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1. Introduction

Neutrosophic set proposed by Smarandache [13, 14] is a powerful tool to
deal with incomplete, indeterminate and inconsistent information in real
world. It is a generalization of the theory of fuzzy set [30], intuitionistic fuzzy
sets [27, 29], interval-valued fuzzy sets [22] and interval-valued intuitionistic
fuzzy sets [28], then the neutrosophic set is characterized by a truth-
membership degree (t), an indeterminacy-membership degree (i) and a
falsity-membership degree (f) independently, which are within the real
standard or nonstandard unit interval ]-0, 1+[. Therefore, if their range is
restrained within the real standard unit interval [0, 1], the neutrosophic set is
easily applied to engineering problems. For this purpose, Wang et al. [17]
introduced the concept of a single valued neutrosophic set (SVNS) as a
subclass of the neutrosophic set. The same authors introduced the notion of
interval valued neutrosophic sets [18] as subclass of neutrosophic sets in

Critical Review. Volume XII, 2016



92 Said Broumi , Mohamed Talea, Assia Bakali, Florentin Smarandache.

On Strong Interval Valued Neutrosophic Graphs

which the value of truth-membership, indeterminacy-membership and
falsity-membership degrees are intervals of numbers instead of the real
numbers. Recently, the concept of single valued neutrosophic set and interval
valued neutrosophic sets have been applied in a wide variety of fields
including computer science, enginnering, mathematics, medicine and
economic [3, 4,5, 6, 16, 19, 20, 21, 23, 24, 25, 26, 32, 34, 35, 36, 37, 38, 43].

Lots of works on fuzzy graphs and intuitionistic fuzzy graphs [7, 8, 9, 31, 33]
have been carried out and all of them have considered the vertex sets and
edge sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations
between nodes(or vertices) in problems are indeterminate, the fuzzy graphs
and intuitionistic fuzzy graphs are failed. For this purpose, Smarandache [10,
11] have defined four main categories of neutrosophic graphs, two based on
literal indeterminacy (I), which called them; I-edge neutrosophic graph and I-
vertex neutrosophic graph, these concepts are studied deeply and has gained
popularity among the researchers due to its applications via real world
problems [1, 12, 15, 44, 45, 46]. The two others graphs are based on (t, i, f)
components and called them; The (t, i, f)-edge neutrosophic graph and the (t,
i, f)-vertex neutrosophic graph, these concepts are not developed at all. Later
on, Broumi et al. [40] introduced a third neutrosophic graph model combined
the (t, i, f)-edge and and the (t, i, f)-vertex neutrosophic graph and
investigated some of their properties. The third neutrosophic graph model is
called single valued neutrosophic graph (SVNG for short). The single valued
neutrosophic graph is the generalization of fuzzy graph and intuitionistic
fuzzy graph. Also, the same authors [39] introduced neighborhood degree of
a vertex and closed neighborhood degree of vertex in single valued
neutrosophic graph as a generalization of neighborhood degree of a vertex
and closed neighborhood degree of vertex in fuzzy graph and intuitionistic
fuzzy graph. On the other hand, Broumi et al. [41] introduced the concept of
interval valued neutrosophic graphs, which is a generalization of fuzzy graph,
intuitionistic fuzzy graph, interval valued fuzzy graph, interval valued
intuitionistic fuzzy graph and single valued neutrosophic graph,. Also, Broumi
et al. [42] studied some operations on interval valued neutrosophic graphs.
Motivated by the operations on (crisp) graphs such as Cartesian product,
composition, union and join, In this paper, we define the operations of
cartesian product, composition, union and join on strong interval valued
neutrosophic graphs and investigate some their properties.

2.Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets,
single valued neutrosophic sets, interval valued neutrosophic sets, fuzzy
graph and intuitionistic fuzzy graph, interval valued intuitionstic fuzzy graph,
and interval valued neutrosophic graph. relevant to the present work. See
especially [2, 7, 8, 13,17, 40, 41] for further details and background.
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Definition 2.1 [13]. Let X be a space of points (objects) with generic

elements in X denoted by x; then the neutrosophic set A (NS A) is an object
having the form A = {< x: T (%), [4(X), FA(X)>, x € X}, where the functions T, |,
F: X-]-0,1+[ define respectively the a truth-membership function, an
indeterminacy-membership function, and a falsity-membership function of
the element x € X to the set A with the condition:

-0 < Ty (x)+ [, (X)+ Fo(x)< 3*. (1)

The functions Ty (x), [5(x) and F5(x) are real standard or nonstandard
subsets of |-0,1+].

Since it is difficult to apply NSs to practical problems, Wang et al. [16]
introduced the concept of a SVNS, which is an instance of a NS and can be used
in real scientific and engineering applications.

Definition 2.2 [17]. Let X be a space of points (objects) with generic

elements in X denoted by x. A single valued neutrosophic set A (SVNS A) is
characterized by truth-membership function T,(x), an indeterminacy-
membership functionI,(x), and a falsity-membership function F4(x). For
each pointx in X T, (%), [4(x), FA(X) € [0, 1]. A SVNS A can be written as

A={<x: Ty (%), [a(¥), FA(x)> x € X} (2)

Definition 2.3[7]. A fuzzy graph is a pair of functions G = (o, 1) where ¢ is a

fuzzy subset of a non empty set V and p is a symmetric fuzzy relation on o.
ie 0:V->[0,1] and

p: VxV—[0,1] such that p(uv) < o(u) Ao(v) for all u, veV where uv
denotes the edge between u and v and o(u) A o(v) denotes the minimum of
o(u) and o(v). o is called the fuzzy vertex set of V and pis called the fuzzy
edge set of E.

(0.1)

v4(0.1) V>(0.3)

(0.3)

(0.1)
(0.1)

,(0.4) v3(0.2)

(0.1)

Figure 1: Fuzzy Graph
Definition 2.4 [7]. The fuzzy subgraph H = (t, p) is called a fuzzy subgraph

of G = (o, W
Ift(u) <o(u) forallu € Vandp(u,v) < p(u,v) forallu,veVv
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Definition 2.5 [8]. An intuitionistic fuzzy graph is of the form G =(V, E ) where

i V={vy, v5,...., vV} such that y,: V= [0,1] and y;: V = [0,1] denote the
degree of membership and nonmembership of the elementv; €V,
respectively, and 0 < p;(v;) +v1(v;)) €1 forevery v;e€V,(i=1,2,
....... n),

ii. E < VxVwhere p,: VxV—[0,1] and y,: VxV— [0,1] are such that

Mz (Vi Vj) < min [py (vi), By (Vj)] and v, (v;, Vj) = max [yq(vi), V1 (Vj)]
and 0 <y, (vj, vj) +v2 (v, vj) < Lforevery (v;, vj) €E, (i,j =12, ...... n)

,(0.1,0.4) (0.1,04) 1,(0.3,0.3)
@ (0.3, 0.6) g
] =
S S
,(0.4, 0.6) V3(0.2, 0.4)
(0.1,0.6)

Figure 2: Intuitionistic Fuzzy Graph

Definition 2.6 [40]. Let A = (T,, I, F4) and B = (T, Ig, Fg) be single

valued neutrosophic sets on a set X. If A = (Ta, I, Fao) is a single valued
neutrosophic relation on a set X, then A =(T,, 14, Fa) is called a single valued
neutrosophic relation on B = (Tg, Ig, Fg) if

Tg(x, y) < min(Ty (x), Ta(y))

Ig(x, y) 2 max(I5(x), Ia(y)) and

Fg(x,y) 2 max(Fpx), Fa(y)) forallx,y € X.

A single valued neutrosophic relation A on X is called symmetric if T4 (x, y) =

TA(y' X)r IA(X' Y) = IA(y' X)' FA(Xr Y) = FA(Y! X) and TB (X' Y) = TB (y' X)r IB(Xr Y) =
Ig(y, X) and Fg(x, y) = Fg(y, x), for all x, y € X.

Definition 2.7 [2] An interval valued intuitionistic fuzzy graph with

underlying set V is defined to be a pair G= (A, B) where

1) The functions My : V- D [0, 1] and Ny : V=D [0, 1] denote the degree of
membership and non membership of the element x €V, respectively, such
that 0 such that 0sMy(x)+ Ny(x) < 1forallx € V.

2) The functions Mg :EC VXV —->D[0,1] andNg:: ESC VXV —D |0, 1] are
defined by Mg, (x,y))<min (Myr(x), MaL(y)) and Ngi(x,y)) 2max (Na.(x),
NaL(¥))

Mpy(%,y))smin (Mpy(x), May(y)) and Npy(x,y)) Zmax (Nay(x), Nau(y))
such that
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0<Mgpy(x,¥))+ Npy(x,y)) <1forall (x,y) €E.

Definition 2.8. [41] By an interval-valued neutrosophic graph of a graph

G* = (V, E) we mean a pair G = (A, B), where A =< [Tay, Taul, [1an, Laul, [FaL,
Fau]> is an interval-valued neutrosophic set on V and B =< [Ty, Tgyl, [IgL,
Igul, [FgL, Fgyl> is an interval-valued neutrosophic relation on E satisfies the
following condition:

1.V=A{v,, v,,.., v, } such that T, :V—[0, 1], T4;:V-=[O0, 1], I4,: V=[O0,

1], I1y:V—[0, 1] and F4;:V—]0, 1], F4;:V—[0, 1] denote the degree of truth-
membership, the degree of indeterminacy- membership and falsity-
membership of the element y € V, respectively, and

0 T (v;) + 14(v;) +F4(v;) <3 forall v; €V (i=1, 2, ...,n)

2. The functions Tg;:VxV =0, 1], Tgy:VxV —=[0, 1], I5,:VxV =[O0, 1], Izy:V
xV —>][0,1] and Fg;:VxV —[0,1], Fgy:VxV =[O0, 1] are such that

Tp,({vi, v;}) < min [Ty, (v;), Tar (vj)]

Tpy ({vi, v;}) < min [Tyy (v;), Tay (v))]

I, ({vi, v;3) = max[lp, (v;), Ip, (v))]

Igy ({vi, v;}) 2 max[lgy (v;), Ipy (v;)] And
FpL({vi, vj}) = max[Fgy,(vi), Fpr(v})]
Fpu({vi, vj}) 2 max[Fgy(vi), Fgy(v;)]

Denotes the degree of truth-membership, indeterminacy-membership and
falsity-membership of the edge (v;, v;) € E respectively, where

0< Tg({vi, v;}) + Is({vi, v; D+ Fg({vy, v;}) <3 forall {v;,v;} €E(i,j=1,2,.,n)

We call A the interval valued neutrosophic vertex set of V, B the interval
valued neutrosophic edge set of E, respectively, Note that B is a symmetric
interval valued neutrosophic relation on A. We use the notation (v;, v;) for an

element of E Thus, G = (A, B) is a interval valued neutrosophic graph of G*= (V,
E) if

Tp,(vi, v;) < min [Ty, (v;), Ty (v))]

Ty vy, vj) < min [Ty (v;), Tay (v))]

Ip, (vi, vj) = max[lg, (v;), g, (v))]

Igy (vi, vj) 2 max[lpy (v;), Ipy (v;)] And
Fg, (v, vj) = max[Fg, (v;), Fp, (V)]

Fpy (v, vj) =2 max[Fgy (v;), Fgy(vj)] forall (v;,v;) €E.
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Here after, we use the notation xy for (x,y) an element of E.

3. Strong interval valued neutrosophic graph

Throught this paper, we denote G* = (V, E) a crisp graph, and G =(A, B) an
interval valued neutrosophic graph.

Definition 3.1 An interval valued neutrosophic graph G = (A, B) is called

strong interval valued neutrosophic graph if

Tpr(xy) = min (Tu(x), T4 (y)), Ip (xy) =max (lu(x), 4 (y)) and
Fg(xy) =max (Fy(x), F4, ()

Tgy(xy)= min (Tay(x), Tay(¥)), Ipy(xy) =max ([yy(x), Lty (y)) and
Fpy(xy) =max (F4y(x), Fay(¥)) such that

0<Tgy (x,¥))+ Igy(x,¥))+ Fgy(x,y)) <3 forallxy €E.

Example 3.2 Figure 1 is an example for IVNG, G=(A, B) defined on a graph

G*=(V, E) such that V = {x,y, z}, E = {xy, yz, zx}, A is an interval valued
neutrosophic set of V

A={<x, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>,<y, [0.6, 0.7], [0.2, 0.4], [0.1, 0.3]>, <z,
[0.4, 0.6], [0.1, 0.3], [0.2, 0.4],>},

B={< xy, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>, <yz, [0.3, 0.5], [0.2, 0.3], [0.2, 0.4]>,
<xz,[0.3, 0.5], [0.1, 0.5], [0.2, 0.4]>}.

<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]>
<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]>

<[0.3, 0.51,[ 0.1, 0.51,[0.2, 0.41>

<[0.3, 0.6],[ 0.2, 0.41,[0.2, 0.4]> <[0.3, 0.51,[ 0.2, 0.31,0.2, 0.41>

<[0.6, 0.71,[ 0.2, 0.41,[0.1, 0.31>
Figure 3: Interval valued neutrosophic graph

Example 3.2 Figure 2 is a SIVNG G = (A, B), where

A={<x, [0.5, 0.7], [0.1, 0.4], [0.1, 0.3]>, <y, [0.6, 0.7],[0.2, 0.3], [0.1, 0.3]>, <z,
[0.4, 0.6],[0.2, 0.3], [0.2, 0.4],>},

B={<xy, [0,5, 0.7], [0.2 0.4], [0.1, 0.3]>, <yz, [0.4, 0.6],[0.2, 0.3], [0.2, 0.4]>, <xz,
[0.4,0.6], 0.2, 0.4],[0.2, 0.4]>}
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<[0.4, 0.61,[ 0.2, 0.31,[0.2, 0.4]>
<[0.5, 0.71,[ 0.1, 0.41,[0.1, 0.3]>

<[0.4, 0.6],[ 0.2, 0.4],[0.2, 0.4]>

<[0.5, 0.7),[ 0.2, 0.4],[0.1, 0.3]> <[0.4, 0.61,[ 0.2, 0.31,/0.2, 0.41>

<[0.6, 0.7],[ 0.2, 0.3],[0.1, 0.3]>

Figure 4:Strong Interval valued neutrosophic graph.

Proposition 3.3: A strong interval valued neutrosophic graph is the

generalization of strong interval valued fuzzy graph

Proof: Suppose G=(V, E) be a strong interval valued neutrosophic graph.
Then by setting the indeterminacy- membership and falsity- membership
values of vertex set and edge set equals to zero reduces the strong interval
valued neutrosophic graph to strong interval valued fuzzy graph.

Proposition 3.4: A strong interval valued neutrosophic graph is the

generalization of strong interval valued intuitionistic fuzzy graph

Proof: Suppose G=(V, E) be a strong interval valued neutrosophic graph.
Then by setting the indeterminacy- membership values of vertex set and
edge set equals to zero reduces the strong interval valued neutrosophic
graph to strong interval valued intuitionistic fuzzy graph.

Proposition 3.5: A strong interval valued neutrosophic graph is the

generalization of strong intuitionistic fuzzy graph

Proof: Suppose G=(V, E) be a strong interval valued neutrosophic graph.
Then by setting the indeterminacy- membership, upper truth-membership
and upper falsity-membership values of vertex set and edge set equals to
zero reduces the strong interval valued neutrosophic graph to strong
intuitionistic fuzzy graph.

Proposition 3.6: A strong interval valued neutrosophic graph is the

generalization of strong single neutrosophic graph.

Proof: Suppose G= (V, E) be a strong interval valued neutrosophic graph.
Then by setting the upper truth-membership equals lower truh-membership,
upper indeterminacy- membership equals lower indeterminacy-membership
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and upper falsity-membership equals lower falsity- membership values of
vertex set and edge set reduces the strong interval valued neutrosophic
graph to strong single valued neutrosophic graph.

Definition 3.7 Let A;and A4, be interval-valued neutrosophic subsets of

Vi and V, respectively. Let B;and B, interval-valued neutrosophic subsets of
E; and E, respectively. The Cartesian product of two SIVNGs G; and G,is
denoted by G,xG, = (A;xA,, B;xB, ) and is defined as follows:

1) (Ta,r X Ta,r) (%1, x2) =min (Ty, 1 (%1), Ta, 1 (x2))
(Ta,u X Ta,u) (x1, x2) = min (T, y (x1), Ta,u(x2))
(Lo, X Layr) (1, x2) = max (g, (1), La, 1 (x2))
(La,u X Layu) (%1, x2) = max (I, y(x1), Lo,y (x2))
(Fa,r X Fa,1) (%1, x2) = max (Fy (1), Fa,1(x2))
(FA1U X FAZU) (x4, x2) = max (FAlU(xl)' FAZU(xZD forall (xq, x,) €V

2) (TBlL X TBZL) ((x, x2)(x, y2)) = min (TAlL(x)J TBZL(nyZ))
(TBlU X TBZU) ((x, x2)(x, ¥2)) = min (TAlU(x)' TBZU(XZyZD
(g, X Ip,1) ((x, x2) (%, ¥2)) =max (I, (x), Ip,1 (x2¥2))
(131U X IBZU) ((x, x2)(x, ¥2)) = max UAlU(x)' IBZU(nyZ))
(Fp, X Fg,1) (%, x2) (x, ¥2)) = max (Fy, 1 (%), Fp,1 (x2¥2))
(F31U X FBZU) (Cx, x2)(x, ¥2)) = max(FAlU(x), FBZU(nyZD vV x € Viand
V x,y, € E,

3) (T31L X TBZL) ((x1, ) (¥1, 2z)) = min (TBlL(xlyl)r TAZL(Z))
(T31U X TBZU) ((x1, 2) (¥4, 2)) = min (TBlu(x1}’1): TAZU(Z))
(Ig,L X I,1) (X1, Z) (y1, 2)) = max (I, 1,(X1Y1), [a,1(2))
(131U X IBZU) ((x1, 2) (1, 2)) = max UBlU(xl:VI)' IAZU(Z))
(FBlL X FBZL) ((x1, 2) (¥4, 2)) = max (FBlL(xlyl)' FAZL(Z))
(F31U X FBZU) ((x1, 2) (1, 2)) = max (FBlu(x13’1), FAZU(ZD VzeV,and
V x1y, €EE;

Proposition 3.7 If G, and G,are the strong interval valued neutrosophic

graphs, then the cartesian product G;x G,is a strong interval valued
neutrosophic graph.

Proof:

Let G; and G,are SIVNGs, there exist x;, y; € E; ,i=1, 2 such that
T, Cxiy i) = min (T, (), Ta (1)), 11, 2.
TBiU(xi» yi) = min (TAiU(xi)' TAiU(yi))f i=1,2.

I, (%, ¥;) = max UAiL (x:), Iy, ), i=1, 2.
IBiU(xir yi) = max UAiU(xi)' IAiU(yi))' i=1,2.
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Fp,1 (x;, i) = max (Fy, (x;), Fa, (v:)), 1=1, 2.
Fgu (xi, ¥;) = max (FAiU(xi)J FAiU(yi))f i=1,2.

Let E={(x, x2) (x, y2) /x € V3, x5y, € E}U{(x1, 2) V1, 2) /z € V, x1y1 € E1}

Consider, (x, x,) (x, y,) € E, we have
(Tp,1 X Tay) (06 X2) (3, y2)) = min (T, (1), T, (6232))
=min (Ty,, (6), Tagt (62), Tyt (72))

Similarly,
(Ta,u X Tay) (0 %5) (%, ¥2)) = min (T, (%), T, (x22))
=min (Ty,u (0), Tayo (2), Tagu (v2)
(Tays % Tape) Ger, Xz) =min (T, (), oyt (62))
(Tay X Tayo) (2, x2) =min (T, (1), T, (x2))
(Tays, X Tage) (0, ¥2) =min (T, (1), T, (7))
(Tayo X Tayor) Gen, 2) =min (Ta, (1), Ty (7))
Min ((Ta,u X Tago) (6 X2), (Tayu X Tagr) (%, ¥2))

= min (min T,y (), T, (x2)), Min (T, (6), Tao (2)))

= min (T, (%), Tau (42), Tayo (v2))
Hence,
(Taos, X Tye) (% %2) (6 ¥2))= min ((Tay X Tage) (6 X2, (Tayi X Tayt) (6, 72))
(Tayu X Tayo) (0 %2) (%, ¥2))= min ((Ta,u X Tayor) (6 %2), (Tay X Tago) (¢ 32))
Similarly, we can show that
Uyt % T5y1) (6 %2) (6, ¥2)) =max (a1, X Iaye) (6 %), (s X Taye) (6, 32))
Uy X Tn,0) (06 %2) (% 2)) =max (U, X Tagw) (% X2), Uy X Tayo) (%, 2)
And also,
(Fpyi X Fayr) (0 %5) (6, ¥2)) =max ((Fay, X Fayi) (8 25), (Fayi X Fagi) (%, %2))

(Fpu X Fgy) (%, x2) (x,¥2)) =max ((Fa,u X Fa,u) (%, x2), (Fayu X Fau) (%,
y2))

Hence, G;x G, strong interval valued neutrosophic graph. This completes the
proof.
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Proposition 3.8 If G,x G,is strong interval valued neutrosophic graph then

at least G; or G,must be strong.
Proof:

Let G; and G,are no strong interval valued neutrosophic graphs, there exist x;,
y; € E; ,i=1, 2 such that

T, (xi, yi) <min (Ty, (%), Ta,. (V) 1 =1, 2.
T, (X, i) <min (Ty,y (%), Taw (vi)), 1=1, 2.
Ig, (x;, yi) > max Iy, (x;), La, (v:)), 1=1, 2.
Ig,u (i, yi) > max (In,y (x;), La,w (i), 1=1, 2.
Fg,1 (xi, yi) > max (Fy, (), Fa (1)), 1=1, 2.
Fpy (x5, yi) > max (Fau (%), Faw (1)), 1=1, 2.

Let E={(x, x2) (x, y2) /x € V1, x5y, € E;}U{(x1, 2) V1, 2) /z € V, x1y1 € Eq}

Consider, (x, x,) (x, y,) € E, we have
(T, X Tp,1) (%, x2) (x, y2)) = min (Ty, (%), Tg,(x2Y2))
<min (Ty, 1 (x), Ta,1(x2), T4, (¥2))
Similarly,
(TBlU X TBZU) ((x, x3) (x, ¥2)) = min (TAlu(x); TBZU(XZyZ))
<min (Ty,y(x), Ta,u (x2), Ta,u(¥2))
(Ta,r X Ta,1) (%1, x2) =min (T4, 1 (%1), Ty, (x2))
(Ta,u X Ta,u) (1, x2) =min (Ty, y (x1), Ta,u(x2))
(Ta,r X Tayr) (%1, ¥2) =min (Ty, 1 (%1), Ta, 1 (V2))
(Ta,u X Ta,u) (x1, y2) =min (Ty, y (x1), Ta,u (¥2))
Min ((Ta,u X Ta,u) (x, x2), (Ta,u X Ta,u) (x,¥2))
= min (min (TAlU(x)' TAZU(XZ))' min (TAlU(x)' TAZU(yZD)
=min (TAlU(x)' TAZU(xZ)' TA1U(YZ))
Hence,

(T, X Tp,1) ((x, x2) (x, y2)) <min (T, X Ta,1) (%, x2), (Ta,n X Ta,) (x,¥2))

(Tg,u X Tp,u) ((x,x2) (x,y2)) <min ((Ta,u X Ta,u) (x,%2), (Ta,u X Ta,u)
(x,y2))

Critical Review. Volume XII, 2016



Said Broumi , Mohamed Talea, Assia Bakali, Florentin Smarandache 11
On Strong Interval Valued Neutrosophic Graphs

Similarly, we can show that

(I, X Ip,1) ((x, x2) (x, ¥2)) > max ((La g X La,1) (%, x2), (Layr X La,1) (x,¥2))
(Ig,u X Ig,u) ((x, x2) (x, y2)) > max ((Ia,u X La,u) (x, x2), (a,u X La,u) (%, 2))
And also,

(Fp,L X Fg,1) ((x,x2) (x,y2)) >max ((Fa, X Fa,1) (%, x2), (Fa,n X Fa,) (%,
Y2))

(Fg,u X Fg,uy) ((x, x2) (x,¥2)) > max ((Fa,u X Fa,u) (%, x2), (Fa,u X Fa,u) (X,
y2))

Hence, G;x G, is not strong interval valued neutrosophic graph, which is a
contradiction . This completes the proof.

Remark: 3.9 If G,is a SIVNG and G, is not a SIVNG, then G; X G, is need not
be an SIVNG.
Example 3.10 Let G,= (4;,B;) be a SIVNG, where 4,={< a, [0.6, 0.7], [0.2, 0.5],

[0.1,0.3]> < b, [0.6, 0.7], [0.2, 0.5], [0.1, 0.3]>} and B, = {< ab, [0.6, 0.7], [0.2,
0.5], [0.1, 0.3]>)

<[0.6,0.71.[ 0.2, 0.51.[0.1, 0.31>
SO o

<[0.6,0.71,1 0.2, 0.51,0.1, 0.31> <[0.6.0.71,1 0.2, 0.51.[0.1, 0.3]>

Figure 5: Interval valued neutrosophic G;.

G,= (A,,B,) is not a SIVNG, where A4,={<c, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]>, < d,
[0.4,0.6],[0.1,0.3],[0.2, 0.4] >} and B,= < cd, [0.3,0.5], [0.1, 0.2], [0.3, 0.5]>}.

<[0.3, 0.5],[ 0.1, 0.31,[0.3, 0.5]>
e () O

<[0.4, 0.61,1 0.2, 0.41,10.1, 031> <[0.4,0.61,[0.1, 0:3),(0.2, 04)>

Figure 6: Interval valued neutrosophic G,.
G1x G,=(A;x A,, B;x B,) is not a SIVNG, where

Ax A,=1{< (a, c), [0.4,0.6],[ 0.2, 0.3], [0.2, 0.4]>, < (a, d), [0.4, 0.6], [0.2, 0.3],
[0.2, 0.4]>, < (b, ), [0.4, 0.6], [0.2, 0.6], [0.2, 0.4]>, < (b, d), [0.4, 0.6], [0.3, 0.4],
[0.2,0.4]>},

Bix B,={<((a, ¢, (a,d)), [0.3, 0.5], [0.3, 0.5], [0.3, 0.5] >, < ((a, c), (b, c)), [0.4,
0.6], [0.1, 0.4],[0.3, 0.4] >, < ((b, c), (b, d)), [0.4, 0.6],[0.2,0.4], [0.2, 0.4] >, <
((a, d), (b,d)),[0.4,0.6],[0.2,0.4], [0.2, 0.4] >}. In this example, G, is a SIVNG
and G,is not a SIVNG, then G;x G,is not a SIVNG.
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<[0.4, 0.6], 0.2, 0.61,[0.2, 0.4]>
<[0.4, 0.61,[ 0.2, 0.31,[0.2, 0.4]> <[0.4, 0.61, 0.1, 0.41,0.3, 0.41>

N

n A,
s S
o -
S S
o 3
o o
o o
o o
o =
5] o
o <
S \ <[0.4, 0.61,[ 0.2, 0.41,[01, 0.3]> /_ 2
v v

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> <[0.4, 0.6],[ 0.3, 0.41,[0.2, 0.4]>

Figure 7: Cartesian product G;x G,

Example 3.11 Let G,= (4,, B;) be a SIVNG, where A= {<a, [0.4, 0.6], [0.2,
0.4],[0.1,0.3] >,<b,[0.4, 0.6], [0.2, 0.4], [0.1, 0.3]>} and B, = {< ab, [0.4, 0.6],
[0.2,0.4], [0.1, 0.3] >,

<a [4, 6. [2 4] [1 3P <b, [4, 6], [2, 4], [.L, .3]>

G, <ab, [.4, 6], [.2, 4], [.1, .3]>

Figure 8: Interval valued neutrosophic G;.

G,= (4,, B;) is not a SIVIFG, where 4,={<, [0.6,0.7], [0.1, 0.3], [0.1, 0.3] >, <
d, [0.6,0.7],[0.1, 0.3], [0.2, 0.4] >} and B,= {< cd, [0.5, 0.6], [0.2, 0.4], [0.2, 0.4]
>1,

<c, [.6,.7], [.1, .3], [.1, .3]> <d. [6, 7], L1, 3], [2. 4l>

GZ <cd, [.5, .6], [.2, 4], [.2, .4]>

Figure 9: Interval valued neutrosophic G,.
G1x G,=(A;x A,, B1x B,) is a SIVNG, where

AixA,={<(a,c),[0.4,0.6],[0.2,0.4],[0.1,0.3] >, < (a,d), [0.4, 0.6], [0.2, 0.4],
[0.2,0.4] >, < (b,c),[0.4,0.6],[0.2,0.4], [0.1, 0.3] >, < (b, d), [0.4, 0.6], [0.2, 0.4],
[0.2,0.4] >} and

Bix B,={<((a, ), (a, d)), [0.4, 0.6],[0.2, 0.4], [0.2, 0.4] >, < ((a, c), (b, c)), [0.4,
0.6], [0.2, 0.4], 0.1, 0.3] >, < ((b, c), (b, d)), [0.4, 0.6], [0.2, 0.4],[0.2, 0.4] >, <
((a, d), (b,d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]>}. In this example, G,is a SIVNG
and G,is not a SIVNG, then G;x G,is a SIVNG.
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<(acbc), [4, 6], [2, 41[.1, 3]>

<ac, [4, 6], [.2, . 3]> <bc, [4, .6],[.2, 4],[.1, .3]>

<(adac), [4, 6], [2, 41[2.4]> =
=

<(bd,bc), [.4, .6], [.2, .4],[.2 .4]>

<ad, [4, 6], [.2, 4],[.2, .41> abd), 14, 61, [2, 412 4> <bd, [4, .6], [ 2, .4],[.2, .4]>

Figure 10: Cartesian product

Proposition 3.12 Let G,be a strong interval valued neutrosophic graph.

Then for any interval valued neutrosophic graph G,,G;x G, is strong interval
valued neutrosophic graph iff

TAlL(xl) = TBlL(nyZ)' IAlL(xl) = IBlL(nyZ) and FAlL(xl) = FBlL(nyZ)'

TA1U(x1) =< TBlU(nyz)' IA1U(X1) 2 IBlU(nyZ) and FAlu(xﬂ = Fslu(xz}’2)'
Vx, €V, x,y, EE,

Definition 3.13 Let A;and A,be interval valued neutrosophic subsets of
V,and V,respectively. Let B;and B, interval-valued neutrosophic subsets of
E; and E, respectively. The composition of two strong interval valued
neutrosophic graphs G; and G,is denoted by G;[ G,] = (A1 © 45, By B, ) and
is defined as follows:
1) (TAlL ° TAZL) (x4, xz) = min (TAlL(xl)' TAZL(xZ))

(TAlU ° TAZU) (%1, x2) = min (TA1U(X1): TAZU(XZ))

UAlL ° IAZL) (%1, x2) = max (IAlL(xl)' IAZL(xZ))

UA1U ° IAZU) (%1, x2) = max UAlU(xl)' IAZU(xZ))

(Fa, L © Fayr) (1, x2) = max (Fy, (%), Fa,1(x2))

(Fa,u © Fayu) (%1, x2) =max (Fy y(x1), Fa,u(x2)) Y x1 EVy, x5 €V,

2) (TBlL ° TBZL) ((x, x3)(x, ¥2)) = min (TAlL(x)' TBZL(xZYZ))
(TBlU ° TBZU) ((x, x2)(x, y2)) = min (TAlU(x)r TBZU(nyZ))
(131L ° IBZL) ((x, x2)(x, y2)) = max UAlL(x)' IBZL(nyZD
UBlU ° IBZU) ((x, x2)(x, y2)) = max (IAlu(x); IBZU(XZYZ))
(Fg,1 ° Fp,1) ((x, x2) (%, y2)) = max (Fy, 1 (x), Fg,.(x2Y2))
(F31U ° FBZU) ((x, x2)(x, y2)) = max (FAlu(x), FBZU(nyZ)) Vx€eV,V
X2y, € E;

3) (TBlL ° TBZL) ((x1, 2) (¥4, 2)) = min (TBlL(xlyl)' TAZL(Z))
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(T31U ° TBZU) ((x1, ) (¥1, 2z)) = min (Tslu(xﬂ’ﬂ' TAZU(Z))
(IBlL ° IBZL) ((x1,2) (y1,2)) = max (IBlL(X1Y1): IAZL(ZD
(IBlU ° IBZU) ((x1,2) (y1,2)) = max (IBlU(X1Y1): IAZU(ZD
(FBlL ° FBZL) ((x1,2) (y1,2)) = max (FBlL(Xl}’ﬂ: FAZL(Z))
(Fg,u ° Fg,u) ((X1,2) (y1,2)) = max (Fg,y(X1y1), Fa,u(z)) VZ € V,, V X1y, € E;
4) (TBlL ° TBZL) ((x1, X2) (Y1, ¥2)) = min (TAZL(XZJ' TAZL(YZ)' TBlL(X1YI))
(T31U ° TBZU) ((x1, x2) (¥1, y2))= min (TAZU(xZ)' TAZU(yZ)r TBlu(x1Y1D
(131L ° IBZL) (Cx1, x2) V1, ¥2))= maXUAzL(xZ)' IAZL(yZ)r IBlL(xlyl))
(131U ° IBZU) ((x1, x2) (V1, y2))= max (IAZU(xZ)r IAZU(yZ)' IBlU(xl:)/l))
(FBlL ° FBZL) ((x1, x2) V1, YZ))zmaX(FAZL(xZ)J FAZL(yZ)' FBlL(xlyl))
(F31U ° FBZU)((xll x2) (V1,Y2))= max (FAZU(xZ)' FAZU(yZ)' FBlu(x13’1))

V(xy, x2)(y1,y2) € E°-E , where E®= E U {(xq, x3) (1, ¥2) |x1y1 € E,
Xy #F Y2}

The following propositions are stated without their proof.

Proposition 3.14 If G, and G,are the strong interval valued neutrosophic
graphs, then the composition G, [ G,] is a strong interval valued neutrosophic
graph.

Proposition 3.15 If G;[ G,] is strong interval valued neutrosophic graphs,

then at least composition G; or G,must be strong.

Example 3.16 Let G;= (4,,B;) be a SIVNG, where 4;= {< a, [0.6, 0.7], [0.2,

0.3],[0.1,0.3], > < b, [0.6, 0.7], [0.2, 0.3], [0.1, 0.3] >} and B, = {< ab, [0.6, 0.7],
[0.2,0.3], [0.1, 0.3] >}.

<a,[6,7]. [2 3] [1, 31> <b, [.6,.7], [.2, 31[.L, 31>

G, <ab, [6, .71, [.2, 3L[.1, 31>

Figure 11: Interval valued neutrosophic Gj;.

G,= (A;,B;) is not a SIVNG, where 4,={< c, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, <
d, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >} and B,= < cd, [0.3, 0.5], [0.2, 0.5], [0.3, 0.5]
>l

<c, [4, .6], [.2, 4],[.1, .3]> <d, [4, 6], [2, 41[1, 3]>

GZ <cd, [.3,.5], [.2, 4], [.3, .5]>
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Figure 12: Interval valued neutrosophic G,.
G,[G,]= (A104,, B;oB,) is not a SIVNG, where

A;04,= {< (a,), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (a,d), [0.4, 0.6], [0.2, 0.4],
[0.1, 0.3] >, < (b, c), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (b, d), [0.4, 0.6], [0.2,
0.4], 0.1, 0.3] >},

Bi0B,={<((a, ), (a, d)), [0.3, 0.5], [0.2, 0.4], [0.3, 0.5] >, < ((a, c), (b, c)), [0.4,
0.6],[0.2, 0.4], [0.1, 0.3]>, < ((b, ¢), (b, d)),[0.3, 0.5], [0.2, 0.4], [0.3, 0.5] >, < ((a,
d), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < ((a, ¢), (b, d)), [0.4, 0.6], [0.2, 0.4],
[0.1, 0.3] >, < ((a, d), (b, c)), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >}. In this example,
G, is a SIVNG and G,is not a SIVNG, then G;[G] is not a SIVNG.

<(ac,bc), [4, 6], [.2, 4],[1, .3]>

<ac, [.4, .6], [.2, .4],[.1, .3]> <bc, [4, 6], [.2, 4].[.1, .3]>
& <(ac,bd), [4, 6], [2, 41[.1, 31> &
) 9
< =)
g%
e} ©
o <(ad,bc), [4, .6], [.2, 41,[.1, .3]> >
<ad, [.4, .6], [.2, 4].[.1, .3]> <bd, [.4, .6],[.2, 4].[.1, .3]>

<(ad,bd), [4, .6], [.2, 4]1,[.1, .3]>

Figure 13: Composition

Example 3.17 Let G;= (4,,B;) be a SIVNG, where 4;= {< a, [0.4, 0.6], [0.2,

0.4], [0.2, 0.4] >, <b, [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >}and B, = {< ab, [0.4, 0.6],
[0.2,0.4], [0.2, 0.4] >).

<a [4 6] [2, 4[24 <b, [.4, .6], [.2, 4] ,[.2, .4]>

G, <ab, [.4, 6], [2, 41.[.2, .4]>

Figure 14: Interval valued neutrosophic Gj;.
G,=(A,,B,) is not a SIVNG, where 4,={< ¢, [0.6, 0.7], [0.1, 0.3], [0.1, 0.3] >, <d,
[0.6,0.7],[0.2,0.4],[0.1, 0.3] >} and B,={< cd, [0.5, 0.6], [0.2, 0.4], [0.2, 0.4] >}.

<¢,[6,.7] [1, 3,1, 31> <d, [6, .71, [.2, 4],[.L, 3)>

G, <cd, [5, .61, [.2, 4], [2, .4]>

Figure 15: Interval valued neutrosophic G,.
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G,[G;] = (A104,, B; 0B;) is a SIVNG. Where

A,04,={< (a, c), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < (a, d), [0.4, 0.6], [0.2, 0.4],
[0.2, 0.4] >, < (b, c), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < (b, d), [0.4, 0.6], [0.2,
0.4],[0.2, 0.4] >} and

B; oB,={<((a, ¢), (a, d)), [0.4, 0.6], [0.2, 0.4] [0.2,0.4] >, < ((a, c), (b, c)), [0.4,
0.6], [0.2, 0.4], [0.2, 0.4] >, < ((b, ¢), (b, d)), [0.4, 0.6], [0,2, 0.4] [0.2, 0.4] >, <
((a, d), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < ((a, ¢), (b, d)), [0.4, 0.6], [0.2,
0.4] [0.2, 0.4]>, < ((a, d), (b, c)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]>}. In this
example, G;is an SIVIFG and G,is not a SIVNG, then G, [G,] is a SIVNG.

<(ac,bc), [4, .6], [.2, .4],[.2, .4]>

<ac, [4, .6], [.2, .4],[.2, .4]> <bc, [.4, .6], [.2, 41,[.2, 41>
= <(ac,bd), [4, 6], [2, 41.[.2, .4]> &
= 3
5 5
< s
3 E
< <(ad,bc), [4, 6], [2, 41.[.2, .4]> =2
<ad, [4, 6], [.2, 41.[.2, .4]> <bd, [.4, .6], [2, 41,[.2, .4]>

<(ad,bd), [.4, .6], [.2, 4],[.2, .4]>

Figure 16: Composition of G; and G,

Proposition 3.18 Let G,be a strong interval valued neutrosophic graph. Then

for any

interval valued neutrosophic graph G, , G, [ G, ] is strong interval valued
neutrosophic graph iff

Tp,1(x1) < T, (X2Y2)s La, 1. (1) = 1,1, (x2Y7) and Fy_ 1, (%1) = Fp, 1, (X2Y2),

Ta,u(x1) < Tpy(x2y2), La,u(x1) = I,y (x2Y,) and Fy y(x1) = Fp y(x2Y2),
Vx, €V x5, €EE,.

Definition 3.19 Let Ajand A, be interval valued neutrosophic subsets of

Viand V, respectively. Let B;and B, interval valued neutrosophic subsets of
E; and E, respectively. The join of two strong interval valued neutrosophic
graphs G; and G, is denoted by G; + G,= (A; + A,, B; + B,) and is defined
as follows:

(Ta, L U Ty, )(x) ifxeViul,

1) (Tayr + Ta)x) =) Tayr (%) ifx €V
Ty, (x) ifx ev,
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(Ta,u VTpp)(x) ifxeV UV,
(Tayu + Tau)x) = Ta,u(x) ifx eVy
Ta,u (%) ifx eV,
g, N1y, )(x) ifx€V; UV,
(Uny +Iayn) (0) =4 Lagn () ifxey
Ly, (%) ifx eV,
a,u N1g,p)(x) ifx€VLUV,
(Unyw +Iau) () =94 Lau(®) ifxey
Ly,y(x) ifx ev,

2)

3)

(FAlL NFu)(x) ifxeV; UV,

(Far + Fa,1) () =4 Fa,n(x) ifxel
Fy,(x) ifxev,
(Fpy NFa) (@) ifX€VLUV,
(Fa,u + Fayu) () =4 Fa,u(x) ifx eV,
Fp,u(x) ifxev,
(Tg,L U T, )(Xy) ifxy € E;UE,
(Tg,1 + Tg,1) (xy) = Tp,1(xy) ifxy € Ey
Tg, L(xy) ifxy € E,

(Tg,u U Tp,y)(xXy) ifxy € E; UE,

(Tg,u + Tgu) (xy) =y Th,u(xy) ifxy € E
TBZU(xy) ifxy € E,
(g, N Ig, )(xy) ifxy € E; UE,
(Ip, + I,1) (xy) = { Ig,1.(xy) ifxy € E;
IBZL(xy) ifxy € E,
Up,u NIg,y)(xy) ifxy €E;UE,
(Ip,v + Ig,u) (xy) = { Ig,u(xy) ifxy € Ey
IBZU(xy) ifxy € E,
(Fp,. N Fp, )(xy) ifxy € E;UE,
(Fp, + Fp,1) (xy) = { Fg,1(xy) ifxy € Ey
FBZL(xy) ifxy € E,
(Fg,u N Fp,y)(xy) ifxy € E; UE,
(Fp,u + Fp,y) (xy) =4 Fpu(xy) ifxy € E
FBZU(xy) ifxy € E,

(Tg, + Tg,) (x y) =min (Tp, (x), Tp,(x))
(Tp,u + Tp,u) (xy) = min (Tg, y (x), Tg,u (%))
(I, + Ip,1) (xy) = max (I, (x), Ip, (x))
(Ip,u + Ig,y) (x y) = max (I, y(x), Ip,y (x)
(Fp,1 + Fp,1) (xy) =max (Fg,(x), Fg,1(x))
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(Fg,u + Fp,u) (xy) = max (Fg,y(x),Fp,y(x)) ifxy € E’, where E' is the set of
all edges joining the nodes of V; and V, and where we assume V; N V,=0.

4.Conclusion

Interval valued neutrosophic sets is a generalization of the notion of fuzzy
sets and intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued
intuitionstic fuzzy sets and single valued neutrosophic sets. Interval valued
neutrosophic models gives more precisions, flexibility and compatibility to
the system as compared to the classical, fuzzy, intuitionistic fuzzy and single
valued neutrosophic models. In this paper, we have discussed a sub class of
interval valued neutrosophic graph «called strong interval valued
neutrosophic graph, and we have introduced some operations such as,
cartesian product, composition and join of two strong interval valued
neutrosophic graph with proofs. In future study, we plan to extend our
research to regular interval valued neutrosophic graphs, irregular interval
valued neutrosophic.
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