structure of the isotropic space of infinite dimensions by the electrically opposite elementary units (in short: units) and, also, it is described the spherical deformation of this isotropic space as a dynamic space of finite dimensions, the Universe. The cubic cell is the elementary volume or the space quantum, structured by the electric dipoles (figure 1). It is obvious that this spherical deformity of space has distorted the cell-cubes. So, the electric dipoles lengthen more, away from the Universe center to its periphery, with result the development of stronger cohesive forces. This is because the force of the electric dipole $F=k L_{0}$ is proportional to the dipole length L_{0} between the units. Therefore, the cohesive pressure P_{0}, developed by forces of the electric dipoles, is altered and increasing from the center to the Universe periphery, the same way that the distance L_{0} of the units is increasing. In our region the force F of the electric dipole is measured at the amazing value (see previous link) $F=F_{x}=0,242 \cdot 10^{43} \mathrm{~N}$ and is, of course, the cause of the space cohesiveness.

Figure 1: The cubic cell as an elementary volume-quantum of isotropic space, which has the form of infinite-dimensional cubic grid

Using the mechanical analog of a maximum circle of Universe section and by studying the dynamics of the elastic stretched circular membrane, the cohesive pressure $P_{0 x}$ of a
region at a distance x from the Universe center with a constant radius R_{0} will be calculated, as a function of the constant cohesive pressure $P_{0 p}$ at the Universe periphery ($P_{0 x}=P_{0 p} \frac{x^{2}}{R_{0}{ }^{2}}$).

Figure 2: The elementary external force F (at the Universe periphery) is balanced by the radial force F_{r} (transferred to the underlying radial edge) and by the peripheral constant force F_{p}, which consists of two peripheral components $f=F$, due to the curvature $K_{0}=\frac{L_{0}}{R_{0}}=\omega_{0}$

The elementary external force F, as a part of the total external force, is applied upon node A of the dipoles (figure 2) and is balanced by the radial force F_{r} (transferred to the underlying radial edge) and by the peripheral force F_{p} (consisting of two peripheral components f), so that $F=F_{p}+F_{r}$.

It is noted that, the curvature on the dynamic space of Universe is defined as $K_{x}=\frac{L_{0}}{x}=\omega_{x}$, where L_{0} the elementary length of the electric dipole, ω_{x} the central angle which faces the edge L_{0} at a distance x from the Universe center. In our calculations, we consider that L_{0} is constant over a wide area of the Universe.

In the Universe periphery of radius R_{0} it will be $F_{p}=K_{0} F$, i.e. the peripheral force F_{p} is proportional to the external force F and to the curvature $K_{0}=\frac{L_{0}}{R_{0}}=\omega_{0}$, which is the cause of the lateral deviation of the forces. Thus it is $F_{p}=K_{0} F=\frac{L_{0}}{R_{0}} F \Rightarrow F_{p}=\frac{L_{0}}{R_{0}} F$, whereby both the peripheral components are $f=\frac{F_{p}}{2 \sin \omega_{0} / 2}=\frac{F_{p} / 2}{\omega_{0} / 2}=\frac{F_{p}}{\omega_{0}}=\frac{F_{p}}{K_{0}}=\frac{R_{0}}{L_{0}} F_{p} \Rightarrow f=\frac{R_{0}}{L_{0}} F_{p}$ and for $F_{p}=\frac{L_{0}}{R_{0}} F \Rightarrow f=F$. This equality of peripheral components f with the external radial attractive force F is obvious. Throughout the Universe there is an equality of peripheral and radial forces, corresponding to the elastic changes of lengths $\Delta l=2 \pi \cdot \Delta x$ of concentric peripheries that are proportional to distance x from the Universe center $(l=2 \pi x)$.

The radial force $F_{r}=F-F_{p} \Rightarrow F_{r}=F-F \frac{L_{0}}{R_{0}}=\left(1-\frac{L_{0}}{R_{0}}\right) F \Rightarrow F_{r}=\frac{R_{0} / L_{0}-1}{R_{0} / L_{0}} F$ is transferred to the next underlying radial edge (on node B), so that the peripheral force will be $F_{p 1}=K_{l} F_{r}$ and for $K_{l}=\frac{L_{0}}{R_{0}-L_{0}} \Rightarrow K_{l}=\frac{1}{R_{0} / L_{0}-1} \Rightarrow F_{p l}=\frac{F_{r}}{R_{0} / L_{0}-1}$ and substituting therein the $F_{r}=\frac{R_{0} / L_{0}-1}{R_{0} / L_{0}} F$ we find $F_{p 1}=\frac{L_{0}}{R_{0}} F \Rightarrow F_{p 1}=F_{p}$.

Consequently, the peripheral force F_{p} is transported constant throughout the Universe. However, the components of F_{p} are reduced towards the Universe center and are equal to the corresponding radial force. Thus, the increase of the Universe curvature is the cause that reduces the respective peripheral components f of the resultant constant force $F_{p}=\frac{L_{0}}{R_{0}} F$.

Hence, the radial force $F_{r l}$ will be $F_{r l}=F_{r}-F_{p}$ and substituting therein $F_{r}=\frac{R_{0} / L_{0}-1}{R_{0} / L_{0}} F$ and $F_{p}=\frac{L_{0}}{R_{0}} F$ we find $F_{r l}=\frac{R_{0} / L_{0}-1}{R_{0} / L_{0}} F-\frac{L_{0}}{R_{0}} F=\frac{R_{0} / L_{0}-1}{R_{0} / L_{0}} F \frac{L_{0} / R_{0}}{L_{0} / R_{0}}-\frac{L_{0}}{R_{0}} F=F-2 \frac{L_{0}}{R_{0}} F=F-2 F_{p} \Rightarrow$ $F_{r 1}=F-2 F_{p} \Rightarrow F_{r 1}=F-\left(\frac{R_{0}}{L_{0}}-\frac{R_{0}-2 L_{0}}{L_{0}}\right) F_{p}$. Also, it is $F_{r 2}=F_{r l}-F_{p}$ and substituting therein $F_{r 1}=F-2 F_{p}$ we find $F_{r 2}=F-3 F_{p}=F-\left(\frac{R_{0}}{L_{0}}-\frac{R_{0}-3 L_{0}}{L_{0}}\right) F_{p} \Rightarrow F_{r 2}=F-\left(\frac{R_{0}}{L_{0}}-\frac{R_{0}-3 L_{0}}{L_{0}}\right) F_{p}$. Therefore, at a distance x from the Universe center the radial force $F_{r x}$ can be found if we deduct from the external force F the number $\frac{R_{0}}{L_{0}}-\frac{x}{L_{0}}$ of reductions times the force F_{p}, namely it is $F_{r x}=F-\left(\frac{R_{0}}{L_{0}}-\frac{x}{L_{0}}\right) F_{p}$ and for $F_{p}=\frac{L_{0}}{R_{0}} F$ we find $F_{r x}=F-\left(\frac{R_{0}}{L_{0}}-\frac{x}{L_{0}}\right) \frac{L_{0}}{R_{0}} F \Rightarrow F_{r x}=\frac{x}{R_{0}} F$.

Figure 3: The elementary external force F (at the Universe periphery) is balanced by the radial force F_{r} (transferred to the underlying radial edge) and by the two peripheral constant forces F_{p}, which consist of two pairs of peripheral components (where every $f=F$)

In the spherical three-dimensional space, the cell seats are oriented as tangents to the Universe peripheries and as verticals to its radii. Therefore, at the limits of Universe, the peripheral force consists of two pairs of peripheral components (where every $f=F$) at the tangent level of the periphery and is deducted twice $\left(2 F_{p}\right)$ from the external force F, so that is equal to the corresponding radial force F_{r} (figure 3), i.e. it is $F_{r}=F-2 F_{p}$ and for $F_{p}=\frac{L_{0}}{R_{0}} F$ we have $F_{r}=F-2 \frac{L_{0}}{R_{0}} F=\left(1-2 \frac{L_{0}}{R_{0}}\right) F \Rightarrow F_{r}=f_{l}=\frac{R_{0} / L_{0}-2}{R_{0} / L_{0}} F$.

The next underlying peripheral force $F_{p l}$ is $F_{p l}=K_{l} F_{r}$ where $K_{l}=\frac{L_{0}}{R_{0}-L_{0}}$ $\Rightarrow \quad K_{l}=\frac{1}{R_{0} / L_{0}-1} \quad$ so $\quad F_{p l}=\frac{R_{0} / L_{0}-2}{R_{0} / L_{0}-1} \cdot \frac{1}{R_{0} / L_{0}} F$. Therefore \quad it \quad is $\quad F_{r l}=f_{2}=F_{r}-2 F_{p l} \quad \Rightarrow$ $F_{r l}=f_{2}=\frac{R_{0} / L_{0}-2}{R_{0} / L_{0}} F-2 \frac{R_{0} / L_{0}-2}{R_{0} / L_{0}-1} \cdot \frac{1}{R_{0} / L_{0}} F \Rightarrow F_{r l}=f_{2}=\frac{R_{0} / L_{0}-2}{R_{0} / L_{0}-1} \cdot \frac{R_{0} / L_{0}-3}{R_{0} / L_{0}} F$.

The same way, we found at the next peripheral zone $F_{r 2}=f_{3}=\frac{R_{0} / L_{0}-3}{R_{0} / L_{0}-1} \cdot \frac{R_{0} / L_{0}-4}{R_{0} / L_{0}} F$ and therefore, at the peripheral zone at a distance x from the Universe center, that it is $F_{r x}=f_{x+1}=\frac{x / L_{0}}{R_{0} / L_{0}-1} \cdot \frac{x / L_{0}-1}{R_{0} / L_{0}} F$.

In the above, it is obvious the replacement of $\frac{x}{L_{0}}-1$ and $\frac{R_{0}}{L_{0}}-1$ with $\frac{x}{L_{0}}$ and $\frac{R_{0}}{L_{0}}$ respectively, whereby we have $F_{r x}=f_{x+1}=F \frac{x^{2} / L_{0}{ }^{2}}{R_{0}{ }^{2} / L_{0}{ }^{2}} \Rightarrow F_{r x}=f_{x+1}=F \frac{x^{2}}{R_{0}{ }^{2}}$. So, with this relationship the established equal radial and peripheral forces of the lattice dynamic space are proportional to the square of the distance x from the Universe center. These radial and peripheral forces, which stretch the cell edges, they stretch the cell seats, that are the elementary surface area $L_{0}{ }^{2}$. Therefore, they are identical, of course, with cohesive pressure $P_{0 x}$ at a distance x from the Universe center, i.e. it is $F_{r x}=f_{x+1}=P_{0 x}$.

The same happens at the Universe limits, where the external force F stretches the external peripheral cell-seat of an elementary surface area $L_{0}{ }^{2}$. So, this external force F is identical with the cohesive pressure $P_{o_{p}}$ at the Universe periphery, namely it is $F=P_{o_{p}}$. Substituting $F_{r x}=f_{x+1}=P_{0 x}$ and $F=P_{o_{p}}$ in the above formula $F_{r x}=f_{x+1}=F \frac{x^{2}}{R_{0}{ }^{2}}$ the cohesive pressure of a region at a distance x from the Universe center becomes $P_{0 x}=P_{O_{p}} \frac{x^{2}}{R_{0}{ }^{2}}$.

2. Relative and absolute speed of light

On links http://viXra.org/abs/1505.0211 and http://viXra.org/abs/1507.0079 it is described the motion of charged and uncharged particles, which takes place by accumulation of forces on pairs of vertical meridians of the particle spherical zone, as a result of pressure difference ΔP, which is placed in front of and behind the particle. Therefore, at the motion formations the residual cohesive pressure is $P=P_{0}-\Delta P$, where ΔP the motion arrow of the motion formation and P_{0} the cohesive pressure far from the motion formation.

The light speed C_{0} far from the motion formation (see http://viXra.org/abs/1410.0040) is $C_{0}=\sqrt{\frac{P_{0}}{d_{m}}} \Rightarrow C_{0}^{2}=\frac{P_{0}}{d_{m}}$, while the speed u of the motion formation is $u=\sqrt{\frac{\Delta P}{d_{m}}} \Rightarrow u^{2}=\frac{\Delta P}{d_{m}}$ (see http://viXra.org/abs/1507.0079), where d_{m} the mass density of space. The relative light speed at the motion formation is $C_{r}=\sqrt{\frac{P}{d_{m}}} \Rightarrow C_{r}^{2}=\frac{P}{d_{m}} \Rightarrow C_{r}^{2}=\frac{P_{0}-\Delta P}{d_{m}}=\frac{P_{0}}{d_{m}}-\frac{\Delta P}{d_{m}}$ $\Rightarrow C_{r}^{2}=C_{0}^{2}-u^{2} \Rightarrow C_{r}=\sqrt{C_{0}^{2}-u^{2}} \Rightarrow C_{r}=C_{0} \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$. Hence, the relative light speed C_{r} in a moving material system is reduced irrespective of the direction of motion by the reduction factor $\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$.

Of course, if ω is the angle between C_{0} and speed u of moving system, then the relative light speed C_{r} (figure 4) is $C_{r}=\sqrt{C_{0}^{2}-u_{x}^{2}}$, where $u_{x}=u \cos \omega$. Namely, only the parallel to light speed C_{0} component u_{x} causes an actual reduction of C_{0}, due to reduction of the cohesive pressure P_{0}, while the vertical component u_{y} causes an apparent reduction of C_{0}, due to aberration of light, as it will be described at the following paragraph 3 .

Figure 4: Component u_{x} causes an actual reduction of C_{0}
Given that the relative light speed $C_{r}=\sqrt{C_{0}^{2}-u^{2}}$ is a function of speed u (that imposes the motion arrow) of the moving system, it is expected the absolute light speed to be the algebraic sum of u and C_{r}, i.e. it is $C=C_{r} \pm u \Rightarrow C=\sqrt{C_{0}^{2}-u^{2}} \pm u$. So, for light there is no need to apply Lorentz transformations (since it is $C_{r}<C_{0}$), but Galilean transformations, as they apply at the motion of material bodies in moving systems.

3. Aberration of light - Apparent light speed

When light moves far from dynamic fields (e.g. electrical or gravitational fields) or in regions where the Cosmic change of cohesive pressure P_{0} is negligible, then it moves in straight line and any aberrance from this straight line defines the phenomenon of aberration of light. This phenomenon is caused at the apparent aberration and the change of light speed, due to the absolute motions of either the observer, or the light source, or both. In figure 5a, where the observer and the light source are stationary, the observer at point O observes the E / M waves from light source S transmitted by the laser device.

Figure 5: The aberration of light causes an apparent reduction of light speed
In Figure 5 b light source and observer are moving in parallel at speed u, vertically to the emitted laser beam, resulting the footprint of the beam to be left behind the observer, since the motion of the light source does not affect the autonomous motion of the $\mathbf{E / M}$ waves (see http://viXra.org/abs/1511.0025). Therefore, the aberration of light can be used as a detection criterion of the absolute motion. The laser beam must turn oppositely at an angle ω (figure 5c), so that the component be $C_{a}=C_{0} \cos \omega$ or $C_{a}=\sqrt{C_{0}^{2}-u^{2}} \Rightarrow C_{a}=C_{0} \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$ Then, the moving observer can see the light, with the so called apparent light speed C_{a}.

It is noted that the apparent change of light speed C_{0} is reduced by the same reduction factor $\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$, as in the actual reduction of C_{0} (see paragraph 2), i.e. when light moves to the direction of the moving system. Here, the vertical motion of the system does not cause an actual change of light speed, but an apparent change, due to the aberration of light. Therefore, in case light moves to the direction or opposite of the moving system, an actual reduction of C_{0} occurs, due to reduction of the cohesive pressure P_{0}, while in case light moves to the vertical direction of the moving system, an apparent reduction of C_{0} occurs by the same reduction factor $\sqrt{1-\frac{u^{2}}{c_{0}^{2}}}$, but here due to the aberration of light, that is
$C_{r}=C_{a}=C_{0} \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$. The explanation of Michelson-Morley experiment is based on actual and apparent equal reduction of light speed.

4. Explanation of Michelson-Morley experiment

We shall now explain the Michelson-Morley experiment, as a result of the actual and apparent equal reduction of light speed in the moving systems. It was expected the differential phase shift between light traveling the longitudinal versus the transverse arms of the Michelson interferometer.

Figure 6: Schematic representation of Michelson interferometer. For the stationary observer $C_{1}=C_{r}-u$ and $C_{2}=C_{r}+u$ are the absolute light speeds on arm $\left(K K_{2}\right)=\beta$ and $C_{a}=\sqrt{C_{0}^{2}-u^{2}}$ is the apparent light speed on arm $\left(K K_{l}\right)=\beta$, due to the apparent reduction of light speed, where $C_{r}=\sqrt{C_{0}^{2}-u^{2}}$ is the relative light speed on arm $\left(K K_{2}\right)=\beta$, due to the actual reduction of light speed and u is the speed of interferometer (Earth)

For a stationary observer the total time T_{1} on arm $K K_{1}$, where occurs an aberration of light (see paragraph 3), is $T_{l}=2 \beta / C_{a}$, i.e. $T_{1}=2 \beta / \sqrt{C_{0}^{2}-u^{2}}$ and the total time T_{2} on arm $K K_{2}$, using the Galilean transformations, is $T_{2}=2 \beta C_{0} /\left(C_{0}{ }^{2}-u^{2}\right)$. Dividing by parts, it is $\frac{T_{1}}{T_{2}}=\sqrt{1-\frac{u^{2}}{c_{0}^{2}}}<1 \Rightarrow T_{1}<T_{2}$. This theoretical result is not verified by the experiment, since the superposition of the two parts of monochromatic light is maintained, which happens only, if $T_{I}=T_{2}$. Therefore, something happens with behavior of light.

This experimental result was the cause for the creation of Theory of Special Relativity and for the acceptance of Lorentz transformations for light. The time dilation and the
definition of time as a physical entity in the space-time continuum is the consequence of this acceptance. Time, however, is defined as motion of the elementary units at light speed (see http://viXra.org/abs/1502.0097), by which matter and motion are constructed, as the unique phenomena of Nature.

The stationary observer calculates that, the absolute light speed C_{1} (see paragraph 2) on $\operatorname{arm} K K_{2}$, is $C_{l}=C_{r}-u$ (1) and $\left(K K_{2}{ }^{\prime}\right)=C_{l} t_{l}$ (2), where t_{l} the motion time of the interferometer at speed u, covering the distance $K_{2} K_{2}{ }^{\prime}$ (figure 6). Substituting in formula (2) the formula (1) and $\left(K K_{2}{ }^{\prime}\right)=\beta$ - $u t_{1}$ is $\left(C_{r}-u\right) t_{l}=\beta$-ut t_{1}, where $\beta=\left(K K_{2}\right)$, thus $t_{l}=\beta / C_{r}$ and $C_{r}=\sqrt{C_{0}^{2}-u^{2}}$ the relative speed on arm $K K_{2}$, due to the actual reduction of C_{0} (see paragraph 2). Accordingly, $t_{1}=\beta / C_{r} \Rightarrow t_{1}=\beta / \sqrt{C_{0}^{2}-u^{2}}$.

The time on arm $K K_{l}$ is $t_{1}{ }^{\prime}=\beta / C_{a}=\beta / C_{r}$, as it is t_{l} on arm $K K_{2}$, namely $t_{1}{ }^{\prime}=t_{1}=\beta / \sqrt{C_{0}^{2}-u^{2}}$, due to the apparent reduction of C_{0} (see paragraph 3) and $t_{2}{ }^{\prime}$ the return time on arm $K K_{1}$ with an apparent reduction of C_{0}, that is $t_{2}{ }^{\prime}=\beta / \sqrt{C_{0}^{2}-u^{2}}$.

At the return of light (on arm $K_{2} K$), covering the distance $\left(K_{2}{ }^{\prime} K^{\prime \prime}\right)=\left(K_{2}{ }^{\prime} K_{2}{ }^{\prime \prime}\right)+\left(K_{2}{ }^{\prime \prime} K^{\prime \prime}\right)$ at time t_{2} of interferometer motion, when covering the distance $K_{2}{ }^{\prime} K_{2}{ }^{\prime \prime}$ with speed u. If C_{2} the absolute light speed, then $C_{2} t_{2}=u t_{2}+\beta$, where $\beta=\left(K_{2}{ }^{\prime \prime} K^{\prime \prime}\right)$ and for $C_{2}=C_{r}+u$ (see paragraph 2), whereby $C_{r} t_{2}+u t_{2}=u t_{2}+\beta \Rightarrow t_{2}=\beta / C_{r}$, where $C_{r}=\sqrt{C_{0}^{2}-u^{2}}$ the actual reduction of C_{0} (see paragraph 2). Accordingly, $t_{2}=\beta / C_{r}$ becomes $t_{2}=\beta / \sqrt{C_{0}^{2}-u^{2}}=t_{2}{ }^{\prime}$, where $t_{2}{ }^{\prime}$ the return time on arm $K K_{1}$ with an apparent reduction of C_{0} (see paragraph 3). It is, therefore, $t_{1}=t_{1}{ }^{\prime}=t_{2}=t_{2}{ }^{\prime}=\beta / \sqrt{C_{0}^{2}-u^{2}}$ the same time on arms $K K_{1}$ and $K K_{2}$ of interferometer. The total time on arm $K K_{1}$ is $T_{1}=t_{1}{ }^{\prime}+t_{2}{ }^{\prime}=2 \beta / \sqrt{C_{0}^{2}-u^{2}}$ as much as on arm $K K_{2}$, namely it is $T_{2}=t_{1}+t_{2}=2 \beta / \sqrt{C_{0}^{2}-u^{2}}=T_{1} \Rightarrow T_{1}=T_{2}$ and for this reason the superposition of the two parts of the monochromatic light is maintained.

A similar explanation of Michelson-Morley experiment applies if the observer is on the moving system, i.e. on the Earth. Consequently, the Michelson-Morley experiment was explained on the basis of actual and apparent reduction of light speed. Therefore, in case that light moves to the direction or the opposite of the moving system, an actual reduction of C_{0} occurs, due to the reduction of the cohesive pressure P_{0}. In case light moves to the vertical direction of the moving system, an apparent reduction of C_{0} occurs by the same reduction factor, but here due to the aberration of light. Hence, it always applies $C_{r}=C_{a}=C_{0} \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$.

5. The slowing of moving clocks

Assuming a clock on a material moving system, with an oscillation period $T=2 \pi \sqrt{\frac{m}{D}}$ and a force constant $D=F / x$, then the relationship $\frac{T_{0}}{T}=\sqrt{\frac{D}{D_{0}}}=\sqrt{\frac{P}{P_{0}}}$ applies, since the reduction of elastic forces of oscillations in material bodies takes place to each direction, due to the residual cohesive pressure $P=P_{0}-\Delta P$ (see paragraph 2), where T_{0} the oscillation period of a stationary clock.

Timeless speed (see http://viXra.org/abs/1507.0079) of the moving system, with linear speed u is $u_{a}=\frac{u}{C_{0}}=\sqrt{\frac{\Delta P}{P_{0}}} \Rightarrow \frac{C}{C_{0}}=\sqrt{1-\frac{u^{2}}{c_{0}^{2}}}=\sqrt{1-\frac{\Delta P}{P_{0}}}=\sqrt{\frac{P_{0}-\Delta P}{P_{0}}}=\sqrt{\frac{P}{P_{0}}}$ and therefore, is $\sqrt{\frac{P}{P_{0}}}=\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$ and due to $\frac{T_{0}}{T}=\sqrt{\frac{P}{P_{0}}}$, it is $\frac{T_{0}}{T}=\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}=1 / \gamma \Rightarrow \frac{T}{T_{0}}=\gamma>1 \Rightarrow T>T_{0}$, where $\gamma=1 / \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$ as symbolized in Theory of Relativity. So, the moving clock with the longest oscillation period T slows down compared to stationary clock with oscillation period T_{0}.

6. Consequences due to slowing of the moving clocks

The stationary observer on reference system of Ether (Michelson-Morley experiment), calculates a reduced time $t=t^{\prime} \sqrt{1-\frac{u^{2}}{c_{0}^{2}}}$, where t^{\prime} is the time measured by an observer on Earth. For $\gamma=1 / \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}>1$ the previous formula becomes $t / t^{\prime}=\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}=1 / \gamma \Rightarrow$ $t=t^{\prime} \gamma \gamma$ and, therefore, $t<t^{\prime}$.

For an observer on Earth light has traveled a distance L^{\prime}, while for an observer on Ether light has traveled a distance L, so it is $L=L^{\prime} \sqrt{1-\frac{u^{2}}{c_{0}^{2}}}$, namely distance L is reduced by the known reduction factor $\sqrt{1-\frac{u^{2}}{c_{0}^{2}}}=1 / \gamma$ and substituting this in above formula, it is $L=L^{\prime} / \gamma$.

However, the light speed C measured from the stationary observer (on Ether), is $C=L / t$ and substituting therein $L=L^{\prime} / \gamma$ and $t=t^{\prime} / \gamma$, it is $C=\frac{L^{\prime} / \gamma}{t^{\prime} / \gamma}=\frac{L^{\prime}}{t^{\prime}}$, wherein $L^{\prime} / t^{\prime}=C^{\prime}$ light speed measured by the observer on Earth. Therefore $C=C^{\prime}$, namely the light speed C looks as a constant (seemingly) on the moving system (Earth), but in reality it has been reduced! This equality of light speeds arose, because the light speed C^{\prime} reduced by a factor $\sqrt{1-\frac{u^{2}}{c_{0}^{2}}}$ is measured by a clock that slows down, due to the longest oscillation period T (with $T>T_{0}$) by the same factor $\sqrt{1-\frac{u^{2}}{C_{0}^{2}}}$, according to the formula $T / T_{0}=1 / \sqrt{1-\frac{u^{2}}{C_{0}^{2}}}>1 \Rightarrow T>T_{0}$ (see paragraph 5).

7. Epilogue of Michelson-Morley experiment

The time dilation and the definition of time as a physical entity (fourth dimension) in the space-time continuum is the result of the incorrect interpretation of the Michelson-Morley experiment and the phenomenon has since remained without physical explanation. So, the Lorentz transformations have been accepted, ignoring the real cause of the slowing of the moving clock (see paragraph 5). In addition, the experimental result of increased life of fast moving muons is used as a proof of Relativity Theory. However, the Theory of Dynamic Space clearly outlines the structure of particles and their motion (see link in paragraph 5), which decreases the cohesive pressure of the proximal space. So, the cortex of muon (see http://viXra.org/abs/1502.0097) resists easier to the reduced attraction of cohesive pressure, thus slowing their decay and prolonging their life.

In the question «Why Theory of Relativity has correct applicable results? », the following answer is given:

The reduction factor $\gamma=1 / \sqrt{1-\frac{u^{2}}{c_{0}^{2}}}$ (Lorentz factor) is the result of a mathematical settlement of the problem encountered with the Michelson-Morley experiment. This same reduction factor appears also in the Theory of Dynamic Space at the Galilean transformations, by calculating the actual reduction of the light speed on material moving systems. So, Lorentz transformations prove correct, but without the second postulate of Relativity and therefore, the Relativity Theory has correct applicable results. However, the application of Galilean transformations is preferable, at calculating the relative speed of light on the material moving systems. Moreover, the application of the Lorentz transformations on imaginary (nonmaterial) systems can lead to unreasonable results. The actual reduction of light speed happens only when light is transmitted on material moving systems, on which the cohesive pressure P_{0} of the proximal space is reduced.

Bibliography

Gosdas I.N. (1999), The Unified Theory of Dynamic Space, Published by Trohalia, Greek Edition in Athens

Gosdas I.N. (2001), The Structure of Nuclei, Published by SALTO, Greek Edition in Thessaloniki

Gosdas I.N. (2003), Unified Timeless Mechanics, Published by Hellenic Physicists Society, Greek Edition in Athens

Gosdas I.N. (2004), The Structure and the Dynamics of Space, Published by M. \& G. Zorzos, Greek Edition in Athens

Gosdas I.N. (2006), The Structure and Function of the Universe, Published by Hellenic Physicists Society, Greek Edition in Athens

Gosdas I.N. (2008), Theory of Dynamic Space-The Universal Truth, Self-Published by the author, English Edition in Kastoria Greece

Tzoumpas M. (2013), The Timeless Universe, Published by Lefkiselida, Greek Edition in Athens

