Proof of Beal conjecture

\[A^x + B^y = C^z \] \hspace{1cm} (1)

Then \[(A^x/2)^2 + (B^y/2)^2 = (C^z/2)^2 \] \hspace{1cm} (2)

Then that is a equation of a right angled triangle. So

\[\frac{A^x}{2} \quad \frac{C^z}{2} \quad \frac{B^y}{2} \]

\[\hline \]

\[\frac{A^x}{2} \quad \frac{C^z}{2} \quad \frac{B^y}{2} \]

Similar proportion

\[\frac{KA^x}{2} \quad \frac{KC^z}{2} \quad \frac{KB^y}{2} \]

Number (4) is a right angled triangle. So it should be like number (2)

\[\frac{KA^x}{2} = \frac{A^1x}{2} \]
\[\frac{KB^y}{2} = \frac{B^1y}{2} \]
\[\frac{KC^z}{2} = \frac{C^1z}{2} \]

From (4) right angle triangle

\[K^2XC^z = K^2XA^x + K^2xB^y \] \hspace{1cm} (6)

\[(K^2/2XC)^z = (K^2/x^zA)^x + (K^2/YX)^y \] \hspace{1cm} (7)

So there is a common factor \(K \). Let \(K = P^n \).

\[(P^2n/Z)^z = (P^2n/x^A)^x + (P^2n/y^B)^y \] \hspace{1cm} (7)

There is a common factor \(P \). So there should be a common primary factor.

Then Beal Conjecture is proved by Mr. G.L.W.A. Jayathilaka. Address—Guruwatta Walawwe, Meetiyagoda, Sri Lanka. E-mail- gherbalproducts@gmail.com