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Abstract

One common way to define spontaneous symmetry breaking involves necessarily explicit
symmetry breaking. Thus, how could we have spontaneous without explicit symmetry break-
ing? We study the concept of Hidden symmetries, which are not spontaneously broken by
the Higgs potential, and its representations on the (multi-)Higgs field φ. Suppose φ is a
direct sum of irreducible equivalent representations of the compact group Ga. If we impose
a symmetry Gp (compact) to the most general potential of the multi-Higgs-doublet Higgs
potential we show that:

1) if no explicit term exists violating Ga, then there is no spontaneous breaking of Ga

(the symmetry Ga is hidden in the Higgs potential).
2) if explicit symmetry breaking of Ga, then Ga is allowed to break spontaneously;
Then we explain a recent and related conjecture related with the charge-parity symmetry.

1 Introduction

There are several definitions of spontaneous breaking of global symmetries [1, 2]. In the following
common definition[1], spontaneous symmetry breaking is defined as a particular case of explicit
symmetry breaking via the external source J .

Let A be an algebra of operators, the global symmetry β is a bijective map β : A → A.
The system’s expectation value ωJ is a positive linear functional ωJ : A → R,

J ≥ 0 is the intensity of an external source breaking the symmetry β. The system has infinite
size ωJ = limN→∞ ωJ,N .

For finite size N , the system is well behaved with continuous expectation values J > 0:
ωJ,N (A− β(A)) = aJ,N 6= 0 J = 0: ω0,N (A) = ω0,N (β(A)) limJ→0 ωJ,N (A− β(A)) = 0 for some
A.

1) The spontaneous symmetry breaking happens when: limJ→0{limN→∞ ωJ,N (A−β(A))} →
a0 6= 0 and it is possible due to the fact that the limits are non-commutative if ωJ,N is continuous
but not uniformly continuous.
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Other definitions do not consider an external source [1], at least not explicitly.
In statistical mechanics, it is more or less clear that these definitions should be all equivalent

(e.g. in the Ising model [1]), although it is not easy to mathematically prove it as the systems
with or without external source are physically different [3].

When it comes to quantum non-abelian gauge field theories, the theories themselves lack a
non-perturbative mathematical definition [4], so it is even more difficult to relate these different
definitions. By analogy with statistical mechanics, we expect that they are related. In the
presence of the Higgs mechanism, there is yet another definition of spontaneous symmetry
breaking, most common in the context of perturbation theory:

2) After a suitable perturbative non-abelian gauge fixing, the vacuum expectation value of
the Higgs field is determined (up to quantum corrections) by one of the possible minima of the
Higgs potential. The symmetries broken by the vacuum expectation value of the Higgs field are
spontaneously broken symmetries.

It is not at all obvious that the last definition (2) is physically (not to mention mathe-
matically) equivalent to the first definition (1) in the context of the Electroweak theory, since
spontaneous symmetry breaking is a non-perturbative phenomenon.

However, the fact is that the perturbative predictions from the Electroweak theory seem to
be a very good approximation to the existing experimental data in high-energy physics[5], and
the lattice simulations so far agree with this picture [6–8] (also for two-Higgs-doublet models [9]).
Therefore, for consistency these definitions should be related. While we cannot give a solid proof
that this is so, we can check in concrete models that the perturbative definition is consistent
with the non-perturbative ones.

There is a further ingredient to take into account [10]: a spontaneous breaking of local gauge
symmetry without gauge fixing may be impossible in a gauge theory such as the Electroweak
theory. The argument is based on the fact that local gauge transformations affect only a
small sized system near each space-time point and so the non-commutativity of the limits seen
above does not applies (under some assumptions on the analiticity of ωJ,N ). It can be argued
that the Higgs mechanism avoids the presence of Nambu-Goldstone bosons precisely because
the local gauge symmetry is not spontaneously broken [11, 12]. Moreover, there is a group-
theory correspondence between gauge-invariant composite operators and the gauge-dependent
elementary fields in the Electroweak theory [8, 12, 13].

The above discussion implies that there must exist specific relations between the gauge-
dependent minima of the Higgs potential and the gauge-invariant operators appearing in the
Lagrangian, for consistency reasons. That is, relations between explicit and spontaneous sym-
metry breaking. Some of these relations were noted recently in the context of the study of
the CP symmetry in multi-Higgs-doublet models [14] and were summarized in the form of a
conjecture. We will study the concept of Hidden symmetries, which are not necessarily sponta-
neously broken, and its real representations in Higgs fields. Then we will generalize and try to
understand the recent conjecture mentioned above [14].
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2 Hidden symmetries and minima

An important remark is that the minimization of the potential is done classically. Then quantum
corrections may be added, but evaluating if spontaneous symmetry breaking is allowed or not
is always done purely classically and more importantly, only Higgs fields and the potential are
considered.

Another remark is that the Higgs potential is a real function, so the parameters of the Higgs
potential are an irreducible representation over the real numbers of the group of background
symmetries (which admit more operators than the corresponding irreducible complex represen-
tations, in this sense they are more general than the complex representations) [15]. However,
since only bi-linears enter the Higgs potential, we can consider the Higgs field φ to be a complex
field, this has the advantage that the representation of the direct product of two groups can
be done by tensor products of the corresponding representations. Since only one Higgs field
φ enter the potential, the bilinears are all real. Therefore, there is always a U(1) phase that
gets absorbed, such phase cannot correspond to the U(1)Y group, otherwise we could not have
the charged W± for instance since by definition we cannot have transformations which to not
commute with the imaginary unit.

Suppose we have a compact group of symmetries G. We consider a complex irreducible
faithful representation of G, φ.

We call to the sub-groups Gl the lagrangian group and to Gh the hidden group. The
representation space φ is a direct sum of irreducible equivalent representations of Gh.

Now we assume that every irreducible subspace of φ conserved by Gl is also conserved by
Gh. This implies that every hermitian H operator acting on φ that is invariant under Gl is
also invariant under Gh. (the converse is also true: every hermitian operator that is conserved
by Gl is proportional to the identity in each irreducible representation of Gl— by the Schur’s
lemma— if all of them are conserved by Gh that implies that Gl leaves invariant the projection
operators defining the subspace of each irreducible representation of Gl).

We write the most general quartic potential symmetric under Gl, V (φ) and therefore verify
that it is also invariant under Gh. Then the group of background symmetries Gb is the subgroup
of G such that Gh is a normal sub-group. That is because we cannot tell the difference, whether
we wanted or not for the symmetry Gh to be conserved by the bilinears, as the potential is
exactly the same. The parameters of the potential will be an irreducible representation of Gb,
with Gh acting trivially.

Then the Higgs basis will necessarily conserve Gh. These symmetries are hidden in the
problem of minimization. They are not broken by the bilinears in the Higgs basis. This is
what lies behind the fact that despite the Higgs mechanism in the SM involves a minimization
problem, that does not lead necessarily to the breaking of the SU(2)R×SU(2)L → SO(3) [11–
13].

The coordinates of a vector space covariant under a group G are not meaningful math-
ematically (neither physically). The only relevant information we can extract from a group
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representation are its invariants, in the case of the Higgs potential which only depends on Higgs
fields in one space-time point, these are the bilinears which always absorb the Gh group, thus
these symmetries are hidden at least at the Higgs potential which determines what are the
spontaneously broken symmetries.

Even if we assume that there is spontaneous symmetry breaking of Gh, the fact is that
the background transformations relating the Lagrangian basis with the Higgs basis leave Gh

intact. Thus the representation of Gh is the same in the Higgs basis or in the Lagrangian
basis. Note that when we impose the U(1)Y symmetry to the Higgs potential, such symmetry
can be spontaneously broken by the minima of the potential, because the two-dimensional
representations where it acts are reducible for U(1)Y , in order to become irreducible we need
to include also the CP symmetry in Gh, as we will see along the paper.

3 The case when explicit symmetry breaking is allowed

For the most general Lagrangian invariant under Gl, suppose that explicit symmetry breaking
of Gh is possible. Then, in the Higgs basis we can have one such term breaking Gh. That implies
spontaneous symmetry breaking if in the Lagrangian basis the symmetry Gh is conserved. Note
that the quadratic terms of the Lagrangian are an irreducible representation of the group of
background symmetries Gb so there are no invariant subspaces under Gb, therefore for arbitrary
parameters of the potential we cannot exclude the spontaneous symmetry breaking of Gh.
Of course that we can always play with the particular values of the parameters so to avoid
spontaneous symmetry breaking, an extreme case would be for instance setting all the quadratic
terms to zero we would avoid any spontaneous symmetry breaking.

4 CP symmetry with neutral vacuum

In the context of multi-Higgs-doublet models, the vacuum may break U(1)em. That is because
we are not considering all the possible terms which are invariant under SU(2)L (note that the
Higgs potential is a real function), we are setting some of the terms in the potential manually
to zero, such that U(1)Y is conserved explicitly [16]. So, we have to work with the most general
potential invariant under the groups corresponding to irreducible representations, i.e. either
SU(2)L or SU(2)L × U(1)Y o Z4, where U(1)Y o Z4 ⊂ SU(2)R (the custodial group) and the
Z4 is related with the CP transformation.

So, whenever U(1)Y oZ4 is necessarily conserved, the CP symmetry is a hidden symmetry
and so it is unaffected by the minimization of the Higgs potential. Even if we assume that there is
spontaneous breaking of the hidden symmetry, the breaking SU(2)L×U(1)Y oZ4 → U(1)emoZ2

conserves both CP and U(1)em.
However, if it is possible to have terms in the potential breaking U(1)Y o Z4, then it is

possible to have spontaneous breaking of both CP and/or U(1)Y . If we additionally assume
that we will choose parameters of the Higgs potential such that U(1)Y is conserved, then we
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have for look to the terms which verify 3 conditions: break CP , conserve U(1)Y and finally are
non-null at the neutral minima. If no such term exists then there is no spontaneous breaking
of CP. If such term exists then spontaneous breaking of CP is allowed.

Note that the terms in the Higgs potential which will be null for a neutral vacuum are irrel-
evant when evaluating spontaneous symmetry breaking at neutral minima, since changing such
terms leaves the potential invariant at the minimum (they correspond to Lagrange multipliers
in the bilinear formalism to minimize the potential). Dropping such terms is similar to consider
a system where all the Higgs fields are neutral (the neutral Higgs sector [14]).

In order to apply the theorem to generalized CP, we need to consider the most general
group that includes CP, i.e. (SU(n)× U(1)em) o Z2 where n is the number of Higgs doublets.
Therefore, there is a basis such that any generalized CP transformation is given by the standard
CP transformation [17, 18]. Even if Gp is not conserved explicitly in such basis, selecting
hermitian operators invariant under Gp is a basis invariant process and so the theorem is valid
to generalized CP.

5 Conclusion

The coordinates of a vector space covariant under a group are not meaningful mathematically
(neither physically). The only relevant information we can extract from a group representation
are its invariants, in the context of the Higgs potential these are the Higgs bilinears which may
hide a group.

Suppose the Higgs field φ is a direct sum of irreducible equivalent representations of the
compact group Gh. If we impose a symmetry Gp (compact) to the most general potential of
the multi-Higgs-doublet Higgs potential we show that:

1) if no explicit term exists violating Gh, then there is no spontaneous breaking of Gh (the
symmetry Gh is hidden in the Higgs potential).

2) if explicit symmetry breaking of Gh is possible, then Gh is allowed to break spontaneously;
Using this proposition we explained a recent and related conjecture [14], related with the

CP symmetry. Note that the theorem of this paper is not just valid for the breaking of the CP
symmetry, it also considers restrictions from compact groups (not necessarily finite or abelian),
unlike the mentioned conjecture [14].

Already for consistency reasons, the above proposition (modulo technical details) should
be valid: probably the most popular way to define spontaneous symmetry breaking involves
necessarily explicit symmetry breaking (def. 1 of the introduction). Thus, how could we have
spontaneous without explicit symmetry breaking? (1st part of theorem). Also, since we are
assuming that the spontaneous symmetry breaking is determined by the minima of the Higgs
potential, then if we allow explicit symmetry breaking of the Higgs potential we necessarily
allow spontaneous symmetry breaking, since we can redefine the field coordinates with respect
to a particular minimum that breaks explicitly the symmetry (2nd part of theorem).
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