
Double Conformal Space-Time Algebra
by Robert Benjamin Easter

Abstract

This paper introduces the G4;8 Double Conformal Space-Time Algebra (DCSTA). G4;8
DCSTA is a straightforward extension of the G2;8 Double Conformal Space Algebra
(DCSA), which is a di�erent form of the G8;2 Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA). G4;8 DCSTA extends G2;8 DCSA with spacetime boost
operations and di�erential operators for di�erentiation with respect to the pseudospa-
tial time w= ct direction and time t. The spacetime boost operation can implement
anisotropic dilation (directed non-uniform scaling) of quadric surface entities. DCSTA
is a high-dimensional 12D embedding of the G1;3 Space-Time Algebra (STA) and is
a doubling of the G2;4 Conformal Space-Time Algebra (CSTA). The 2-vector quadric
surface entities of the DCSA subalgebra appear in DCSTA as quadric surfaces at zero
velocity that can be boosted into moving surfaces with constant velocities that display
the length contraction e�ect of special relativity. DCSTA inherits doubled forms of
all CSTA entities and versors. The doubled CSTA entities (standard DCSTA enti-
ties) include points, hypercones, hyperplanes, hyperpseudospheres, and other entities
formed as their intersections, such as planes, lines, spatial spheres and circles, and
spacetime hyperboloids (pseudospheres) and hyperbolas (pseudocircles). The doubled
CSTA versors (DCSTA versors) include rotor, hyperbolic rotor (boost), translator,
dilator, and their compositions such as the translated-rotor, translated-boost, and
translated-dilator. The DCSTA versors provide a complete set of spacetime transfor-
mation operators on all DCSTA entities. DCSTA inherits the DCSA 2-vector spatial
entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics,
and ring torus) and gains Darboux pseudocyclides formed in spacetime with the
pseudospatial time dimension. All DCSTA entities can be re�ected in, and inter-
sected with, the standard DCSTA entities. To demonstrate G4;8 DCSTA as concrete
mathematics with possible applications, this paper includes sample code and example
calculations using the symbolic computer algebra system SymPy.

Keywords: conformal geometric algebra; space-time algebra; Cli�ord algebra
A.M.S. subject classi�cation: 15A66, 83A05, 53A30, 14J70, 51K05

1 Introduction

This original research monograph1.1 introduces the G4;8 Double Conformal Space-Time
Algebra (DCSTA), which is a straightforward extension of the G2;8 Double Conformal
Space Algebra (DCSA) into spacetime. G2;8 DCSA is a di�erent form of the G8;2 Double
Conformal / Darboux Cyclide Geometric Algebra (DCGA). G8;2 DCGA is introduced in
the original research monograph [7] and in the published short paper [8], and is discussed
further in the papers [5] and [6]. All of the results of G8;2 DCGA have a similar form in G2;8
DCSA, and also in G4;8 DCSTA at time w= ct=0. G4;8 DCSTA is a high-dimensional 12D
embedding of the G1;3 Space-Time Algebra (STA). G1;3 STA is introduced by Hestenes
in [14]. G4;8 DCSTA is an application of the G4;8 Geometric Algebra. Geometric Algebra
is introduced by Hestenes and Sobczyk in [15]. Familiarity with Geometric Algebra
and G8;2 DCGA is assumed.

1.1. Revised version v3, July 7, 2016 , submitted to http://vixra.org/author/robert_b_easter. This ver-
sion may be superseded at the above link by newer revised versions. Email: dirname@yahoo.com.
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G4;8 DCSTA may o�er new mathematical methods for some applications. However, the
12D high-dimensionality of DCSTA incurs high computational cost and applications may
require an e�cient implementation [10] using optimized hardware and software [11] for
DCSTA. Other works on algebras similar to G4;8 DCSTA may exist in the mathematical
physics literature, but no speci�c works essentially the same as G4;8 DCSTA were known
by this author at the time of researching and writing this paper.
G4;8 DCSTA is a doubling extension of the G2;4 Conformal Space-Time Algebra

(CSTA). G2;4 CSTA is introduced by C.J.L. Doran and A.N. Lasenby in [3] as the
spacetime conformal group. G2;4 CSTA embeds G1;3 STA using stereographic embedding
and homogenization as discussed by Perwass [16] in the context of G4;1 Conformal Geo-
metric Algebra (CGA) (chapters 1-3 in [20]) and as discussed (in French) by Anglès [1].
G4;8 DCSTA D has twelve unit vector elements ei: 1� i� 12 with metric matrix

mD = diag(1;¡1;¡1;¡1; 1;¡1; 1;¡1;¡1;¡1; 1;¡1)= [(mD)ij] = [ei � ej]: (1.1)

The �rst six elements are in the G2;4 Conformal Space-Time Algebra 1 (CSTA1) C1

ei
2 =

�
1 : i2f1; 5g
¡1 : i2f2; 3; 4; 6g: (1.2)

The next six elements are in the G2;4 Conformal Space-Time Algebra 2 (CSTA2) C2

ei
2 =

�
1 : i2f7; 11g
¡1 : i2f8; 9; 10; 12g: (1.3)

G2;4 CSTA1 C1 embeds the four elements of the G1;3 Space-Time Algebra 1 (STA1) M1

ei
2 =

�
1 : i2f1g
¡1 : i2f2; 3; 4g: (1.4)

G2;4 CSTA2 C2 embeds the four elements of the G1;3 Space-Time Algebra 2 (STA2) M2

ei
2 =

�
1 : i2f7g
¡1 : i2f8; 9; 10g: (1.5)

G1;3 STA1 M1 contains the three elements of the G0;3 Space Algebra 1 (SA1) S1

ei
2: i2f2; 3; 4g = ¡1: (1.6)

G1;3 STA2 M2 contains the three elements of the G0;3 Space Algebra 2 (SA2) S2

ei
2: i2f8; 9; 10g = ¡1: (1.7)

The G1;3 STA M elements, which are the Dirac gammas i and Pauli sigmas �i, can
be de�ned in STA1 M1 as

i =

�
ei+1 : i2f0; 1; 2; 3g
0123 : i=5

(1.8)

�1=�x = 10 (1.9)
�2=�y = 20 (1.10)
�3=�z = 30: (1.11)
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The G1;3 STAM elements 0, 1, 2, 3 that are introduced in [14] are used in all general
discussions of STA. The STAM elements can be identi�ed isomorphically with either the
STA1M1 or STA2M2 elements. The elements 1, 2, and 3 can also be denoted x, y,
and z when emphasizing their usage as the conventional x, y, and z spatial directions.
The element 0 is the pseudospatial time w= ct direction.

In addition to the above subalgebras of DCSTA, there also exists the subalgebras for
G1;4 Conformal Space Algebra 1 (CSA1) CS1 with the �ve elements

ei
2 =

�
1 : i2f5g
¡1 : i2f2; 3; 4; 6g (1.12)

and G1;4 Conformal Space Algebra 2 (CSA2) CS2 with the �ve elements

ei
2 =

�
1 : i2f11g
¡1 : i2f8; 9; 10; 12g (1.13)

and G2;8 Double Conformal Space Algebra (DCSA) DS that has the ten unit vector ele-
ments of CS1 and CS2.
G1;4 Conformal Space Algebra (CSA) CS is very similar to the well-known G4;1 Con-

formal Geometric Algebra (CGA) and will not be explicitly discussed at length in this
paper, except to note that it is nearly identical to CGA in all respects, with di�erences
only in the signs of some expressions. Likewise, G2;8 DCSA is very similar to G8;2 DCGA,
except for di�erences in the signs of some expressions. G4;8 DCSTA becomes G2;8 DCSA
when all times are zero, w= ct=0.

2 Space Algebra (SA)
G0;3 Space Algebra (SA) S is very similar to G3 Algebra of Physical Space (APS) [13].
Vectors in SA square negative (v2= v � v)� 0, which causes sign �ips in many formulas
adapted from G3 APS, G4;1 CGA, or G8;2 DCGA. While G8;2 DCGA embeds two Euclidean
G3 APS spaces, G2;8 DCSA DS and G4;8 DCSTA D embed two anti-Euclidean G0;3 SA
spaces S1 and S2.

The subscript S denotes an element or operation in generic SA. The subscript S1
denotes an element or operation in SA1. The subscript S2 denotes an element or operation
in SA2. In most formulas, these subscripts can simply be substituted to write formulas in
SA, SA1, and SA2. Such duplication of similar formulas in each representation is avoided
unless it adds clarity to the discussion. In similar fashion, in STA (�3), STA1, and STA2,
the subscripts M, M1, and M2 indicate elments in STA, STA1, and STA2.

The 3-D spatial vectors in G0;3 SA are generally bold lowercase letters, such as p=pS.
The 4-D spacetime vectors in G1;3 STA (�3) are generally bold italic lowercase letters,
such as p= pM.

2.1 SA unit pseudoscalar
The SA 3-vector unit pseudoscalar IS with signature (¡¡¡) is

IS = 123 (2.1)
IS� = (¡1)3(3¡1)/2IS=¡IS (2.2)
IS
2 = ¡ISIS�=1 (2.3)

IS
¡1 = IS: (2.4)
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The SA1 3-vector unit pseudoscalar IS1 with signature (¡¡¡) is

IS1 = e2e3e4: (2.5)

The SA2 3-vector unit pseudoscalar IS2 with signature (¡¡¡) is

IS2 = e8e9e10: (2.6)

The notation A� is the reverse of A [4][16]. The G0;3 SA unit pseudoscalar IS is its own
inverse and squares to 1 as a hyperbolic unit . In G3 APS, the unit pseudoscalar squares
to ¡1 and is an imaginary unit . This di�erence a�ects how the SA dualization operation
is de�ned.

2.2 SA dualization
The SA dual AS�S of an SA multivector AS is

AS
� =AS

�S = ASIS
�=¡ASIS¡1: (2.7)

The SA undual AS of a dual SA multivector AS�S is

AS = AS
� IS�=¡AS� IS (2.8)

The SA dual and undual operations are the same, and the SA dualization is an involution.
The notation AS denotes an element of the algebra denoted by S , which is SA. In

later sections, we will encounter the algebras denoted by M, C, and D, which are STA,
CSTA, and DCSTA, respectively. For the subalgebras S, M, and C of D, there are two
copies of them in D, which are denoted by S1 and S2 and similarly for other subalgebras
that have a double in DCSTA. For example, the Pauli subalgebra of STA is denoted P,
and there are P1 in M1 and P2 in M2.

The explicit dualization notation AS�S denotes the dual of AS in subspace S using the
unit pseudoscalar IS of the subspace S. The implicit dualization notation AS� denotes the
same dualization as indicated by the subscript S.

To introduce the notation further, the explicit dualizations are

A� =

8>>><>>>:
AS
�S=AS

� =¡ASIS¡1 : SA S dualization
AM
�M=AM

� =AMIM
¡1 : STA M dualization

AC
�C=AC

�=ACIC
¡1 : CSTA C dualization

AD
�D=AD

� =ADID
¡1 : DCSTA D dualization.

(2.9)

Duals are typically the result of division by the unit pseudoscalar. The SA dualization is
de�ned as division by the negative unit pseudoscalar, and the reason is explained in (�2.6)
on the SA rotor. These dualizations are discussed further in later sections.

2.3 SA test vector
The symbolic SA test vector tS is de�ned on the basis of the Dirac gammas [14] as

t= tS = x1+ y2+ z3: (2.10)

The symbolic SA1 test vector tS1 is de�ned as

tS1 = xe2+ ye3+ ze4: (2.11)
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The symbolic SA2 test vector tS2 is de�ned as

tS2 = xe8+ ye9+ ze10: (2.12)

The symbolic scalars x, y, and z are the conventional coordinates in space. Numerical
scalars are denoted px, py, and pz for a vector p. This distinction between symbolic values
and numerical values is helpful in symbolic computations. Symbolic computations using
a symbolic computer algebra software, such as SymPy [19] with the GAlgebra [2] module,
can assist in the study of DCSTA and other high-dimensional Geometric Algebras.

A test vector, or other test entity, holds symbolic coordinates and parameters. A
non-test vector, or other non-test entity, holds numeric coordinates and parameters. In
symbolic calculations, a non-test entity, or simply an actual entity , can be evaluated
against a symbolic test entity to obtain the symbolic algebraic expression, or implicit
surface function, that is represented by the entity.

2.4 SA spatial velocity vector
An SA S spatial velocity vector vS has the form

v=vS = vx1+ vy2+ vz3= �cv̂: (2.13)

An SA1 S1 spatial velocity vector vS1 has the form

vS1 = vxe2+ vye3+ vze4= �cv̂S1: (2.14)

An SA2 S2 spatial velocity vector vS2 has the form

vS2 = vxe8+ vye9+ vze10= �cv̂S2: (2.15)

The scalars vx, vy, and vz are coordinate speeds in the conventional x, y, and z spatial
directions. Natural speed is �= v/c= kvk/c, j� j � 1. Light speed is c.

The vector units e1 and e7 are in STA1 and STA2, respectively, where they serve as the
unit directions for pseudospatial time w=ct. Pseudospatial time coordinate w is measured
in distance that light travels in time t. Clock time (coordinate time) is t = w / c. In
standard units of meters and seconds, c=299792458 m/s, exactly. In natural units, c=1,
which is convenient for testing calculations and graphing implicit surfaces F (x; y; z)= 0.

In special relativity, the constant non-negative norm of an SA velocity

kvSk = vS �vSy
q

= ¡vS2
p

= vx
2+ vy

2+ vz
2

p
= j�cj (2.16)

must not exceed light speed c

0�kvSk� c: (2.17)

The unit direction of velocity v is

v̂ = v/kvk: (2.18)

The conjugate vy is discussed by Perwass in [16] as anti-Euclidean subspace conjugation.
The conjugate, or space conjugation, of any STA multivector AM, including any SA
multivector, is

AM
y = 0AM0: (2.19)
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This conjugation formula is valid for any G1;q Geometric Algebra, where 0=e1 and 02=1.
The conjugate of an SA vector is simply its negative, vy=¡v.

The notations as used by Hestenes in [14] are not adopted here and con�ict with the
notations as they are adopted here. In [14], the notation vy is called hermitian conjugation
and is the reverse of an element in STA. The reverse v� is the notation that is adopted
here. In [14], the notation v� is called space conjugation and is anti-Euclidean subspace
conjugation in STA. The notation v� is adopted here as the dual of v. The conjugate vy

is adopted here, following Perwass in [16], and is discussed by this author in [9].
In general, a conjugation is an operation that selectively changes the signs on only

certain elements and there are many kinds of conjugations and notations. It is thought
that the notations that have been adopted here are the ones most commonly adopted in
the current literature on Geometric Algebra. The notations of Hestenes in [14] may be
found in physics literature.

2.5 SA spatial position vector

An SA spatial position vector pS(t), as a function of time t, has the form

p(t)=pS(t) = px1+ py2+ pz3=p0+vt: (2.20)

An SA1 spatial position vector pS1 has the form

pS1(t) = pxe2+ pye3+ pze4: (2.21)

An SA2 spatial position vector pS2 has the form

pS2 = pxe8+ pye9+ pze10: (2.22)

The scalars px, py, and pz are coordinate positions in the conventional x, y, and z spatial
directions. The vector p0 is the initial position at time t = 0, and v is the velocity. A
spatial vector p is the spatial position of a particle, observer, or other observable object.
For all time 8t, p(t) is the spatial path of the worldline of an observable moving at contant
velocity v. This paper only considers constant velocities in special relativity.

2.6 SA rotor

A rotation operator R, called a rotor , can be understood in terms of ratios, or products,
of unit vectors, which are called versors. A rotor is isomorphic to a quaternion versor
as discussed at length by this author in [9]. The concept of versors is generalized to k-
versors in [15]. A k-versor is the product of k unit vectors. In DCSTA, we will encounter
4-versors for rotation, translation, dilation, boost, and planar re�ection, and 2-versors for
inversions in hyperpseudospheres.

In SA, the unit bivector rotor elements are the ratios

i=k/j =� 3/2=¡32 (2.23)
j= i/k =� 1/3=¡13 (2.24)
k= j/i =� 2/1=¡21: (2.25)
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The SA duals of the SA unit vector elements are

1
� = 1IS�=¡1IS=¡1IS¡1=¡1(123)=¡32=� i (2.26)
2
� = 2IS�=¡2IS=¡2IS¡1=¡2(123)=¡13=� j (2.27)
3
� = 3IS

�=¡3IS=¡3IS¡1=¡3(123)=¡21=�k: (2.28)

The SA dualization is de�ned such that the isomorphism to (=�) quaternion units is via
duals.

The dual of an SA vector xS is

x�=xS
� = ¡xSIS¡1: (2.29)

The dual SA vector x� is the rotor element or logarithm of a rotor R= ex
�, where

eA = exp(A) (2.30)

=
X
n=0

1
An

n!
(2.31)

=
X
n=0

1
A2n

(2n)!
+
X
n=0

1
A2n+1

(2n+1)!
(2.32)

= cosh(A)+ sinh(A) (2.33)

for any multivector A. For a scalar x, imaginary unit i = ¡1
p

, hyperbolic unit j2 = 1,
and null (nilpotent) unit "2=0, we also have the standard formulas

cosh(ix) = cos(x) (2.34)
sinh(ix) = i sin(x) (2.35)
cosh(jx) = cosh(x) (2.36)
sinh(jx) = j sinh(x) (2.37)
cosh("x) = 1 (2.38)
sinh("x) = "x: (2.39)

Given the SA unit vector

x̂= x̂S =
xS
kxSk

=
xS

¡xS2
p (2.40)

as the axis of rotation, and kxSk= 1

2
� as half the non-negative angle � of rotation, then

(x̂�)2=¡1 and x̂�=� ¡1
p

, and the rotor RS for the rotation is

R=RS = ex
�
= exp(x�)= cosh(x�)+ sinh(x�) (2.41)

= cosh
�
1
2
�x̂�
�
+ sinh

�
1
2
�x̂�
�

(2.42)

= cos
�
1
2
�

�
+ x̂� sin

�
1
2
�

�
(2.43)

= cos
�
�
2

�
+ sin

�
�
2

�
x̂SIS

� (2.44)

= exp
�
1
2
�x̂S
�
�
= e

1

2
�x̂S
�
: (2.45)
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The unit vector axis x̂S and unit pseudoscalar IS may be in SA1 or SA2 by changing
subscript S to S1 or S2 for rotors RS1 and RS2, respectively.

In G4;1 CGA, G1;4 CSA, and G2;4 CSTA, the (isotropic) dilator D has a logarithm unit
that is isomorphic to (=�) a hyperbolic unit j, and the translator T has a logarithm unit
that is isomorphic to a null (nilpotent) unit ". The CSTA boost B, like a dilator D, has
a logarithm unit that is isomorphic to a hyperbolic unit j and can be used as a directed
non-uniform (anisotropic) dilation operator.

The rotor operation, or versor �sandwich� operation, that rotates any SA multivector
AS around the axis x̂S by angle � is

AS
0 = RSASRS

¡1=RSASRS
�: (2.46)

The SA multivector AS is typically a vector aS, but it can be any multivector in SA.

The sense of positive angle � rotation around an axis x̂ usually follows the right-hand
rule on a right-handed axes model. The sense of positive rotation around an axis follows
the similar left-hand rule on a left-handed axes model. The choice of axes model does not
a�ect the rotation mathematics, but it a�ects the orientation, or handedness, of the axes
and the interpretation of rotation results on the chosen axes model.

In general, the rotor operation is an example of a versor operation, and each ith
vector aijk, of the jth k-blade Ajk of the k-vector Ak= hAik of a multivector A in a Gp;q
Geometric Algebra n = p + q, is transformed by a (1 � m � n)-versor R as the versor
operation

A0 = RAR¡1 (2.47)

= R

 X
k=0

n

hAik

!
R¡1 (2.48)

= R

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

�
Ajk

1CCA
1CCCAR¡1 (2.49)

= R

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

� ^
i=1

k

aijk

!1CCA
1CCCAR¡1 (2.50)

=

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

� ^
i=1

k

RaijkR¡1

!1CCA
1CCCA: (2.51)

For grade k = 0, the single �vector� a?10 = A0 is de�ned as the scalar part of A, which
is not transformed by any versor operation since scalars commute with all multivectors.
The general versor R is called an m-versor [15], which is the product of m vectors with
inverses. This result is called versor outermorphism, which is discussed by Perwass in
[16] and by this author in [9].
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If R is a rotor, then the whole multivector A is rotated, as a rigid body of blades or
as a surface entity, vector by vector in the multivector and preserves the angles between
all vectors as a conformal transformation. Other angle-preserving (i.e. conformal) trans-
formations of surface points or geometric surface entities are uniform surface scaling
(isotropic dilation) and surface translation, which preserve the angles between surface
features. The conformal transformations, as versor operations, for dilation and translation
of surface points or entities require the embedding of surface representations or surface
points into the Gp+1;q+1 Conformal Geometric Algebra (CGA) or conformal space model.
The same conformal rotation versor R of the base space algebra Gp;q Geometric Algebra
(GA) is also valid in the embedding of Gp;q GA into its higher-dimensional conformal
space algebra Gp+1;q+1 CGA. In a CGA, some types of surfaces have a full representation
as a multivector-valued surface entity A, but general surfaces are represented point-wise
as embedded surface points that can be transformed by versor operations. This should be
familiar from books on CGA such as [4], where surface entities for �ats and rounds are the
types of surface entities available in G4;1 CGA. In G8;2 DCGA [7][5][6], we gain 2-vector
surface entities for quadrics, Dupin cyclides, and Darboux cyclides. In G4;8 DCSTA, we
gain 2-vector surface entities for quadrics that can be boosted and anisotropically dilated.
In G2;4 CSTA, we have entities for spacetime �ats and hyperbolics (pseudorounds). Still,
other general surfaces that do not have any multivector-valued entity A representation
in the algebra must be represented point-wise as meshes or clouds of surface points.
When they are available in a CGA, multivector-valued surface entities are powerful rep-
resentations of complete surfaces that have advantages over point-wise representations of
surfaces, and they can be transformed by versor operations (e.g., A0=RAR¡1) as versor
outermorphism, which preserves blades as transformed blades of the same grade that are
composed of transformed vectors.

3 Space-Time Algebra (STA)

Space-Time Algebra (STA) is introduced in the book Space-Time Algebra by David
Hestenes [14]. STA is also called Dirac Algebra (DA). As explained in [14], the space-
time split generates a Pauli Algebra (PA) on a unit bivector basis. DCSTA contains two
STA M subalgebras, STA1 M1 and STA2 M2.

TheM is forMinkowski spacetime (1;3) and is the subscript that denotes an element
or operation in STA. The subscript M1 denotes an element or operation in STA1. The
subscript M2 denotes an element or operation in STA2.

3.1 STA elements

3.1.1 Dirac gammas and Pauli sigmas in STA

The Dirac gammas and Pauli sigmas can be de�ned in STA1 as

i =

�
ei+1 : i2f0; 1; 2; 3g
0123 : i=5

(3.1)

�1=�x = 10 (3.2)
�2=�y = 20 (3.3)
�3=�z = 30: (3.4)
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The STA elements can also be de�ned similarly in STA2. The Dirac gammas and Pauli
sigmas are represented as matrices in other literature, but they have multivector repre-
sentations in STA. See reference [14] for more information about these representations.

The gammas are used to denote elements in STA M, but it should be understood
that all discussions of STA M apply similarly in STA1 M1 and STA2 M2 by changing
subscripting and elements

STA =� STA1 =� STA2
M =� M1 =� M2

0 =� e1 =� e7
1 =� e2 =� e8
2 =� e3 =� e9
3 =� e4 =� e10:

(3.5)

3.1.2 STA unit pseudoscalar

The G1;3 STA 4-vector unit pseudoscalar IM with signature (+¡¡¡) is

IM = 0123= 5 (3.6)
IM
� = (¡1)4(4¡1)/2IM= IM (3.7)
IM
2 = ¡1 (3.8)
IM
¡1 = ¡IM=¡IM� : (3.9)

The G1;3 STA1 4-vector unit pseudoscalar IM1 with signature (+¡¡¡) is

IM1 = e1e2e3e4: (3.10)

The G1;3 STA2 4-vector unit pseudoscalar IM2 with signature (+¡¡¡) is

IM2 = e7e8e9e10: (3.11)

3.1.3 STA test vector

The symbolic STA test vector tM is de�ned on the basis of the Dirac gammas [14] as

t= tM = w0+ x1+ y2+ z3= ct0+ tS=oMt+ tS: (3.12)

The symbolic STA1 test vector tM1 is de�ned as

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1: (3.13)

The symbolic STA2 test vector tM2 is de�ned as

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2: (3.14)

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
observer with coordinate time t is identi�ed with the worldline oMt= ct0.
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The symbolic test vector tM is useful in symbolic computations and will be embedded
as the G2;4 CSTA test point TC. G2;4 CSTA1 and CSTA2 test points TC1 and TC2, respec-
tively, are multiplied to form the G4;8 DCSTA test point TD = TC1TC2 = TC1 ^ TC2. The
DCSTA point 2-vector value-extraction elements Ts are de�ned as inner product operators
that extract values s from TD as s=Ts=TD. Linear combinations of the elements Ts form
the 2-vector DCSTA entities for quadric surfaces and cyclides.

3.1.4 STA observer

An STA M observer position (or worldline) oMt at the observer's proper (coordinate)
time t is

ot=oMt = ct0: (3.15)

For all times t, ot symbolically represents the worldline of the observer that passes through
the origin of spacetime. An observable worldline can be represented non-symbolically in
G2;4 CSTA as a CSTA GIPNS 3-vector line entity LC (�4.4.11).

An STA1 M1 observer position oM1t has the form

oM1t = cte1: (3.16)

An STA2 M2 observer position oM2t has the form

oM2t = cte7: (3.17)

An STA translated-observer position oM
p0(t), translated by spatial position p0, has the form

op0(t)=oM
p0(t) = oMt+p0= ct0+p0: (3.18)

The observer worldline oMt of a translated-observer worldline oM
p0(t) is

oMt = o_M
p0(t)=

doM
p0(t)
dt

t= ct0: (3.19)

For a translated-observer position oM
p0(t), its spacetime velocity is oM. The translated-

observer oM
p0(t) represents the observer oMt at p0 and is the proper observer of any

observable with initial position p0 at time t=0. Boosts, spacetime contractions (dilations),
and other spacetime transformations can be translated relative to p0 (e.g., translated-
boost, translated-dilator) when transforming an observable with initial position p0.

In special relativity, the observer oMt and an observable particle pM that is being
observed must coincide at the observer's proper time t = 0 (i.e., their worldlines should
intersect in p0 at time t= 0). If the particle and observer do not coincide at t= 0, then
the particle has an initial spatial position p0 at t=0 and

pM(t) = oMt+p0+vSt: (3.20)

Space-Time Algebra (STA) 11



The translated-observer oM
p0(t)=oMt+p0 and particle then coincide at t=0, and oM

p0(t)
can be called the proper observer of pM(t). Hyperbolic rotations (boosts) that transform
a particle must be relative to a proper observer that is coincident with the particle at
t= 0, which is the translated-observer oM

p0(t). The translated-boost (�4.6.9) relative to a
translated-observer oM

p0(t) is similar to a rotation around a general line through a shifted
or translated origin. A translated-boost is achieved as a translation of p0 to the origin
(translaton by ¡p0), then a boost relative to oMt, and then a translation back by p0. The
translated-boost can be followed by a translated-dilation (�4.6.7) around p0 with dilation
factor 1 /  for a spacetime contraction that exits the old observer frame of coordinate
time t and enters the new observer frame of proper time � (=dt/d� ), where � becomes
the new coordinate time. The value of  depends on the particular boosts and velocities
involved, according to velocity additions or subtractions, where o= c0 such that  can
always be extracted (after any number of boosts) from a spacetime velocity v = o + v

as v � 0/c= . For one simple boost,  is the Lorentz factor  = 1/ 1¡ �2
p

, but  is
di�erent after successive boosts.

3.1.5 STA spatial velocity

An STA spatial velocity vS has the form

v=vS = vx1+ vy2+ vz3= �cv̂: (3.21)

An STA1 spatial velocity vS1 has the form

vS1 = vxe2+ vye3+ vze4: (3.22)

An STA2 spatial velocity vS2 has the form

vS2 = vxe8+ vye9+ vze10: (3.23)

STA spatial velocities are the same as SA spatial velocities. The vx, vy, and vz are coor-
dinate speeds in the conventional x, y, and z directions.

The non-negative norm of an SA spatial velocity vS is the speed

kvSk = ¡vS2
p

= vx
2+ vy

2+ vz
2

p
: (3.24)

In special relativity, speed cannot exceed light speed c,

0�kvSk� c: (3.25)

The unit direction of an STA or SA spatial velocity vS is

v̂S =
vS
kvSk

: (3.26)

3.1.6 STA spatial position

An STA spatial position pS has the form

p(t)=pS(t) = p0+vSt=p0+ �cv̂St= px1+ py2+ pz3: (3.27)

An STA1 spatial position pS1 has the form

pS1(t) = p0S1+vS1t=p0S1+ �cv̂S1t= pxe2+ pye3+ pze3: (3.28)
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An STA2 spatial position pS2 has the form

pS2(t) = p0S2+vS2t=p0S2+ �cv̂S2t= pxe8+ pye9+ pze10: (3.29)

In special relativity, the time t is called the coordinate time and is the proper time of
the observer oM. The spatial position pS is relative to the observer oM (�3.1.4) as the
spacetime position (�3.1.8)

pM(t) = oMt+pS(t)=oMt+(p0+vSt) (3.30)
= (oMt+p0)+vSt=oM

p0(t)+vSt (3.31)
= p0+(oM+vS)t=p0+vMt: (3.32)

The spacetime velocity is vM (�3.1.7). The spacetime position pM (�3.1.8) is relative to
the translated-observer oM

p0(t) (�3.1.4) such that pM=p0 at time t=0.

3.1.7 STA spacetime velocity

An STA spacetime velocity vM has the form

v=vM = oM+vS= c0+ �cv̂S= c0+(vx1+ vy2+ vz3): (3.33)

An STA1 spacetime velocity vM1 has the normalized form

vM1 = oM1+vS1= ce1+ �cv̂S1= ce1+(vxe2+ vye3+ vze4): (3.34)

An STA2 spacetime velocity vM2 has the normalized form

vM2 = oM2+vS2= ce7+ �cv̂S2= ce7+(vxe8+ vye9+ vze10): (3.35)

In special relativity, a spacetime velocity vM is the sum of an observer spacetime velocity
oM and a spatial velocity vS relative to the observer, where 0�kvSk� c.

The modulus of an STA spacetime velocity vM is

jvMj = vM
2

p
= c2+vS

2
p

= c2¡kvSk2
p

: (3.36)

The square of a spacetime velocity v2= c2¡kvk2 may be positive, negative, or zero and
represents a relative comparison of light speed to spatial speed. A spacetime velocity with
positive signature 0<v2 is timelike, with negative signature v2< 0 is spacelike, and with
null signature v2=0 is lightlike.

The conjugate of an STA spacetime velocity vM is

vM
y = 0vM0=oM¡vS: (3.37)

The norm of an STA spacetime velocity vM is

kvMk = vM �vM
y

q
= vM � (0vM0)
p

= c2¡vS2
p

= c2+ kvSk2
p

: (3.38)

The unit , or modulus-unit , of an STA spacetime velocity vM is

v̂M=
vM
jvMj

=
vM

oM
2 +vS

2
p =

vM

c2¡ vx2¡ vy2¡ vz2
p : (3.39)
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The norm-unit of an STA spacetime velocity vM is

vM
kvMk

=
vM

oM
2 ¡vS2

p =
vM

c2+ vx
2+ vy

2+ vz
2

p : (3.40)

The overhat is on the modulus-unit of an STA spacetime vector a with aw=/ 0 as â, but the
overhat is on the norm-unit of an SA spatial vector a with aw=0 as â. In some contexts, it
is explicitly noted when the overhat notation on spacetime vectors is taking the norm-unit.

There are two times associated with a spacetime velocity v = o+ v. The coordinate
time of v, denoted tcv,

tcv = tpo= t (3.41)

is the proper time tpo of the observer o= c0 of v. The time t is the conventional notation
for coordinate time. The observable v has spacetime position vt (assuming p0=0, �3.1.8)
in the frame of o. The proper time of v, denoted tpv,

tpv = tcov= � (3.42)

is the coordinate time tcov of the observer ov=�o, which is v actively transformed relative
to itself in its own rest frame as (see Fig. 3.1 in �3.2.3)

ov = (v	v)/v¡1 (3.43)
= (vv	v): (3.44)

The time � is the conventional notation for proper time. The transformations of time by
boosts can be cause for confusion. The notations tcv and tpv may help avoid some confu-
sion. The (additive) �active� boosts Bv passively transform a new proper time parameter
tpv = � back into the old coordinate time tpo= t. The (subtractive or relative) �passive�
boosts Bv� passively transform the same old coordinate time parameter tpo= t into a new
proper time tpv= � . The �active� and �passive� boosts transform times in reverse of each
other.

3.1.8 STA spacetime position

The STA spacetime position pM of SA spatial position pS relative to observer oMt is

p(t)= pM(t) = oMt+pS(t)= ct0+(p0+vSt) (3.45)
= (oMt+p0)+vSt=oM

p0(t)+vSt (3.46)
= p0+(oM+vS)t=p0+vMt: (3.47)

In special relativity, if the initial position p0=/ 0, then the proper observer that coincides
with pM at t= 0 is the translated observer oM

p0(t). A spacetime boost of pM should be
relative to the proper observer oM

p0(t) by using a translated-boost around p0. CSTA has
a versor for translated-boosts (�4.6.9).

The time t derivative of pM is

p_M = @tpM=
@pM
@t

=oM+vS=vM: (3.48)
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The modulus-unit

p̂M =
pM
jpMj

=
pM

pM
2

p =
pM

(ct)2¡kpSk2
p =

pM

pw
2 ¡ px

2¡ py
2 ¡ pz

2
p (3.49)

and the norm-unit
pM
kpMk

=
pM

pM � pM
y

q =
pM

(ct)2+ kpSk2
p =

pM

pw
2 + px

2+ py
2+ pz

2
p (3.50)

of an STA spacetime position pM are similar to those of an STA spacetime velocity vM.
The square of a spacetime position pM

2 is the spacetime interval between the origin
of spacetime and pM. Likewise, (pM2¡ pM1)

2 is the spacetime interval between pM1 and
pM2. The passive boost of a spacetime position pM to become relative to the frame of a
new observer preserves the spacetime interval pM2 .

3.2 STA operations

3.2.1 STA dualization

The STA dual AM�M of an STA multivector AM is

AM
� =AM

�M = AMIM
¡1=¡AMIM: (3.51)

The STA undual AM of an STA multivector AM�M is

AM = AM
� IM=AMIM

¡1IM: (3.52)

3.2.2 STA rotor

The STA spatial rotation operator, or rotor , RM=RS is the SA rotor RS (�2.6).
The STA 2-versor spatial rotor RS for rotation in SA space around the SA unit vector

axis x̂S by angle � is

RS = e
1

2
�x̂S
�S
= e

1

2
�x̂SIS

�
(3.53)

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
x̂SIS

� (3.54)

= cos
�
1
2
�

�
¡ sin

�
1
2
�

�
x̂SIS

¡1: (3.55)

The rotor operation

AM
0 = RSAMRS� (3.56)

rotates any multivector AM in STA as expected in the spatial SA components, but leaves
the STA timelike components unchanged.

3.2.3 STA spacetime boost

Introduction
Although it would be su�cient to just de�ne the boost operator

BM=Bv = e
1

2
'v̂0 (3.57)
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for a boost by spacetime velocity

v = o+v= c0+ �cv̂ (3.58)

with natural speed �= �v and rapidity

'= 'v = atanh(�v)= atanh(kvk/c); (3.59)

this section also attempts to discuss some of the basics of active and passive boosts, and
velocity addition and subtraction.

The exponential function
The following functions and identities are frequently used to de�ne versors.

exp(A)= eA =
X
n=0

1
An

n!
= cosh(A)+ sinh(A); where A is any multivector [13] (3.60)

cosh(A) =
X
n=0

1
A2n

(2n)!
=
eA+ e¡A

2
(3.61)

sinh(A) =
X
n=0

1
A2n+1

(2n+1)!
=
eA¡ e¡A

2
(3.62)

tanh(A) =
sinh(A)
cosh(A)

=
eA¡ e¡A
eA+ e¡A

(3.63)

cosh(iA) = cos(A); where i2=¡1 and iA=Ai (3.64)
sinh(iA) = i sin(A) (3.65)

cosh(jA) = cosh(A); where j2=1 and jA=Aj (3.66)
sinh(jA) = j sinh(A) (3.67)

cosh("A) = 1; where "2=0 and "A=A" (3.68)
sinh("A) = "A (3.69)

cosh
�
1
2
atanh(�v)

�
=

(1+ �v)+ 1¡ �v
2

p
2 1+ �v
p

1¡ �v
24

p ; for ¡1< �v< 1 (3.70)

sinh
�
1
2
atanh(�v)

�
=

(1+ �v)¡ 1¡ �v
2

p
2 1+ �v
p

1¡ �v
24

p ; for ¡1< �v< 1 (3.71)

cosh(atanh(�v)) =
1

1¡ �v
2

p ; for ¡1< �v< 1 (3.72)

sinh(atanh(�v)) =
�v

1¡ �v
2

p ; for ¡1< �v< 1 (3.73)

cosh(2atanh(�v)) =
1+ �v

2

1¡ �v
2 ; for ¡1< �v< 1 (3.74)

sinh(2atanh(�v)) =
2�v
1¡ �v

2 ; for ¡1< �v< 1 (3.75)
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G0;31

Hyperbolas of constant

G1;01 time

space

u

(v̂0)
2=1

Hyperbolic arc length:
(rapidity)

'v= ath
�
rise
run

�
= ath(�v)

u�v

c'v

o vo= vc0

vc'v

Observer v or vy:

Proper times:

o

u

o

v

c

v
'v

v
2v

t= tcv= tcvy= tpo
� = tpv= tpvy= tpo/v

ovy=Bvy
�vyBvy=o/v

ov=Bv
�vBv=o/v

¡2v

vv

2vy

vy

vy=o¡v

v=o+v

vv= v�vcv̂

v
2v= v

2�vcv̂

¡v

¡v

v= �vcv̂

spacetime interval:

Hyperbolic rotor (boost): B=Bv= e(1/2)'vv̂0

Boost velocity: v=o+v= c0+ �vcv̂

�v=
3

4Natural speed:

Lorentz factor: v=1/ 1¡ �v
2

p
v=dtpo/dtpv=dt/d�

v=BvovBv
�=Bv(o/v)Bv

�

vv=BvoBv
�= vc0+ v�vv̂

Observable velocity:

Active � and passive 	 boosts:
(o�v)tpv=(BvoBv

�)tpv= vvtpv=vtpo

(o	v)tcv=(Bv
�oBv)tcv= vv

ytcv=vytpo

Observer:
o= c0

Bv=(vv/o)
1/2=(v+ v�vv̂0)

1/2

Bvy=Bv
�

u	v

u�v=
ujjv̂+ 1¡ kvk2

c2

r
u?v̂+v

1¡ u �v
c2

u	v=
ujjv̂+ 1¡ kvk2

c2

r
u?v̂¡v

1+
u �v
c2

u�v=
dtpo
dtpv

= v
¡
1¡ u �v

c2

�
; u	v=

dtpv
dtpo

= v
¡
1+

u �v
c2

� (u�v)� =(BvuBv
�)� = u�v(o+u�v)� =(o+u�v)t

(u	v)t=(Bv
�uBv)t= u	v(o+u	v)t=(o+u	v)�

Bv= exp((1/2)'vv̂0)= ch
�
1

2
'v

�
+ sh

�
1

2
'v

�
v̂0

�u=
¡1
2

u=1/ 1¡ �u
2

pu=o+u= c0+ �ucû

Figure 3.1. Spacetime diagram of observables o, v, and u

Figure 3.1 shows the spacetime diagram of spacetime velocities for observer o, boost
observable v, and observable u. The time axis is horizontal and the space axis is ver-
tical. The hyperbolic angle (rapidity) ' is positive anticlockwise. This orientation of the
spacetime diagram of hyperbolic rotations by ' is analogous to circular rotations by an
angle �. By circular rotations, points are translated along a circle through a circular arc
r�. By hyperbolic rotations, points are translated along a hyperbola through a hyperbolic
arc r'. For both circular and hyperbolic rotations, the radius r is an invariant distance
(interval) from the origin to a point. A circular radius is a positive real scalar r, and a real
hyperbolic radius (pseudoradius) is r2

n
c


; c; c

o
for the hyperbolas of constant spacetime

interval that are shown in the �gure. The boost operator Bv rotates from o toward v
by 'v, which corresponds to a change of speed by �vc in the direction v̂. The speed �vc
of a worldline is its slope in the diagram, v is the Lorentz (time dilation) factor, and c
is the speed of light. In the rest frame of an observable, the observable is the observer
having proper time � , zero spatial speed �c=0, and a worldline o� = c�0. An observable
worldline vt that is hyperbolically rotated into the time axis by a passive boost

Bv
�(vt)Bv = Bv

�vBvt=ot/v=o� (3.76)

gives the proper time � rest frame worldline o� of the observable v relative to the observer
ot/v. A hyperbolic rotation (boost) of an observable velocity

u = o+u= c0+ �ucû; for 0� �u< 1; (3.77)

preserves its spacetime interval

ru = juj= u2
p

= c2¡ �u
2c2

p
= c 1¡ �u
p

= c/u (3.78)
= jBvuBv�j= jBv�uBvj= jujjBvûBv�j= jujjBv�ûBvj; for u2=/ 0; (3.79)
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such that all boosted vectors remain on their hyperbola of constant spacetime interval.
A null vector (at light speed) u2= 0 is not on any hyperbola and cannot be boosted. A
hyperbolic rotation by a negative hyperbolic angle is a passive transformation from current
reference frame with time t into a new frame with time � at the positive angle of rotation,
representing a relativistic velocity subtraction u	v. A hyperbolic rotation by a positive
hyperbolic angle is an active transformation of a velocity vector into the boosted frame
of the boost observable v with new coordinate time � , representing a relativistic velocity
addition u � v. After a passive boost, the time is t, which passively transforms into a
relative � . After an active boost, the time is � , which passively transforms into a relative
t. The passive boost of a position p that has an initial position p0

p(t) = p0+ p_ t=p0+(o+p_ )t (3.80)

is valid, but it should be performed using a translated-boost (�4.6.9) as

Bv
p0�pBv

p0 = p0+Bv�p_Bvt (3.81)
= p0+Bv�(o+p_ )Bvt (3.82)
= p0+ p_	v(o+p_ 	v)t (3.83)
= p0+(o+p_ 	v)� ; (3.84)

which preserves the initial position p0 at time t= � =0.

Derivation of boost operator
An �active� boost operation is a hyperbolic rotation operation in spacetime (Fig. 3.1)

that passively turns (transforms) an observer spacetime velocity

o = c0; (3.85)

which has zero spatial velocity in its own frame with coordinate time t, into a relative
spacetime velocity

o0 = BvoBv�=Bvy
�oBvy (3.86)

= o�v=o	vy (3.87)
= vv= v(o+v) (3.88)
= vc0+ v�vcv̂ (3.89)

that is relative to (	) the new observer vy=o¡v with proper time � = tvy, consistent with
special relativity. The �active� boost operator is Bv, which is a �passive� boost operator
Bvy
� . Boosts operate on spacetime velocities, not on positions. Following a velocity boost,

the new time parameter , which is to be multiplied into a transformed velocity o0 as a
spacetime displacement o0� , is the proper time � of vy, not the coordinate time t of o.
The time and spatial displacement of o0� is passively transformed into coordinate time
t= v� and spatial displacement d= v�v=vt as seen by the coordinate time t observer
o and corresponds to (but is not) a time � and displacement seen by vy. That is,

o0� = (vc0+ v�vcv̂)� (3.90)
= ct0+ �vctv̂ (3.91)
= ot+vt (3.92)
= ot+d: (3.93)
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A boost can be applied to any spacetime velocity, but its boosted speed can never exceed
light speed c relative to any observer.

To derive the boost operator, we can start by de�ning the ratio of spacetime velocities
of an observable (particle) v to its coordinate time t observer o as the hyperbolic biradial
v/o=vo¡1 (�v by o�). The term biradial was coined by Hamilton in his original work
on Quaternions [12].

The hyperbolic biradial

H = vo¡1=
jv j
jojv/o=

c2+v2
p

c
Ĥ (3.94)

= 1¡ kvk
2

c2

r
Ĥ = 1¡ �v

2
p

Ĥ =
1
v
Ĥ (3.95)

is an operator that turns the spacetime velocity of the observer o into the spacetime
velocity of the boost particle

v = o+v (3.96)

as the one-sided versor operation

v = Ho: (3.97)

The natural speed �v of the velocity v is

�v =
kvk
c

=
v �vy

p

c
=

¡v2
p

c
=
v
c
: (3.98)

The Lorentz factor (spacetime dilation factor) v of the velocity v is

v =
1

1¡ �v
2

p =
dt
d�
; (3.99)

where t= tcv= tpo is the coordinate time of v and � = tpv is the proper time of v.

The interval (pseudodistance) c� is the hyperbolic arc length along the worldline of v

cd� = jv jdt= v2
p

dt= c2¡ �v
2c2

p
dt=

c
v
dt (3.100)

� =

Z
0

t 1
v
dt=

t
v
; where � =0 when t=0: (3.101)

Maximum c� is when �v=0, such that inertial observers experience maximum time.

The length contraction, to length L from an initial length L0 in the direction of boost
velocity v, is given by

L =
L0
v

=L0 1¡ �v
2

p
: (3.102)
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The dilation factor of the velocity v is

d =
1
v
= 1¡ �v

2
p

: (3.103)

For a dilation factor d, the required natural speed is �v= 1¡ d2
p

. For d� 1, the dilation
factor d can be called the spacetime contraction factor , which is the usual case. For
d > 1, then �v is an imaginary natural speed and it is possible to dilate lengths instead
of contract lengths, but dilated lengths are only geometrical e�ects, not physics e�ects.

The hyperbolic versor Ĥ is the unit hyperbolic biradial

Ĥ = vH = vvo¡1=
v
c
v0 (3.104)

=
v
c
(v � 0+v^ 0)= v+

v
c
v0 (3.105)

= v+ v
kvk
c
v̂0= v+ v�vv̂0 (3.106)

= cosh('v)+ sinh('v)v̂0= exp('vv̂0)= e'vv̂0; (3.107)

where

j2=(v̂0)2=(v̂^ 0)2 = 1 (3.108)
v = cosh('v) (3.109)

v�v = sinh('v) (3.110)

�v = tanh('v)=
sinh('v)
cosh('v)

(3.111)

'v = atanh(�v): (3.112)

Using half of the hyperbolic angle (rapidity) 'v, the hyperbolic rotation operator (hyperbolic
rotor or boost operator) Bv is the square root of the hyperbolic versor

Bv= Ĥ
1

2 = exp
�
1
2
'vv̂0

�
= e

1

2
'vv̂0 (3.113)

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂0 (3.114)

=
(1+ �v)+ 1¡ �v

2
p

2 1+ �v
p

1¡ �v
24

p +
(1+ �v)¡ 1¡ �v

2
p

2 1+ �v
p

1¡ �v
24

p v̂0 for ¡1< �v< 1: (3.115)

The hyperbolic rotation by a natural speed j�vj=1, corresponding to rapidity j'vj=1, is
invalid since it represents reaching the light speed asymptote l= c0+ cv̂ (a null vector),
which can never be reached on the hyperbola of constant (invariant) spacetime interval.

While the hyperbolic versor Ĥ is a one-sided versor, the hyperbolic rotor (boost) Bv is
a two-sided versor or �sandwiching� versor with its reverse Bv�=Bv

¡1, such that

v = Ĥo/v=Bv
2o/v (3.116)

= BvoBv�/v: (3.117)
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The one-sided versor operation is valid only for collinear (coplanar in spacetime) velocity
boosts, while the two-sided versor operation is valid for general boosts of any velocity
that need not be collinear with v. This is similar to the di�erence in quaternion rotations
between planar rotation using the one-sided versor operation e�n̂r?n̂ and conical rotation

using the two-sided versor �sandwich� operation e
1

2
�n̂
re
¡1

2
�n̂
= rjjn̂+ e�n̂r?n̂.

Although boosts are generally valid on spacetime velocities and not generally valid
on spacetime positions since the time after a velocity boost is subject to interpretation,
it is valid to passively boost a spacetime position of the form ut=(o+u)t, which is the
product of the spacetime velocity u and its coordinate time t= tpo= tcu. After a passive
boost, the time to be applied to the boosted velocity is still t, which can be correctly
factored out of the passive boost operation as

Bv
�(ut)Bv = Bv

�uBvt: (3.118)

The passive boost is interpreted as transforming coordinate time t into the proper time �=
tpv of v, and transforming distance into the distance relative to observable v. Evaluating
this passive position boost gives some useful results, as follows.

Bv�uBvt = e
¡1

2
v̂0(o+u)e

1

2
v̂0t=(u	v)t (3.119)

= (vv/o)
¡1

2(c0+u
jjv̂+u?v̂)(vv/o)

1

2t (3.120)
= (c0+u

jjv̂)(vv/o)t+u?v̂t (3.121)
= (c0+u

jjv̂)(v+ v�vv̂0)t+u?v̂t (3.122)
= (vc0¡ v�vcv̂+ vu

jjv̂+ v�vu
jjv̂v̂0)t+u?v̂t (3.123)

=

��
v+

1
c
v�vu

jjv̂v̂

�
c0+ vu

jjv̂+u?v̂¡ v�vcv̂

�
t (3.124)

= (o0+u0)t=(u	vo+ u	vu	v)t: (3.125)

The time transformation is

� = u	vt (3.126)

=

�
v+

1
c
v�vu

jjv̂v̂

�
t (3.127)

= v

�
1+

1
c
�v(u � v̂)v̂¡1v̂

�
t (3.128)

= v

�
1+

1
c
kvk
c
(u �v)
kvk

�
t (3.129)

= v

�
1+

u �v
c2

�
t: (3.130)

The distance transformation is

u0t = (u	vu	v)t (3.131)
= (u	v)� (3.132)

=
vujjv̂+u?v̂¡ v�vcv̂

u	v
� (3.133)

=
vujjv̂+u?v̂¡ vv

u	v
� (3.134)

=
ujjv̂+ 1¡ �v

2
p

u?v̂¡v
1+

u �v
c2

� : (3.135)

Space-Time Algebra (STA) 21



Summary of useful results:

ut = (o+u)t=(c0+ �ucû)t (3.136)
vt = (o+v)t=(c0+ �vcv̂)t (3.137)
t = tpo= tcv= tcu= tcu	v= tcu�v (3.138)
� = tpv= tcu�v= tcu	v (3.139)

Bv�uBvt = (u	v)t=(u	vo+ u	vu	v)t=(o+u	v)� (3.140)
BvuBv�� = (u�v)� =(u�vo+ u�vu�v)� =(o+u�v)t (3.141)

u	v = v
�
1+

u �v
c2

�
(3.142)

u�v = v
�
1¡ u �v

c2

�
(3.143)

u	v� =
ujjv̂+ 1¡ �v

2
p

u?v̂¡v
1+

u �v
c2

� =
(u �v)v¡1+ 1¡ �v

2
p

(u^v)v¡1¡v
1+

u �v
c2

� (3.144)

u�vt =
ujjv̂+ 1¡ �v

2
p

u?v̂+v

1¡ u �v
c2

t=
(u �v)v¡1+ 1¡ �v

2
p

(u^v)v¡1+v
1¡ u �v

c2

t: (3.145)

Active boost
The �active� boost u�v of spacetime velocity

u = o+u= c0+ �ucû (3.146)
tcu = t= tpo; (3.147)

by spacetime velocity

v = o+v= c0+ �vcv̂ (3.148)
tcv = t= tpo (3.149)
tpv = � ; (3.150)

is the �active� boost operation

u�v = BvuBv�=Bvy
�uBvy (3.151)

= (vv/o)
1

2u(vv/o)
¡1

2 =(vyv
y/o)

¡1

2u(vyv
y/o)

1

2 (3.152)

= exp
�
1
2
'v̂0

�
u exp

�
1
2
'0v̂

�
= exp

�
1
2
'0v̂y

�
u exp

�
1
2
'v̂y0

�
(3.153)

= u�v = u	vy (3.154)
= u� (o+v) = u	 (o¡v) (3.155)
= u�vo+ u�vu�v = u	vyo+ u	vyu	vy (3.156)

= u�vc0+ u�v�u�vcu�v = u	vyc0+ u	vy�u	vycu	vy: (3.157)

The hyperbolic angle (rapidity) is

'= 'v= 'vy = atanh(�v)= atanh
�
jvj
joj

�
= atanh

�
v
c

�
= atanh

�
rise
run

�
(3.158)

'vyv
y = ¡'vv: (3.159)

The Lorentz factor for v is

v= vy =
1

1¡ kvk2

c2

q =
1

1¡ �v
2

p : (3.160)
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The spacetime dilation factor is

u�v= u	vy = v
�
1¡ u �v

c2

�
: (3.161)

The spatial relativistic velocity addition is

u�v=u	vy =
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

: (3.162)

The natural speed of the spatial velocity addition u�v is

�u�v= �u	vy =
ku�vk

c
=

(u�v) � (u�v)y
p

c
: (3.163)

For parallel velocities ujjv, then

�u�v =
�u+ �v
1+ �u�v

; for ujjv;u= �ucv̂: (3.164)

For perpendicular velocities u?v, then

�u�v = (1¡ �v
2)�u

2+ �v
2

p
for u?v: (3.165)

Time transformations for active boost
Although u � v and u 	 vy are the same spacetime velocities u � v = u 	 vy, their

associated time transformations are di�erent. For u�v, the boost operator is (vv/o)
1

2

and v/o transforms time t into � internal to the boost operator, and then v transforms
time � back into t external to the boost operator. Therefore, the time is � for u�v and
the displacement is

(u�v)� = (o+u�v)u�v� (3.166)
= (o+u�v)t (3.167)

that passively transforms � into t. For u 	 vy, the boost operator is (vyvy/o)
¡1

2 and
time transformations are reciprocal such that time � transforms into t internal to the
boost operator, and then time t transforms back into � external to the boost operator.
Therefore, the time is t for u	 vy and the displacement is

(u	vy)t = (o+u	vy)u	vyt (3.168)
= (o+u	vy)� (3.169)

that passively transforms t into � .
An �active� boost (u�v)� passively transforms time � into t= u�v� , from the frame

of v into the frame of o. The boost u� v adds/moves u into the frame of v with time
� = tpv that passively transforms to coordinate time t = tpo such that observer o sees
a dilated time t = u�v� and a velocity addition u�v�u � v = tu � v. The spacetime
contraction (u�v/u�v)t is an active velocity addition in the frame of o.

A �passive� boost (u 	 vy)t passively transforms time t into � = u	vyt, from the
frame of o into the frame of vy. The boost u	 vy subtracts/moves u from the frame of
vy into the frame of o with time t= tpo that passively transforms to time � = tpvy such
that observer vy sees a relative dilated time � = u	vyt and a relative velocity subtraction
u	vytu	vy= �u	vy. The spacetime contraction (u	vy/u	vy)t is an active velocity
subtraction in the frame of o.

Space-Time Algebra (STA) 23



Passive boost
The �passive� boost is the reverse of the �active� boost. Therefore, the following is very

similar to the �active� boost, but with everything going in reverse.
The �passive� boost u	v of spacetime velocity

u = o+u= c0+ �ucû (3.170)
tcu = t= tpo; (3.171)

by spacetime velocity

v = o+v= c0+ �vcv̂ (3.172)
tcv = t= tpo; (3.173)

is the �passive� boost operation

u	v = Bv�uBv=BvyuBvy
� (3.174)

= (vv/o)
¡1

2u(vv/o)
1

2 =(vyv
y/o)

1

2u(vyv
y/o)

¡1

2 (3.175)

= exp
�
1
2
'0v̂

�
u exp

�
1
2
'v̂0

�
= exp

�
1
2
'v̂y0

�
u exp

�
1
2
'0v̂y

�
(3.176)

= u	v = u�vy (3.177)
= u	 (o+v) = u� (o¡v) (3.178)
= u	vo+ u	vu	v = u�vyo+ u�vyu�vy (3.179)

= u	vc0+ u	v�u	vcu	v = u�vyc0+ u�vy�u�vycu�vy: (3.180)

The hyperbolic angle (rapidity) is

'= 'v= 'vy = atanh(�v)= atanh
�
jvj
joj

�
= atanh

�
v
c

�
= atanh

�
rise
run

�
(3.181)

'vyv
y = ¡'vv: (3.182)

The Lorentz factor for v is

v= vy =
1

1¡ kvk2

c2

q =
1

1¡ �v
2

p : (3.183)

The spacetime dilation factor is

u�v= u	vy = v
�
1¡ u �v

c2

�
: (3.184)

The spatial relativistic velocity subtraction is

u	v=u�vy =
ujjv̂+ 1¡ kvk2

c2

q
u?v̂¡v

1+
u �v
c2

: (3.185)

The natural speed of the spatial velocity subtraction u	v is

�u	v= �u�vy =
ku	vk

c
=

(u	v) � (u	v)y
p

c
: (3.186)
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For parallel velocities ujjv, then

�u	v =
�u¡ �v
1¡ �u�v

for ujjv;u= �ucv̂: (3.187)

For perpendicular velocities u?v, then

�u	v = (1¡ �v
2)�u

2+ �v
2

p
for u?v: (3.188)

Time transformations for passive boost
Although u 	 v and u � vy are the same spacetime velocities u 	 v = u � vy, their

associated time transformations are di�erent. For u	v, the boost operator is (vv/o)¡
1

2

and the reciprocal of v /o transforms time � into t internal to the boost operator, and
then the reciprocal of v transforms time t back into � external to the boost operator.
Therefore, the time is t for u	 v and the displacement is

(u	v)t = (o+u	v)u	vt (3.189)
= (o+u	v)� (3.190)

that passively transforms t into � . For u�vy, the boost operator is (vyvy/o)
1

2 and time
t transforms into � internal to the boost operator, and then time � transforms back into
t external to the boost operator. Therefore, the time is � for u�vy and the displacement is

(u�vy)� = (o+u�vy)u�vy� (3.191)
= (o+u�vy)t (3.192)

that passively transforms � into t.
A �passive� boost (u 	 v)t passively transforms time t into � = u	vt, from the

frame of o into the frame of v. The boost u 	 v subtracts/moves u from the frame of
v into the frame of o with time t = tpo that passively transforms to time � = tpv such
that observer v sees a relative dilated time � = u	vt and a relative velocity subtraction
u	vtu 	 v = �u 	 v. The spacetime contraction (u 	 v / u	v)t is an active velocity
subtraction in the frame of o.

An �active� boost (u�vy)� passively transforms time � into t= u�vy� , from the frame
of vy into the frame of o. The boost u�vy adds/moves u into the frame of vy with time
� = tpvy that passively transforms to coordinate time t= tpo such that observer o sees a
dilated time t= u�vy� and a velocity addition u�vy�u� vy = tu� vy. The spacetime
contraction (u�vy/u�vy)t is an active velocity addition in the frame of o.

Generalization of spacetime contraction operation
A spacetime velocity u that has been boosted successively has the general form

u0 = c0+ �cû0: (3.193)

In general, the spacetime contraction is

u00 = u0/= c
u0

u0 � 0
: (3.194)

The spacetime velocity u00 can be interpreted as some combination of active velocity
additions and subtractions in the frame of observer o. Or, u00 can be interpreted as
a spacetime velocity transformed into the frame of a new observer v ! ov with time
� = tpv= tcu00.
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If u = o+ u is in the contracted frame of observable v = o+ v with proper time � ,
where u sees v as its observer o, but v sees its observer o as the coordinate time t observer,
then u can be transformed into the contracted frame of the coordinate time t observer as
the active velocity addition with spacetime contraction

u�v/u�v = BvuBv�/u�v (3.195)
=
¡
u�vc0+ u�v�u�vcu�v

�
/u�v (3.196)

= o+u�v (3.197)

= o+
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

: (3.198)

The transformation of this back into the contracted frame of v is

Bv�(u�v/u�v)Bv/ = Bv�(o+u�v)Bv/u�v	v (3.199)
= (u�v	vo+ u�v	vu�v	v)/u�v	v (3.200)
= o+u=u: (3.201)

where

u�v	v = u (3.202)

but

u�v	v =/ u (3.203)
= u�v

¡1 : (3.204)

The generalization, for transformation into the new contracted frame after passive boosts
of u, is to divide by the general spacetime contraction factor

 =
u0 � 0
c

(3.205)

as

u00 = u0/= c
u0

u0 � 0
=o+u0 (3.206)

where o represents the new observer with new coordinate time tpo= tcu00.

Approximations
For boost speed kvk� c and initial speed kuk� c, an active boost is approximately

an addition of velocities

u�v � u+v; for kuk; kvk� c: (3.207)

and a passive boost is approximately the subtraction of velocities

u	v � u¡v; for kuk; kvk� c: (3.208)

For a very small speed (v= �vc)� c, then �v� 1 and the rapidity 'v is approximately
equal to �v

'v = atanh(�v) (3.209)
� �v; for �v� 1: (3.210)
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For �v� 1, the proper velocity (celerity) 'vcv̂ is approximately equal to velocity

'vcv̂ � (�vcv̂=v); for �v� 1: (3.211)

For a small speed v� c, the Lorentz factor v=1/ 1¡ v2/c2
p

� 1.
Using the hyperbolic function composition identities, it can be shown that the boost

operator that applies the boost �v twice successively, and adds the rapidity 2'v, is

BvBv=B�vB�v =
1

1¡ �v
2

p +
�v

1¡ �v
2

p v̂0 (3.212)

and the boost operator that applies the boost 1

2
�v twice successively is

B1

2
�v
B1

2
�v

=
2

4¡ �v
2

p +
�v

4¡ �v
2

p v̂0: (3.213)

The double boost operator B�vB�v can be de�ned as successive re�ections in two space-
time planes through the origin, where the �rst plane contains the observer o and the
second plane contains the boost observable (particle) v. The two planes bound the hyper-
bolic angle 'v that turns from the �rst plane at �o=0 into the second plane at �v, toward
the direction in space of the boost velocity v.

For very small �v� c, then 'v= atanh(�v)� �v and then

Bv = e
1

2
'vv̂0= e

1

4
'vv̂0e

1

4
'vv̂0=B1

2
'v
B1

2
'v

(3.214)

� 2

4¡ �v
2

p +
�v

4¡ �v
2

p v̂0=B1

2
�v
B1

2
�v

(3.215)

� e
1

2
�vv̂0= cosh

�
1
2
�v

�
+ sinh

�
1
2
�v

�
v̂0 (3.216)

The good approximation of Bv for very small �v� c is

Bv �
2

4¡ �v
2

p +
�v

4¡ �v
2

p v̂0: (3.217)

4 Conformal Space-Time Algebra (CSTA)

G2;4 Conformal Space-Time Algebra (CSTA) is introduced in [3] as the spacetime con-
formal group.
G2;4 CSTA is a straightforward extension and adaptation of the G4;1 Conformal Geo-

metric Algebra (CGA). CGA is introduced by Hestenes, Li, and Rockwood in [20].
CGA is also discussed by Perwass in [16], and by Dorst, Fontijne, and Mann in [4].
G4;8 Double Conformal Space-Time Algebra (DCSTA) D contains two copies of G2;4

CSTA C, which are called CSTA1 C1 and CSTA2 C2. Elements and operations in CSTA1
are subscripted with C1. Elements and operations in CSTA2 are subscripted with C2.
Elements and operations in generic CSTA are subscripted with C.

Most formulas are expressed in CSTA C and written explicitly in CSTA1 C1 and
CSTA2 C2 only when helpful to see how the particular CSTA1 and CSTA2 elements are
used in formulas. Most formulas in CSTA can be written in CSTA1 and CSTA2 by just
changing subscripts. CSTA uses the origin eo and in�nity e1 points and the Dirac
gammas 0; 1; 2; 3 for the timelike w = ct and spatial x; y; z axes, respectively. The
generic CSTA point embedding is PC= C(pM).
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4.1 CSTA unit pseudoscalar

The G2;4 CSTA 6-vector unit pseudoscalar IC with signature (+¡¡¡+¡) is

IC = IM(e1 ^ eo)= 0IS(e1 ^ eo)= 0123(e1 ^ eo)= 0123e+e¡ (4.1)
IC� = (¡1)6(6¡1)/2IC=¡IC (4.2)
IC
2 = ¡1 (4.3)

IC
¡1 = ¡IC= IC�: (4.4)

The G2;4 CSTA1 6-vector unit pseudoscalar IC1 with signature (+¡¡¡+¡) is

IC1 = IM1(e11^ eo1)= e1IS1(e11^ eo1)= e1e2e3e4(e11^ eo1)= e1e2e3e4e5e6: (4.5)

The G2;4 CSTA2 6-vector unit pseudoscalar IC2 with signature (+¡¡¡+¡) is

IC2 = IM2(e12^ eo2)= e7IS2(e12^ eo2)= e7e8e9e10(e12^ eo2)= e7e8e9e10e11e12: (4.6)

4.2 CSTA point

The CSTA null 1-vector point entity is very similar to the CGA null 1-vector point entity.
The following subsections de�ne the CSTA points at the origin and at in�nity, and the
CSTA point embedding.

4.2.1 Stereographic embedding and homogenization

The embedding of an G1;3 STA position vector pM into a G2;4 CSTA null 1-vector point PC
is done in exactly the same way a G3 APS point p is embedded into a G4;1 CGA point PC.
There are many references that explain the stereographic embedding and homogenization,
such as Perwass [16], Rosenhahn [18], and the paper on G8;2 DCGA [7].

4.2.2 CSTA point at the origin

The CSTA null 1-vector point at the origin is de�ned as

eo =
1
2
(¡e++ e¡) (4.7)

where e+ is the stereographic unit and e¡ is the homogeneous unit, and

e+ =

�
e5 : in CSTA1
e11 : in CSTA2

(4.8)

e¡ =

�
e6 : in CSTA1
e12 : in CSTA2.

(4.9)

The CSTA1 null 1-vector point at the origin is de�ned as

eo1 =
1
2
(¡e5+ e6): (4.10)

The CSTA2 null 1-vector point at the origin is de�ned as

eo2 =
1
2
(¡e11+ e12): (4.11)

The CSTA null 1-vector point at the origin eo represents either eo1 or eo2.
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4.2.3 CSTA point at in�nity

The CSTA null 1-vector point at in�nity is de�ned as

e1 = e++ e¡: (4.12)

The CSTA1 null 1-vector point at in�nity is de�ned as

e11 = e5+ e6: (4.13)

The CSTA2 null 1-vector point at in�nity is de�ned as

e12 = e11+ e12: (4.14)

The CSTA null 1-vector point at in�nity e1 represents either e11 or e12.

4.2.4 CSTA point embedding

The generic CSTA null 1-vector point PC entity is the embedding of an STA position pM as

PC= C(pM) = pM+
1
2
pM
2 e1+ eo: (4.15)

The CSTA1 null 1-vector point PC1 entity is the embedding of an STA1 position pM1 as

PC1= C(pM1) = pM1+
1
2
pM1
2 e11+ eo1: (4.16)

The CSTA2 null 1-vector point PC2 entity is the embedding of an STA2 position pM2 as

PC2= C(pM2) = pM2+
1
2
pM2
2 e12+ eo2: (4.17)

The embedding function C is implemented as a piecewise embedding function that embeds
an STA, STA1, or STA2 vector into the corresponding CSTA, CSTA1, or CSTA2 point.
The generic CSTA embedding will used to avoid duplication in generic discussions that
can apply just as well in either CSTA1 or CSTA2 by only changing the subscripts accord-
ingly.

The CSTA point PC is similar to a CGA point PC as in [7] when PC is the embedding
of a spatial point pM=pS and we hold w= ct=0, which gives the G1;4 CSA null 1-vector
point PCS.

As a GOPNS entity, a CSTA point PC simply represents the point (�4.5.2), as
expected.

As a GIPNS entity, a �nite CSTA point PC, excluding e1, actually represents a
hypercone (�4.4.2) in spacetime of the form

(w¡ pw)
2¡ (x¡ px)

2¡ (y¡ py)
2¡ (z¡ pz)

2 = 0 (4.18)

where

pM = pw0+ px1+ py2+ pz3= pw0+pS: (4.19)

In general, a hypersurface in an n-D space has an (n¡1)-D surface. A cone or other surface
in 3-D space has a 2-D surface, but a hypercone or other hypersurface in 4-D spacetime
has a 3-D surface. A hypersurface is treated and conceptualized in most respects the same
as a 2-D surface, but it embeds extended dimensions and its mathematical forms contain
an additional term per extended dimension.
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The hypercone is a result of the Minkowski spacetime metric (1; 3), which can be
seen in the hypercone equation. For comparison to G4;1 CGA, a CGA point embeds a 3-
D Euclidean vector with metric (3; 0) and represents an implicit surface equation of a
sphere with zero radius

(x¡ px)2+(y¡ py)2+(z ¡ pz)2 = 0: (4.20)

In 3-D spacetime with only two spatial dimensions by holding z ¡ pz= 0, the hypercone
reduces to the circular cone

(x¡ px)
2+(y¡ py)

2¡ (w¡ pw)
2 = 0 (4.21)

which is an expanding circle in the xy-plane as the time-like coordinate w= ct increases
past pw. The hypercone is an expanding sphere in space that is expanding with time t in
radius

r = w¡ pw= ct¡ pw (4.22)

at the speed of light c. The point begins expanding after time t= pw/c and is contracting
before that time.

A CSTA point, as an expanding sphere, represents a light-cone in spacetime that is
centered at the vertex point pM. In spacetime, the light-cone is a spherical hypercone,
which is a cone with a 3-D hypersurface. A surface is usually 2-D, but a hypersurface
is imagined as a surface while it is actually a higher-dimensional space. The light-cone
is often depicted as a cone in a 3-D spacetime of two spatial dimensions and a time-like
dimension, wherein the cone is a circular wave front of light that expands in space as time
t increases. The expanding radius r= ct¡ pw of the wave front is centered at a point light
source pM. A CSTA point represents a spherical wave front of light in space, or light-
cone in spacetime, centered at a point light source pM that �ashes at time t= pw/c.

4.2.5 CSTA point normalization

A homogeneous CSTA point embedding with scalar weight s is

sPC= sC(pM) = spM+ s
1
2
pM
2 e1+ seo: (4.23)

A normalized point is scaled to weight s=1.
The normalization of a weighted CSTA point sPC is

PC =
(sPC)

¡(sPC) � e1
=
sPC
s
: (4.24)

Many formulas require points and other entities to be unit weight. The normalization of
an entity can be particular to the type of the entity.

A normalized point can be denoted

P̂C =
PC

¡PC � e1
: (4.25)

4.2.6 CSTA point projection (inverse embedding)

The projection of CSTA point PC= C(pM) to STA position pM is

pM= C¡1(PC) =

�
PC

¡PC � e1
� IM

�
IM
¡1 (4.26)

=
¡
P̂C � IM

�
IM
¡1: (4.27)
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4.2.7 CSTA test point

The symbolic CSTA test point TC = C(tM) is the embedding of the symbolic STA test
vector

tM = w0+x1+ y2+ z3= ct0+ tS=oMt+ tS: (4.28)

The symbolic CSTA1 test point TC1=C(tM1) is the embedding of the symbolic STA1 test
vector

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1: (4.29)

The symbolic CSTA2 test point TC2=C(tM2) is the embedding of the symbolic STA2 test
vector

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2: (4.30)

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
time-like coordinate w = c t represents the distance traveled by light in time t. The
observer , as de�ned for special relativity, is identi�ed as the symbolic time-like velocity
oM.

CSTA1 and CSTA2 test points TC1 and TC2, respectively, are wedged to form the G4;8
DCSTA test point TD = TC1 ^ TC2. The DCSTA point value-extraction elements Ts are
de�ned as elements that extract values from the DCSTA test point TD as s=TD �Ts.

4.3 CSTA point value-extraction elements
The CSTA 1-vector point value-extraction elements Cs extract the value s from a test
point TC= C(tM) as s=TC �Cs. The CSTA value-extraction elements are

C1 = ¡e1 (4.31)
Cw = 0 (4.32)

Ct =
1
c
Cw (4.33)

Cx = ¡1 (4.34)
Cy = ¡2 (4.35)
Cz = ¡3 (4.36)
Ct2 = ¡2eo: (4.37)

These elements are straightforward to verify. When w= ct, the extraction Ct gives t. The
extraction

TC �Ct2 = tM
2 = jtMj2=w2¡ r2=(ct)2¡x2¡ y2¡ z2 (4.38)

is the squared modulus, or interval from the origin, of the STA test vector tM.
The CSTA geometric inner product null space (GIPNS) 1-vector surface entities can

be de�ned in terms of these extraction elements by writing their implicit surface functions.
Two of these entities are the CSTA GIPNS 1-vector hyperplane EC and the CSTA GIPNS
1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C. A hyperhyperboloid can
degenerate into a hypercone, which is a CSTA GIPNS null 1-vector point entity PC.
The CSTA GIPNS 1-vector entities �C and EC are similar in form to the CGA sphere
S and plane �. The other CSTA GIPNS entities are of grades 2 to 5 and are formed as
intersections (wedges) of hyperpseudospheres and hyperplanes or by speci�c formulas.
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4.4 CSTA GIPNS entities
The G2;4 CSTA GIPNS entities are similar to G4;1 CGA GIPNS entities, but with some
changes to account for the anti-Euclidean signature of G0;3 SA and the pseudo-Euclidean
spacetime signature of G1;3 STA in a 4-D spacetime. The CSTA GIPNS entities of forms
similar to CGA GIPNS entities are representing hypersurfaces in 4-D spacetime.

4.4.1 Geometric inner product null space (GIPNS)

Geometric inner product null space (GIPNS) entities are introduced by Perwass in [16],
and are reviewed by this author in [7] and [9].

4.4.2 CSTA GIPNS 1-vector hypercone

The implicit quadric surface equation for a circular hypercone is

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0: (4.39)

The CSTA GIPNS null 1-vector hypercone KC is the point embedding

KC = PC= C(pM) (4.40)

with center vertex point pM. The hypercone is a sphere in space that expands from a
point at pM with squared radius

r2 = (w¡ pw)2=(ct¡ pw)2: (4.41)

4.4.3 CSTA GIPNS 1-vector hyperplane

A hyperplane is a linear subspace of dimension (n¡ 1) in a space of dimension n. In 4D
spacetime, a hyperplane is a 3D subspace. The hyperplane space can be a Minkowski
spacetime (1; 2) or an anti-Euclidean space (0; 3).

An implicit surface equation for a hyperplane in spacetime through the origin can be
written

tM �nM = (4.42)
nww¡nxx¡nyy¡nzz = 0: (4.43)

The STA vector

nM = nw0+nx1+ny2+nz3 (4.44)

is the normal vector to the hyperplane. Only the direction of nM is signi�cant, and its
magnitude can be arbitrary. However, as a normalization of the scale, normal vectors with
unit magnitudes (norms) n/ n �ny

p
are sometimes required. The STA test vector tM is

tM = w0+ x1+ y2+ z3: (4.45)

The equation holds good for any point tM on the hyperplane through the origin orthogonal
to nM. Using the CSTA point value-extraction elements (�4.3), the hyperplane implicit
surface function can be written as the CSTA GIPNS entity

nww¡nxx¡nyy¡nzz ! (4.46)
nwCw¡nxCx¡nyCy¡nzCz = (4.47)
nw0+nx1+ny2+nz3 = (4.48)

nM : (4.49)
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The CSTA GIPNS 1-vector hyperplane EC through the origin with normal vector nM is
de�ned as

EC = nM: (4.50)

The hyperplane through the origin nM can be translated from the origin to a point dM
using the translator (�4.6.4) operation

TCnMTC
� = (4.51)�

1¡ 1
2
dMe1

�
nM

�
1¡ 1

2
e1dM

�
= (4.52)

nM+(dM �nM)e1 : (4.53)

The CSTA GIPNS 1-vector hyperplane EC through the point pM with normal vector nM
is de�ned as

EC = nM+(pM �nM)e1 (4.54)
' EC

�IC (4.55)

and is equal to the CSTA undual of the dual CSTA GOPNS 5-vector hyperplane EC�

(�4.5.13) up to a homogeneous scalar factor. The normal vector nM can have any mag-
nitude, and pM can be any point on the hyperplane. The hyperplane EC has a form that
is similar to a G4;1 CGA plane �, and when we hold w= ct=0, then the form gives the
G1;4 CSA GIPNS 1-vector plane �CS=nS+(pS �nS)e1.

If nM is normal (perpendicular) to the hyperplane and also a point on the hyperplane,
then the hyperplane can be de�ned as

EC = nM+nM
2 e1 (4.56)

= nM+ d2e1 (4.57)

where d= nM
2

p
is the hyperbolic distance (modulus) of nM from the origin. The modulus

d may be a real or imaginary number, but the spacetime interval d2 of nM from the origin
is a real scalar. For nM both normal to and on the hyperplane, the squared modulus
d2 = pM � nM from the origin, as well as d itself, is constant for all points pM on the
hyperplane. By using the squared modulus d2, it is possible to avoid imaginary numbers.
The actual magnitude of nM does not a�ect the representation of the hyperplane surface
since the hyperplane entity is a homogeneous entity that may be arbitrarily scaled by any
non-zero scalar without a�ecting the surface that is represented. The scaling of entities
a�ects metrical distance calculations between entities, and the formulas for distances
between entities must include methods for normalizing the scale of entities.

The hyperplane EC is the set of STA points tM

NIG(EC) = f tM : C(tM) �EC=0 g (4.58)

of the geometric inner product null space of EC, denoted NIG(EC) [16]. A similar set
holds for all other GIPNS entities.

If nM is a null vector, then the hyperplane EC degenerates into the representation of
a CSTA GIPNS null 1-vector light-line (null line) entity LC (�4.4.4) parallel to nM and
through the point pM. The null line entity LC includes the point at in�nity e1 on the line.

The intersections of two, three, four, or �ve hyperplanes ECi can de�ne entities for
planes, lines, �at points, and the point at in�nity, respectively as follows:
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Two hyperplanes intersect as a CSTA GIPNS 2-vector plane �C (�4.4.10)

EC1^EC2 = (4.59)
(n1+ d1

2e1)^ (n2+ d2
2e1) = (4.60)

n1^n2+(d2
2n1¡ d12n2)e1 = (4.61)

D�M¡ (pM �D�M)e1 = �C (4.62)

where D�M=n1^n2 is the STA dual of the plane �C direction bivector D.
Three hyperplanes intersect as a CSTA GIPNS 3-vector line LC (�4.4.11)

EC1^EC2^EC3 = (4.63)
(n1^n2+(d2

2n1¡ d12n2)e1)^ (n3+ d3
2e1) = (4.64)

n1^n2^n3+(d2
2n1¡ d12n2)^ e1^n3+ d3

2n1^n2^ e1 = (4.65)
n1^n2^n3+(d1

2n2^n3¡ d22n1^n3+ d3
2n1^n2)e1 = (4.66)

d�M+(pM �d�M)e1 = LC (4.67)

where d�M=n1^n2^n3 is the STA dual of the line LC direction vector d.
Four hyperplanes intersect as a CST GIPNS 4-vector �at point (�4.4.16)

EC1^EC2^EC3^EC4 = (4.68)
(n1^n2^n3+(d1

2n2^n3¡ d22n1^n3+ d3
2n1^n2)e1)^ (n4+ d4

2e1) = (4.69)
�IM¡�(pM � IM)e1 ' (4.70)

IM+ pM
� e1 = PC: (4.71)

The CSTA dual of the �at point is

(IM+ pM
� e1)IC

¡1 = (4.72)
e1 ^PC = PC

�: (4.73)

Five hyperplanes intersect as the CSTA GIPNS 5-vector point at in�nity e1
? (�4.4.17)

EC1^EC2^EC3^EC4^EC5 = (4.74)
(IM+ pM

� e1)^ (n5+ d5
2e1) = (4.75)

pM
� ^ e1 ^n5+ d5

2IM^ e1 ' (4.76)
IM^ e1 = (4.77)

IM^ e++ IM^ e¡ = (4.78)
¡IC � e¡¡ IC � e+ = (4.79)

¡IC � e1 = (4.80)
¡(¡1)1(6¡1)e1 � IC = (4.81)

e1IC = e1
? : (4.82)

4.4.4 CSTA GIPNS null 1-vector light-line (null line)

As a CSTA GIPNS entity, a null vector nM=�(0+ n̂) represents the line through the
origin in the direction of nM. This is a degenerate case of the hyperplane EC (�4.4.3)
with null vector nM as the hyperplane normal vector.

The CSTA GIPNS null 1-vector light-line (null line) LC through the origin in the
direction of the null vector nM is de�ned as

LC = nM: (4.83)
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The null line LC=nM can be translated in spacetime from the origin to an arbitrary point
pM using a translation operation (�4.6.4). The CSTA GIPNS null 1-vector null line LC
through the point pM in the direction of null vector nM is de�ned, via translation, as

LC = nM+(pM �nM)e1: (4.84)

The null line LC includes the point at in�nity e1 on the line.

4.4.5 CSTA GIPNS 1-vector hyperhyperboloid of one sheet

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0 (4.85)

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)

2
p

= r0
2+(ct¡ pw)

2
p

(4.86)

and center position

pM = pw0+ px1+ py2+ pz3= pw0+pS (4.87)

in 4-D spacetime.
When w¡ pw=0, the surface is a sphere with radius r0. The circular hyperhyperboloid

of one sheet can also be called a hyperpseudosphere. Like a sphere, a hyperpseudosphere
does not include the point at in�nity.

In 3-D spacetime with only two spatial dimensions by holding (z¡ pz)=0, the circular
hyperhyperboloid of one sheet reduces to the circular hyperboloid of one sheet

(x¡ px)2

r0
2 +

(y¡ py)2

r0
2 ¡ (w¡ pw)2

r0
2 = 1: (4.88)

When (w ¡ pw) = 0, the hyperboloid of one sheet is a circle in the xy-plane with initial
radius r0 at initial time t = pw / c, or w = pw. The circle radius r = r0

2+(w¡ pw)2
p

is
expanding after time t= pw/c and is contracting before that time. The radius is expanding
with time t at the rate

r_ =
@r
@t

=
1
2
r¡12(ct¡ pw)c=

ct¡ pw
r

c=
ct¡ pw

(ct¡ pw)2+ r0
2

p c: (4.89)

The initial rate at time t= pw/c is r_(pw/c) = 0 and increases to r_(1) = c as t!1. In
natural units, c=1 and the hyperhyperboloid of one sheet is asymptotically the hypercone
of a spherically expanding point PC. The acceleration of the radius r is

r�=
@r_
@t

= @t
ct¡ pw

r
c=

cr¡ r_(ct¡ pw)
r2

c=
c2¡ r_2
r

: (4.90)

The initial acceleration at t= pw/c is r�(pw/c)= c2/r0 and decreases to r�(1)=0 as t!1.
In natural units, c=1 and r� is a measure of circular, or spherical, curvature at time t.

Using the CSTA point value-extraction elements (�4.3) the hyperhyperboloid of one
sheet implicit surface function entity can be written

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ px)2 ! (4.91)

(r0
2+ pM

2 )C1+Ct2¡ 2pwCw+2pxCx+2pyCy+2pzCz = (4.92)
¡(r02+ pM2 )e1¡ 2eo¡ 2pw0¡ 2px1¡ 2py2¡ 2pz3 = (4.93)

¡2pM¡ (r02+ pM2 )e1¡ 2eo : (4.94)
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Normalizing eo by scaling ¡1/2 gives

pM+
1
2
(r0
2+ pM

2 )e1+ eo = (4.95)

PC+
1
2
r0
2e1 : (4.96)

The CSTA GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C in
spacetime with initial radius r0 centered at CSTA point PC= C(pM) is de�ned as

�C = PC+
1
2
r0
2e1 (4.97)

' �C
�IC (4.98)

and equals the CSTA undual of the dual CSTA GOPNS 5-vector hyperpseudosphere �C�

up to a homogeneous scalar factor.
The CSTA hyperpseudosphere �C is similar to a CGA sphere S discussed in [7] when

PC = C(pS) is the embedding of a spatial point pM = pS with w = ct = 0, which gives
the G1;4 CSA GIPNS 1-vector sphere SCS = PCS +

1

2
r2e1. When r0 = 0, �C =KC is a

hypercone, which is the CSTA point embedding PC=KC as a GIPNS entity.
Two hyperpseudospheres can intersect in a growing spatial circle, which is a CSTA

GIPNS 2-vector spacetime hyperboloid or pseudosphere SC. Three hyperpseudospheres
can intersect in a growing spatial point pair, which is a CSTA GIPNS 3-vector spacetime
hyperbola or pseudocircle CC. Four hyperpseudospheres can intersect in a CSTA GIPNS
4-vector spacetime point pair PC.

4.4.6 CSTA GIPNS 1-vector hyperhyperboloid of two sheets

The implicit quadric surface equation for a circular hyperhyperboloid of two sheets is

¡r02+(w¡ pw)
2¡ (x¡ px)

2¡ (y¡ py)
2¡ (z ¡ pz)

2 = 0: (4.99)

The CSTA GIPNS 1-vector hyperhyperboloid of two sheets (imaginary hyperpseudosphere)
is

�C = PC¡
1
2
r0
2e1: (4.100)

The imaginary radius is ¡1
p

r0.
The intersection of �C and hyperplane EC= 0+ pwe1 holds w= pw and produces an

imaginary sphere. The intersection of �C and hyperplaneEC=3¡ pze1 holds z= pz and
produces a hyperboloid of two sheets in wxy-spacetime opening up and down the w-axis.
The intersection of �C and spacetime plane �C produces a hyperbola in the spacetime
plane that opens up and down the time axis.

4.4.7 CSTA GIPNS 2-vector spatial sphere

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)

2¡ (x¡ px)
2¡ (y¡ py)

2¡ (z¡ pz)
2 = 0: (4.101)

If we set the time coordinate w, then we get the implicit surface equation for a sphere in
xyz-space

(x¡ px)2+(y¡ py)2+(z ¡ pz)2¡ r2 = 0 (4.102)

with radius

r = r0
2+(w¡ pw)2

p
: (4.103)
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To set w, we can intersect a hyperpseudosphere

�C = PC+
1
2
r0
2e1 (4.104)

with radius r0 centered at

PC = C(pM)= C(pw0+ px1+ py2+ pz3)= C(pw0+pS) (4.105)

with the hyperplane

EC = 0+we1 (4.106)

of xyz-space at w. The sphere of radius r0 centered at pS is at the time w= pw.
The CSTA GIPNS 2-vector sphere SC centered at PC = C(pM) with radius r0 is the

intersection

SC = �C^EC (4.107)

=

�
PC+

1
2
r0
2e1

�
^ (0+(pM � 0)e1) (4.108)

=

�
PC+

1
2
r0
2e1

�
^ (0+ pwe1) (4.109)

' SC
�IC (4.110)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector sphere SC� up to
a homogeneous scalar factor.

4.4.8 CSTA GIPNS 2-vector spacetime hyperboloid of one sheet

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)

2¡ (x¡ px)
2¡ (y¡ py)

2¡ (z¡ pz)
2 = 0: (4.111)

If we set one spatial coordinate, for instance z, then we get the implicit surface equation
for a circular hyperboloid of one sheet in wxy-spacetime

(x¡ px)2+(y¡ py)2¡ (w¡ pw)2¡ (r02¡ (z¡ pz)2) = (4.112)
(x¡ px)2

r2
+
(y¡ py)2

r2
¡ (w¡ pw)2

r2
¡ 1 = 0 (4.113)

with central radius

r = r0
2¡ (z¡ pz)

2
p

(4.114)

and circular conic section radius at w; z

rc = (w¡ pw)2+(r0
2¡ (z ¡ pz)2)

p
= (w¡ pw)2+ r2
p

: (4.115)

The spacetime hyperboloid of one sheet is also called a pseudosphere. Like a sphere, a
pseudosphere does not include the point at in�nity. The pseudosphere in wxy-spacetime
is a circle in xy-space that changes in radius with w; z. To set z, we can intersect a
hyperpseudosphere

�C = PC+
1
2
r0
2e1 (4.116)

with radius r0 centered at

PC = C(pM)= C(pw0+ px1+ py2+ pz3)= C(pw0+pS) (4.117)
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with the hyperplane

EC = z3¡ z2e1 (4.118)
' 3¡ ze1 (4.119)

of wxy-space at z3. To have pseudosphere central radius r0, set z = pz. The xy-plane
circle of radius r0 centered at pS is at the time w = pw. More generally, the hyperplane
can be through point pM with spatial normal vector nS as

EC = nS+(pM �nS)e1: (4.120)

The CSTA GIPNS 2-vector spacetime hyperboloid of one sheet (pseudosphere) SC centered
at PC=C(pM) with central radius r0 in the spatial plane orthogonal to normal vector nS
is the intersection

SC = �C^EC (4.121)

=

�
PC+

1
2
r0
2e1

�
^ (nS+(pM �nS)e1) (4.122)

' SC
�IC (4.123)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector pseudosphere SC�

up to a homogeneous scalar factor.
The CSTA GIPNS null 2-vector spacetime cone (null cone) is the pseudosphere SC

with central radius r=0.
The spacetime hyperboloid of one sheet is always in a 3D spacetime and is not a purely

spatial surface. The spatial part is circles in planes parallel to the nS� -plane centered at
pS with radius rc = (w¡ pw)2+ r0

2
p

. The CSTA GIPNS 3-vector circle entity CC with
radius r0 is obtained by another intersection with the hyperplane at pw0.

4.4.9 CSTA GIPNS 2-vector spacetime hyperboloid of two sheets

The CSTA GIPNS 2-vector spacetime hyperboloid of two sheets (imaginary pseudosphere)
SC centered at PC=C(pM) with central radius r0 in the spatial plane orthogonal to normal
vector nS is the intersection

SC = �C ^EC (4.124)

=

�
PC¡

1
2
r0
2e1

�
^ (nS+(pM �nS)e1) (4.125)

' SC
�IC (4.126)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector imaginary pseu-
dosphere SC� up to a homogeneous scalar factor. The two sheets open up and down the
w-axis and have circular sections in the nS� -plane.

4.4.10 CSTA GIPNS 2-vector plane

A plane in spacetime can be de�ned by two orthogonal unit-norm direction vectors

dM1 =
dM1

kdM1k
= dw10+ dx11+ dy12+ dz13 (4.127)

dM2 =
dM2

kdM2k
= dw20+ dx21+ dy22+ dz23 (4.128)

dM1 �dM2

y = 0 (4.129)
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and a point

pM = pw0+ px1+ py2+ pz3 (4.130)

on the plane. The direction of the plane is represented by the normalized unit bivector

D = dM1^dM2 (4.131)

=
D

D �Dy
p =

D

D � (0D�0)
p : (4.132)

The notation AM
y = 0AM� 0 is the anti-Euclidean space conjugation, or SA space con-

jugation, which is necessary for the case where D is a null bivector. For blade AM in
spacetime, the conjugate [16] has the property

AM �AM
y = AM �

¡
0AM0

�
= kAMk2: (4.133)

Any test point

tM = w0+ x1+ y2+ z3 (4.134)

on the plane must satisfy the plane equation

(tM¡ pM)^D = 0 (4.135)

which can also be written in the dual form

(tM¡ pM) �D�M = tM �D�M¡ pM �D�M=0: (4.136)

The dual form plane equation is vector-valued and the components represent a system of
implicit surface equations for an intersection of hyperplanes that gives the plane.

The CSTA GIPNS 2-vector plane �C through point pM in the planar direction of the
unit bivector D in spacetime can be de�ned as

�C = D�M¡ (pM �D�M)^ e1 (4.137)
' �C

�IC (4.138)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector plane �C
� up to

a homogeneous scalar factor.
The CSTA translation operation on any CSTA entity can be de�ned as its succes-

sive re�ections in two parallel CSTA planes. The CSTA 2-versor translator (translation
operator) TC can be de�ned by two parallel planes �C1 and �C2 that are separated by a
spacetime displacement vector 1

2
dM from �C1 to �C2 as

TC = �C2�C1: (4.139)

The translator versor operation on a CSTA point PC= C(pM), for example, is

PC
0 = TCPCTC�=�C2�C1PC�C1

��C2
� = C(pM+dM): (4.140)

The successive re�ections in two parallel planes translates by twice the spacetime dis-
placement between the parallel planes.

The rotor (spatial rotation operator) RS for a rotation by twice the angle between
two non-parallel spatial planes �C1 and �C2 can be de�ned as

RS = �C2�C1: (4.141)
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The spatial rotation operator RS is equivalent to the SA rotor and is the same spatial rotor
that is used in STA and CSTA. The spatial rotor RS can spatially rotate any multivector
by versor outermorphism [16] that rotates all vectors within outer products.

The double boost operator BvBv, where Bv = (vv /o)
1

2 and v = c0 + �vcv̂, that
adds the double rapidity 2'v = 2atanh(�v) in the direction of v can be de�ned as the
successive re�ections in two non-parallel spacetime planes. The �rst plane �C1 should
represent the observer as a plane through the origin and observer o that spans the time
axis and another spatial axis perpendicular to v. The second plane �C2 should represent
the boost velocity v=o+v by passing through the origin and v and spanning the same
direction perpendicular to v as the �rst plane. The planes should be unit scale by using
unit bivectors to de�ne the plane directions. The two planes contain the hyperbolic angle
'v that turns positive from �C1 toward �C2 into the direction of v. The double boost
BvBv of a spacetime velocity u is obtained by the successive re�ections

u 0 = �C2�C1u�C1
��C2

� =BvBvuBv�Bv�: (4.142)

4.4.11 CSTA GIPNS 3-vector line

Implicit surface equation of line
An implicit equation for a line in spacetime through two points can be written as

(t¡ p1) � (p2¡ p1)�M = 0 (4.143)

where t is the CSTA test point. The equation holds good for any t on the line of the two
points p1 and p2. The unit norm direction d of the line can be written as

d =
p2¡ p1

(p2¡ p1) � (p2¡ p1)y
p (4.144)

=
p2¡ p1

(p2¡ p1) � (0(p2¡ p1)0)
p (4.145)

=
p2¡ p1
kp2¡ p1k

: (4.146)

The unit norm trivector dual to the line direction is

d�M = dIM
¡1: (4.147)

The implicit equation can be rewritten as

(t¡ p) �d�M = (4.148)
t �d�M¡ p �d�M = 0 (4.149)

where p is any point on the line.

De�nition of line entity
The CSTA 3-vector line entity LC through point pM in the direction of unit norm

vector dM can be de�ned as

LC = d�M+(pM �d�M)^ e1 (4.150)
' LC

�IC (4.151)
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which is equal to the CSTA undual of the dual CSTA GOPNS 3-vector line LC� (�4.5.6)
up to a homogeneous scalar factor. If the line direction d is a null vector, then the line
entity LC is a null 3-vector representing a null line (light-line), otherwise it is a non-null
3-vector representing a timelike or spacelike line. The point at in�nity e1 is on all 3-
vector lines LC.

Observable representation
The observable worldline

pM
p0(t) = p0+vt (4.152)

= p0+ot+vt (4.153)
= oM

p0(t)+vt; (4.154)

which intersects the worldline of the translated observer oM
p0(t) at

p0 = ox1+ oy2+ oz3 (4.155)

when the coordinate time is t= tpo= tcv=0, can be represented as the CSTA GIPNS 3-
vector line Lp that is constructed as

Lp = v�M+(p0 �v�M)^ e1: (4.156)

The observable worldline Lp can be operated on by all of the CSTA versors. For example,
the translated-boost BCu

p0 (�4.6.9) of Lp can boost Lp into the frame of u = oM
p0(t) + u

with proper time � = tpu= tcv�u relative to the translated-observer oM
p0(t) as a relativistic

velocity addition v � u while the initial position remains p0. Other, even more compli-
cated, spacetime transformations can be achieved by compositions of the CSTA versors
applied to an observable line Lp.

The position point PC
p0(t) of the observable Lp at time t is represented by the CSTA

GIPNS 4-vector �at point (�4.4.16)

PC = Lp^EC (4.157)
' (PC

p0(t)^ e1)IC (4.158)

with time hyperplane

EC = 0+ te1: (4.159)

Flat point decomposition (�4.5.5) of the CSTA GOPNS 2-vector �at point PC�'PCIC
¡1 can

project the CSTA position point PC
p0(t) as the STA position vector pM

p0(t).
The rapidity of Lp is given by

' = acosh

 
Lp � (123)

Lp
2

p !
(4.160)

and the natural speed � of Lp is

� = tanh('): (4.161)

The formula for rapidity ' is similar to the standard formula for the angle � between two
Euclidean plane vectors v and u, �= acos

�
u �v
kukkvk

�
, except that this plane is a Minkowski

spacetime plane with hyperbolic angle '.
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The spacetime velocity v of Lp is the line direction

v=d = ((Lp � IM)IM¡1)IM=Lp � IM: (4.162)

If the observableLp is boosted by translated-boost operations, then v is boosted according
to all the same results and interpretations as v boosted by STA boost operations centered
on the observer o.

One advantage of using the CSTA worldline representation Lp is the ability to easily
incorporate initial positions p0 and use translated spacetime operations with the CSTA
translator (�4.6.4). Other advantages may include the ability to compute various inter-
sections of a worldline with other CSTA spacetime entities.

4.4.12 CSTA GIPNS 3-vector spatial circle

The CSTA GIPNS 1-vector hyperpseudosphere with radius r0

�C = PC+
1
2
r0
2e1 (4.163)

centered at

PC = C(pM)= C(pw0+ px1+ py2+ pz3) (4.164)

can be intersected with two CSTA GIPNS 1-vector hyperplanes

EC1 = nS+(pM �nS)e1 (4.165)
EC2 = 0+(pM � 0)e1 (4.166)

to obtain a circle with radius r0 centered at pM in the spatial plane through pM with
direction bivector NS=nS

� =¡nSIS¡1.
The CSTA GIPNS 3-vector circle entity CC centered at pM with radius r0 at time pw

in the plane of bivector NS=nS
� =¡nSIS¡1 dual to normal vector nS can be formed as

CC = �C^EC1^EC2 (4.167)
= SC^EC2 (4.168)

Without setting the time w= pw by intersecting EC2, the circle changes radius with time
as the CSTA GIPNS 2-vector hyperboloid (pseudosphere) SC=�C^EC1 (�4.4.8).

The CSTA GIPNS 3-vector circle CC can also be represented as the intersection of
the CSTA GIPNS 1-vector hyperpseudosphere �C and CSTA GIPNS 2-vector plane �C as

CC = �C^�C (4.169)

where the hyperpseudosphere �C is the same as above and sets the center pM and radius
r0, and the plane �C with spatial direction bivector NS through point pM is

�C = D�M¡ (pM �D�M)^ e1 (4.170)
= NS

�M¡ (pM �NS
�M)^ e1 (4.171)

= EC1^EC2: (4.172)

The CSTA GIPNS 3-vector circle CC is equal to the CSTA undual of the dual CSTA
GOPNS 3-vector circle CC�

CC ' CC
�IC (4.173)
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up to a homogeneous scalar factor.
A CSTA GIPNS 3-vector circle CC can also be formed as the intersection of a CSTA

GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA GIPNS 1-vector hyperconeKC
and CSTA GIPNS 2-vector spatial plane �C as

CC = �C ^�C (4.174)
= KC ^�C: (4.175)

4.4.13 CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle)

The circleCC with radius r0 centered at pM= pw0+pS in spatial planeNS=nS
� is formed

by intersecting the plane �C of NS through pM with the hyperpseudosphere �C of radius
r0 at pM. Similarly, the pseudocircle CC with central radius r0 centered at pM= pw0+pS
in Minkowski spacetime planeDM=0dS is formed by intersecting the plane�C of DM
through pM with the hyperpseudosphere �C of radius r0 at pM. The hyperbola opens
up and down the spatial vector axis dS for a hyperpseudosphere �C, and it opens up and
down the time axis 0 for an imaginary hyperpseudosphere �C.

The CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can be de�ned as

CC = �C^�C (4.176)

where the hyperpseudosphere �C sets the central position PC= C(pM) and initial radius
r0 as

�C = PC+
1
2
r0e1 (4.177)

and the plane�C sets the Minkowski spacetime planeD= 0dS of spatial unit direction
vector dS and time direction 0 as

�C = D�M¡ (pM �D�M)^ e1: (4.178)

The hyperbola can be visualized as a point pair on the spatial line dS, centered on pS, and
separated by an initial distance 2r = 2r0 at time w = pw. As time w changes away from
the initial time pw, the radius r increases to r= r0

2+(w¡ pw)
2

p
. The CSTA GIPNS 4-

vector spacetime point pair can be obtained as

2C = SC^EC (4.179)

where EC is the xyz-space hyperplane

EC = 0+we1 (4.180)

at the time w for the point pair with radius r around pS on the line direction dS. The
hyperplane sets the time w component of the points in the spacetime point pair. The
points appear to move apart spatially with time away from pw.

A CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can also be formed
as the intersection of a CSTA GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA
GIPNS 1-vector hypercone KC and CSTA GIPNS 2-vector spacetime plane �C as

CC = �C^�C (4.181)
= KC^�C (4.182)

which open up and down the time w-axis.
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4.4.14 CSTA GIPNS 4-vector point pair

The CSTA GIPNS 4-vector point pair 2C is

2C = ¡PC1 �PC2� (4.183)
= ¡PC1 � (PC2IC¡1)=PC1 � (PC2IC)= (PC1^PC2)IC (4.184)
= 2C

�IC (4.185)

which is exactly the CSTA undual of the dual CSTA GOPNS 2-vector point pair 2C�.
If the two points are relatively lightlike, then the point pair is actually the CSTA

GIPNS null 4-vector light-line (null line) LC that is exactly undual to the dual CSTA
GOPNS null 2-vector light-line (null line) LC� (�4.5.4). The point pair 2C of two not
relatively lightlike points is non-null .

If one of the two points is e1, then the point pair is actually the CSTA GIPNS 4-
vector �at point PC that is exactly undual to the dual CSTA GOPNS 2-vector �at point
PC
� (�4.5.5). A �at point is non-null.

4.4.15 CSTA GIPNS null 4-vector light-line (null line)

The CSTA GIPNS null 4-vector null line (light-line) LC is exactly the undual LC=LC�IC
of the dual CSTA GOPNS null 2-vector null line (light-line) LC� (�4.5.4).

The CSTA GIPNS null 4-vector light-line (null line) LC is

LC = ¡PL1 �PL2� (4.186)
= ¡PL1 � (PL2IC¡1)=PL1 � (PL2IC)= (PL1^PL2)IC (4.187)
= LC�IC (4.188)

where PLi = C(pMi) = C(pwi0 + pSi) denotes points that are relatively lightlike in
spacetime positions. The two relatively lightlike points PL1 and PL2 are on a light-line
in spacetime having equal changes in time components jpw1¡ pw2j to space components
kpS1¡pS2k,

jpw1¡ pw2j
kpS1¡pS2k

= 1 (4.189)

@tkpS1¡pS2k= @tjpw1¡ pw2j = c: (4.190)

Light speed c is required to travel between the two points, or any two points on a light-
line, in spacetime. The vector pM1¡ pM2 is a null vector in spacetime, and any two points
in spacetime with a null di�erence vector are relatively lightlike.

A null 4-vector light-line LC can be converted into a non-null 3-vector line LC as

LC = (LC� ^ e1)IC=LC
�IC: (4.191)

4.4.16 CSTA GIPNS 4-vector �at point

The CSTA GIPNS 4-vector �at point PC is

PC = ¡PC � e1
� (4.192)

= ¡PC � (e1IC
¡1)=PC � (e1IC)= (PC^ e1)IC (4.193)

= PC
�IC (4.194)

which is exactly the undual of the dual CSTA GOPNS 2-vector �at point PC�.

44 Section 4



A �at spatial point PC= C(pS)^ e1 at w=0 can be represented as the intersection
of a CSTA GIPNS 2-vector plane �C and CSTA GIPNS 3-vector line LC that are in the
common xyz-space hyperplane at any times in spacetime as

PC = 0^ (0 ��C)^ (0 �LC) (4.195)
= PC

�IC (4.196)

where the common hyperplane of xyz-space EC = 0 is contracted out of the plane and
line before they are intersected, and then 0 is intersected back into the result. The time
components of the plane and line do not a�ect the result, which is spatial intersection
at w= 0. The �at spatial point PC can exactly match the undual PC�IC. The �at spatial
point represents the point PC of intersection on the plane where the line passes through,
and it also represents e1 where the plane and line also intersect. A �at spacetime point
as intersections may also be possible but is not considered here.

4.4.17 CSTA GIPNS 5-vector point

The CSTA null 1-vector point embedding PC= C(pM) is the

� CSTA GIPNS null 1-vector hypercone PC centered at pM

� CSTA GOPNS null 1-vector point PC representing the point pM.

Therefore, the CSTA GIPNS null 5-vector point PC? is the undual

PC
? = PCIC (4.197)

which also introduces a notation for the undual operation. The undual notation has been
omitted on other undual entities. For the 5-vector point, the undual notation avoids a
notational con�ict since PC is the dual, not PC�.

For STA vectors, the undual is

0
? = 0IM= 123 (4.198)
1
? = 1IM= 023 (4.199)
2
? = 2IM= 031 (4.200)
3
? = 3IM= 012 (4.201)

which is consistent, in this case, with Hodge dual that is denoted ?A in other literature.
The CSTA GIPNS null 5-vector point PC? can also be represented as the intersection

of a hypercone PC with the four hyperplanes ECi through the hypercone vertex pM as

PC
? = PC^EC1^EC2^EC3^EC4 (4.202)

where

PC = C(pM)= C(pw0+ px1+ py2+ pz3) (4.203)
EC1 = 0+ pwe1 (4.204)
EC2 = ¡1+ pxe1 (4.205)
EC3 = ¡2+ pye1 (4.206)
EC4 = ¡3+ pze1: (4.207)

Each hyperplane �xes one coordinate to hold a value.
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4.5 CSTA GOPNS entities

In G2;4 CSTA, �ve or less points can be wedged into CSTA GOPNS entities, allowing a
greater variety of entities than in G4;1 CGA, which uses four or less points. The CSTA 6-
vector unit pseudoscalar and the CGA 5-vector unit pseudoscalar are dualization oper-
ators that can also be interpreted as GOPNS entities that represent the whole 4-D
spacetime in CSTA or the whole 3-D space CGA.

The familiar �at and round GOPNS entities of G4;1 CGA have a similar representation
in G2;4 CSTA as the wedge four or less points that are the embeddings of spatial points
PC = C(pS). These �at and round CGA-like entities are at w = ct = 0 in spacetime
unless translated to time w =/ 0, and can be constructed as the intersections of CSTA
GIPNS �at and hyperbolic entities with the CSTA GIPNS hyperplane 0 + we1 for
time w. These CGA-like entities are the entities of the G1;4 Conformal Space Algebra
(CSA) that is without time components. G1;4 CSA is similar to G4;1 CGA, except that
there are di�erences in the signs of some similar CGA expressions. For example, the
distance between two G1;4 CSA points is d = 2PCS1 �PCS2

p
, while in G4;1 CGA it is

d= ¡2PC1 �PC2
p

. As a subalgebra of CSTA, the CSA versors are the CSTA versors for
spatial operations, which excludes the spacetime boost versors. The dilator operation,
or successive inversions in two concentric spheres for a dilation by factor r22 / r12, can
isotropically dilate CSA entities in space and time. The translator operation, or successive
re�ections in parallel spacetime planes, can translate CSA entities in space and time. The
rotor operation, or successive re�ections in non-parallel spatial planes, can rotate CSA
entities in space, leaving the time una�ected.

The GOPNS entities are called dual to the undual GIPNS entities, but this naming
is quite often reversed in other literature. This naming is chosen to be consistent with
DCSTA entities, where the DCSTA GIPNS entities are unduals and the DCSTA GOPNS
entities are duals.

4.5.1 Geometric outer product null space (GOPNS)

Geometric outer product null space (GOPNS) entities are introduced by Perwass in [16],
and are reviewed by this author in [7] and [9].

The G2;4 CSTA unit pseudoscalar IC is grade 6, and it can be interpreted to be a
GOPNS 6-vector entity that represents the entire 4D spacetime. Otherwise, the CSTA
GOPNS surface entities are formed as the wedge of �ve or less CSTA GOPNS null 1-
vector points

V
PCi (�4.5.2) on the surface that span the surface. In G4;1 CGA, the CGA

GOPNS entities are formed as the wedge of four or less points. Compared to CGA, CSTA
has a larger set of GOPNS entities.

The subset of G2;4 CSTA GOPNS entities that are similar to G4;1 CGA GOPNS entities
are the G1;4 CSA GOPNS entities, which are de�ned as the wedge of four or less CSTA
spatial points PCi = C(pSi), or G1;4 CSA null 1-vector points PCSi = C(pSi), that are on
the surface and that also span the surface of the entity. The CSA GOPNS entities are
constructed as wedges of spatial points by the same forms as in G4;1 CGA. The spatial
CSA entities are located at time w= ct=0 in the CSTA spacetime, but can be translated
(�4.6.4) to exist at any time w = ct = pw. The G1;4 CSA entities and G4;1 CGA entities
represent the same surfaces, but there are some sign changes. For example, the distance
d between two spatial points PCS1 and PCS2 is now

d = 2PCS1 �PCS2
p

(4.208)
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while in ordinary G4;1 CGA, d= ¡2PC1 �PC2
p

.

4.5.2 CSTA GOPNS 1-vector point

As a GOPNS entity, the CSTA null 1-vector point embedding PC= C(pM) represents
the point of the embedded STA position pM. The GOPNS test

TC ^PC = 0 (4.209)

holds good if and only if (i�)

TC � PC: (4.210)

As a GIPNS entity, a point PC represents a null hypercone (�4.4.2) in spacetime. The
GIPNS test

TC �PC = 0 (4.211)

holds good for any point TC on the hypercone with vertex PC. A point TC on the hypercone
is a point that is located at a lightlike (null vector) displacement from the vertex PC. The
hypercone is a sphere in space, centered at PC, with time-varying radius r = w ¡ pw =
ct¡ pw.

A CSTA null 1-vector point embedding PC= C(pM) represents

TC �PC =

�
null hypercone centered at vertex pM : � is �
null point at pM: : � is ^ (4.212)

4.5.3 CSTA GOPNS 2-vector point pair

The CSTA GOPNS 2-vector point pair 2C� is the wedge of two �nite CSTA points that
are not relatively lightlike (i.e., (pM2¡ pM1)

2=/ 0)

2C
� = PC1^PC2 (4.213)
= 2CIC

¡1 (4.214)

and is the CSTA dual of the CSTAGIPNS 4-vector point pair 2C. Two points are relatively
lightlike if they are separated by a null vector displacement. The GOPNS test

TC �2C� = 0 (4.215)

holds good for the point pair 2C� of two �nite points that are not relatively lightlike if and
only if (i�)

TC 2 fPC1;PC2g: (4.216)

A valid point pair 2C� represents the two distinct points as a single entity.
The point pair decomposition [4]

P̂C� =
2C
� � (2C

�)2
p

¡e1 �2C�
=(2C

� � 2C
� �2C�

p
)(¡e1 �2C�)¡1 (4.217)

gives the two normalized (unit scale) �nite points P̂C+ and P̂C¡ of the point pair 2C�.
A light-line (null line) LC� =PL1 ^PL2 (�4.5.4) is the wedge of two relatively lightlike

points PLi and represents the line of the two points, excluding e1. A �at point PC�=PC^
e1 (�4.5.5) is the wedge of one �nite point PC and the point at in�nity e1.
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4.5.4 CSTA GOPNS 2-vector light-line (null line)

An STA null lightlike position vector lM relative to the origin has the form

lM = ct(0+ n̂S)=w(0+ n̂S)= ctnM: (4.218)

It can be veri�ed that a vector of the form of nM= 0+ n̂S is a null vector nM2 =0, where
n̂S is any spatial unit direction vector. A lightlike position relative to an STA position
vector pM is

pL = pM+ lM: (4.219)

Let any three collinear positions pLi and their CSTA point embeddings PLi be

PL1= C(pL1) = C(pM+w1nM)= C(pM+ ct1nM) (4.220)
PL2= C(pL2) = C(pM+w2nM)= C(pM+ ct2nM) (4.221)
PL3= C(pL3) = C(pM+w3nM)= C(pM+ ct3nM): (4.222)

These three points, called relatively lightlike points, are along a light-line in the null
direction nM on a light-cone with vertex pM. Two points, pL1 and pL2, are relatively
lightlike if their di�erence vector lM= c(t2¡ t1)nM= pL2¡ pL1 is a null vector nM2 = 0.
It can be veri�ed that for any three collinear relatively lightlike points

PL1^PL2^PL3 = 0: (4.223)

Therefore, the light-line LC in the direction of nM through the point pM is characterized
by the wedge of any two points on the light-line. The point at in�nity e1 is not a point
on a light-line that is represented like a point pair.

The CSTA GOPNS null 2-vector light-line LC is the wedge of any two relatively light-
like points on the light-line

LC� = PL1^PL2 (4.224)
' LCIC¡1 (4.225)

and is the CSTA dual of the CSTA null 4-vector light-line LC up to a homogeneous scalar
factor.

The light-line LC� does not include the point at in�nity e1. A light-line exists only in
spacetime. In general, the two points of LC� are along a light-line, which is a line through
spacetime with slope m=�1 of time to space distance on a light-cone. A light-line is also
called a null line since

(LC�)2 = 0: (4.226)

For any two coplanar light-lines LC1� and LC2� , the lines share a light-cone vertex pM and

LC1� ^LC2� = 0 (4.227)

which is a result that holds in general for all coplanar lines.
A light-line LC� is a special type of line that requires only two points to de�ne the line.

A light-line is also called a lightlike line. Other lines in spacetime are timelike or spacelike
lines and require the wedge of three collinear points to de�ne them as GOPNS entities.

The CSTA GOPNS 3-vector line LC� (�4.5.6) always includes e1 on the line. A light-
line LC� can be extended to include e1 as a null 3-vector line LC�. A lightlike line LC� is
converted into a CSTA GOPNS null 3-vector line LC� as

LC
� = LC� ^ e1: (4.228)
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See also, the CSTA GIPNS null 1-vector light-line (null line) (�4.4.4), which also includes
e1 on the null line.

The two points of a lightlike line LC� cannot be decomposed from the line entity.

4.5.5 CSTA GOPNS 2-vector �at point

A CSTA �at point PC
� is the wedge of a �nite CSTA point PC and the CSTA point at

in�nity e1

PC
� = PC ^ e1= C(pM)^ e1 (4.229)
' PCIC

¡1 (4.230)

and equals the CSTA dual of the CSTA 4-vector �at point PC up to a homogeneous scalar
factor.

As introduced in [4] in the context of G4;1 CGA, a �at point is the intersection point
of a plane and line in space. However, a plane and line both also include the point at
in�nity. Therefore, a �at point represents the two points where a line and plane intersect
in space. In G2;4 CSTA, a line and plane are in spacetime and may intersect at a spacetime
�at point. The CSTA GIPNS 2-vector plane �C is the intersection of two hyperplanes

�C = EC1^EC2 (4.231)

and the CSTA GIPNS 3-vector line LC is the intersection of three hyperplanes

LC = EC3^EC4^EC5: (4.232)

In CGA, the intersection of a line and plane is simply L^�, but this form cannot work as
simply in CSTA. There can be zero, one, or two hyperplanes that are the same in the line
and plane. If zero are the same, then �C ^LC=/ 0 and the intersection is �C ^LC' e1

?

(�4.4.17). If two are the same, then LC = �C ^ EC and the intersection is LC. If one
hyperplane is the same, then the intersection is a �nite spacetime point PC and e1, which
are represented as a CSTA GOPNS 2-vector �at point PC�=PC^ e1. In all three cases,
a line and plane intersect at e1.

Assume, for now, that there is only one common hyperplane

EC=EC1=EC3 = nM+(pM �nM)e1: (4.233)

We expect to obtain a CSTA GIPNS 4-vector �at point PC as the intersection of the
CSTA GIPNS 3-vector line LC and CSTA GIPNS 2-vector plane �C. If we contract EC
into the line or the plane and then wedge them, then we get the 4-vector �at point. The
pseudoscalar of the spacetime projections of�C andLC is IM, which can be used to project
their directional blades. The conjugate normal vector nM

y of the common hyperplane EC
is given by the spacetime meet product _M of the plane and line as

nM
y = (�C_MLC)y (4.234)

= 0(((�C � IM¡1)^ (LC � IM¡1)) � IM)0: (4.235)

The conjugate normal vector nM
y can be used to contract EC in either the plane or line,

which then allows intersections of the plane and line to be formed as the two �at points

PC1 = (nM
y ��C)^LC (4.236)

PC2 = �C ^ (nMy �LC): (4.237)
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For one common hyperplane EC, as assumed, then PC1=�PC2. Now, if two hyperplanes
are common in the plane and line, then the spacetime meet produces zero and the �at
points are zero. These results allow the following de�nition for the intersection �C \LC
of a line and plane.

The CSTA GIPNS intersection �C \ LC of a CSTA GIPNS 2-vector plane �C and
CSTA GIPNS 3-vector line LC can be de�ned as

�C\LC=

8<:�C ^LC' e1
? : �C ^LC=/ 0

PC1=�PC2 : �C ^LC=0;�C_MLC=/ 0
LC : �C ^LC=0;�C_MLC=0:

(4.238)

The intersection is valid for any null or non-null 3-vector line LC and any spacetime plane
�C.

The point PC of a �at point PC�=PCIC
¡1 is projected [4] as

pM= C¡1(PC) =
(eo^ e1) � (eo ^PC

�)
¡(eo ^ e1) �PC�

=
¡PC�

(eo^ e1) �PC�
� eo¡ eo: (4.239)

4.5.6 CSTA GOPNS 3-vector line

The CSTA GOPNS line LC� is similar to the CGA GOPNS line L� discussed in [7]. In
general, any line in spacetime can be represented as the wedge of three well-chosen points
on the line. A CSTA GOPNS 2-vector lightlike line LC� (�4.5.4) is represented by the wedge
of just two points but it does not include the point at in�nity e1 on the line.

A CSTA GOPNS null 3-vector lightlike line LC� is the wedge of any two relatively
lightlike points PLi on the line and the CSTA point at in�nity e1

LC
� = PL1^PL2^ e1=LC� ^ e1: (4.240)

A CSTA GOPNS non-null 3-vector timelike or spacelike line LC� can be the wedge of
any two points PCi on the line and the CSTA point at in�nity e1 or the wedge of any
three collinear points PCi on the line

LC
� = PC1^PC2^ e1 (4.241)
' PC1^PC2^PC3 (4.242)
' LCIC

¡1 (4.243)

and is equal to the CSTA dual of the CSTA GIPNS 3-vector line LC (�4.4.11) up to a
homogeneous scalar factor.

The 3-vector line entity can be used to represent an observable (�4.4.11).

4.5.7 CSTA GOPNS 3-vector spatial circle

The system of implicit surface equations for a spatial circle with radius r0 centered at
(px; py; pz) in the xy-plane at z= pz is

(x¡ px)2+(y¡ py)2¡ r02 = 0 (4.244)
z ¡ pz = 0 (4.245)
w¡ pw = 0: (4.246)

The CSTA spatial circle entity CC represents a system of implicit surface equations of this
form for the intersection of a circular cylinder and plane. The center position of the circle

pM = pw0+ px1+ py2+ pz3 (4.247)
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includes a time component pw0 that indicates when the circle exists.
The CSTA GOPNS spatial circle CC� is similar to the CGA GOPNS circle C� discussed

in [7] and is the wedge of any three points on the circle in space at the same time. Three
points are always coplanar cocircular points. Three collinear points are on a circle of
in�nite radius, which is a line.

The CSTA GOPNS 3-vector spatial circle CC� is the wedge of any three CSTA points
PCi= C(pw0+pSi) at the same time pw on the circle

CC
� = PC1^PC2^PC3 (4.248)
' CCIC

¡1 (4.249)

and is the CSTA dual of the CSTA GIPNS 3-vector spatial circle CC up to a homogeneous
scalar factor.

The wedge of three points that are not all at the same time may produce a spacetime
hyperbola (�4.5.8). The circle is produced for three points at the same time.

4.5.8 CSTA GOPNS 3-vector spacetime hyperbola (pseudocircle)

The system of implicit surface equations for a spacetime circular hyperbola in the xw-
plane centered at (pw; px; py; pz), with central radius r, opening up and down the w-axis is

(x¡ px)2+ r2¡ (w¡ pw)2 = 0 (4.250)
y¡ py = 0 (4.251)
z¡ pz = 0: (4.252)

The spacetime circular hyperbola can also be called a pseudocircle. The CSTA pseudo-
circle entity represents a system of implicit surface equations of this form. This hyperbola
is not general, but circular. To get the expected shape, the points have to be chosen
carefully. At x= px, w= pw�r. At w= pw+ 2

p
r, x= px� r. The axes may be transposed.

Spatial rotations, spacetime translations, and spacetime isotropic dilations permit the
pseudocircle to be in any Minkowski space-time plane, at any spacetime center point,
and with any central radius. The hyperbola is generally a conic section of a related
circular hyperboloid (�4.5.10) cut through a spacetime plane and has lightlike asymptotes.
By cutting the related hyperboloid in di�erent spacetime planes, it is possible to get
hyperbolas that open up and down the time or space axis. The hyperboloids are w-axis
(time-axis) aligned with circles in the xy-planes.

The CSTA GOPNS 3-vector spacetime circular hyperbola CC� is the wedge of any three
non-collinear CSTA spacetime points PCi= C(pMi) on the spacetime circular hyperbola

CC
� = PC1^PC2^PC3 (4.253)
' CCIC

¡1 (4.254)

and is the CSTA dual of the CSTA GIPNS 3-vector spacetime hyperbola CC up to a
homogeneous scalar factor. Similar to a circle, the point at in�nity e1 is not a point on
the pseudocircle.

The spacetime hyperbola CC� becomes a light-line pair of a light-cone when the three
non-collinear points are relatively lightlike points PLi (�4.5.4). The points are relatively
lightlike when any two points are relatively lightlike, forming one of the light-lines. The
perpendicular line through the third point is the other light-line. The light-cone vertex is
the point of intersection of the two light-lines, which could be one of the points.
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In general, the wedge of three non-collinear CSTA spatial points PCi=C(pSi) produces
a spatial circle (�4.5.7) at w= ct=0.

4.5.9 CSTA GOPNS 4-vector spatial sphere

The CSTA GOPNS spatial sphere SC� is similar to the CGA GOPNS sphere S� discussed
in [7].

The CSTA GOPNS 4-vector spatial sphere SC� is the wedge of four CSTA spatial points
PCi= C(pSi) on the sphere surface that span the sphere

SC
� = PC1^PC2^PC3^PC4 (4.255)
' SCIC

¡1 (4.256)

and is the CSTA dual of the CSTA GIPNS 2-vector spatial sphere SC up to a homogeneous
scalar factor. To span the sphere, the points cannot be all coplanar. The spatial sphere SC�

holds w= ct=0 and is a sphere in space that exists at time t=0, but it can be translated
to any time w= pw (or to any spacetime position) using the CSTA translator (�4.6.4).

4.5.10 CSTA GOPNS 4-vector spacetime hyperboloid (pseudosphere)

The implicit quadric surface equation of a spacetime circular hyperboloid of one sheet with
circular sections in the xy-plane and central radius r is

(w¡ pw)
2+ r2¡ (x¡ px)

2¡ (y¡ py) = 0: (4.257)

The spacetime circular hyperboloid can also be called a pseudosphere. Spatial rotations,
spacetime translations, and spacetime isotropic dilations permit the pseudosphere to be
in any spatial plane, at any spacetime center point, and with any central radius.

The CSTA GOPNS 4-vector spacetime circular hyperboloid of one sheet (pseudos-
phere) SC� is the wedge of four CSTA spacetime points PCi= C(pMi) on the surface that
span the surface

SC
� = PC1^PC2^PC3^PC4 (4.258)
' LC1� ^LC2� (4.259)
' SCIC

¡1 (4.260)

and is the CSTA dual of the CSTA GIPNS 2-vector spacetime circular hyperboloid of one
sheet SC up to a homogeneous scalar factor. Similar to a sphere, the point at in�nity e1

is not a point on the pseudosphere. Two non-coplanar light-lines LC1� and LC2� can span a
pseudosphere as asymptotes that are tangent to the hyperboloid.

The pseudosphere SC� becomes a light-cone, also called a null cone, when the four
points are relatively lightlike points PLi. The points are relatively lightlike when any three
points are relatively lightlike to the fourth point, which is the vertex center point of the
light-cone. The wedge of the light-cone vertex and another point is a light-line LC�, and
the light-cone is spanned by three light-lines sharing the vertex.

In general, the wedge of four non-coplanar CSTA spatial points PCi= C(pSi) produces
a spatial sphere that holds w= ct=0.

It is also possible to produce the CSTA GOPNS 4-vector spacetime hyperboloid of two
sheets (imaginary pseudosphere) as the wedge of four well-chosen points that span the
surface.
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4.5.11 CSTA GOPNS 4-vector plane

The CSTA GOPNS plane �C
� is similar to the CGA GOPNS plane �� discussed in [7]. In

CGA, a plane �� is the wedge of any four coplanar non-collinear non-cocircular points
on the plane. The four well-chosen points that de�ne a plane in CGA are nearly the same
for �C

�, but light-lines LC� (�4.5.4) introduce an additional constraint on the choice of the
four coplanar points in spacetime.

Three non-collinear �nite points PCi are co(pseudo)circular and de�ne a �nite
(pseudo)circle CC�. The fourth point can be the point at in�nity e1 or some other
coplanar non-co(pseudo)circular �nite point PC4.

Three collinear, not relatively lightlike, �nite points PCi de�ne a line LC�. The fourth
point cannot be the point at in�nity e1 since it is collinear. The fourth point can be
some other non-collinear �nite point PC4.

Two relatively lightlike �nite points PLi de�ne a light-line LC�. The other two points can
be e1 and a coplanar non-collinear �nite point PC4. The other two points can also be not
relatively lightlike �nite points PC3 and PC4 that are coplanar non-collinear points to LC�.

The CSTA GOPNS 4-vector plane �C
� is the wedge of four well-chosen points PCi on

the plane in space or spacetime

�C
� = PC1^PC2^PC3^PC4=CC ^PC4 (4.261)
' PC1^PC2^PC3^ e1=CC^ e1 (4.262)
' LC

� ^PC4 (4.263)
' LC� ^ e1 ^PC4 (4.264)
' LC� ^PC3^PC4 (4.265)
' �CIC

¡1 (4.266)

and is the CSTA dual of the CSTA GIPNS 2-vector plane �C (�4.4.10) up to a homoge-
neous scalar factor. The four points must be well-chosen as explained above.

The entity �C
� is a plane in space that holds w= ct= 0 when its points PCi= C(pSi)

are the embeddings of spatial points pSi in 3D SA space. In the general case of points
PCi = C(pMi) in spacetime, the entity �C

� is a plane in spacetime. The plane entity is
generally valid in both space and spacetime.

As explained in �4.4.10, the rotor RC, translator TC, and boost BC can be de�ned as
re�ections in planes. Re�ections in either the GIPNS plane �C or GOPNS plane �C

�

are both valid on all entities. The dilator DC (�4.6.6) can be de�ned as inversions in
hyperpseudospheres (�4.4.5).

4.5.12 CSTA GOPNS 5-vector hyperhyperboloid

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet (hyper-
pseudosphere) is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ px)2 = 0 (4.267)

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)2

p
= r0

2+(ct¡ pw)2
p

(4.268)

and center position

pM = pw0+ px1+ py2+ pz3 (4.269)

in spacetime.
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The hyperhyperboloid can be spanned by �ve surface points that do not form entities
for any (pseudo)sphere, plane, line, or (pseudo)circle. Planes and lines are avoided by
excluding the point at in�nity. Spheres and circles are avoided by using only one or
two points in any circle on the surface. The choice of points is otherwise arbitrary. For
example, using an arbitrary scalar l=/ 0, three values of time

w 2 fpw+ l; pw+2l; pw¡ 3lg (4.270)

and corresponding values of radius

r 2
n

r0
2+ l2

p
; r0

2+4l2
p

; r0
2+9l2

p o
(4.271)

can be chosen. Then, use at most two surface points per value of w. The hyperhyperboloid,
a sphere that expands with time, has the �ve surface points that span the surface

PC1 = C
�
pM+ l0+ r0

2+ l2
p

1

�
(4.272)

PC2 = C
�
pM+2l0¡ r0

2+4l2
p

2

�
(4.273)

PC3 = C
�
pM+2l0¡ r0

2+4l2
p

3

�
(4.274)

PC4 = C
�
pM¡ 3l0+ r0

2+9l2
p

1

�
(4.275)

PC5 = C
�
pM¡ 3l0+ r0

2+9l2
p

2

�
: (4.276)

These points are just an example of �ve well-chosen points on the surface that span the
surface, and other points could be chosen.

The CSTA GOPNS 5-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C� is
the wedge of �ve CSTA points PCi on the surface that span the surface

�C
� = PC1^PC2^PC3^PC4^PC5 (4.277)
' �CIC

¡1 (4.278)

and is the CSTA dual of the CSTA GIPNS 1-vector hyperhyperboloid �C up to a homo-
geneous scalar factor.

The hyperhyperboloid with r0 = 0 degenerates into the CSTA GOPNS null 5-vector
hypercone PC�=�C�(pM; r0= 0). The CSTA GIPNS null 1-vector hypercone PC =KC at
pM is the point embedding PC = C(pM). The undual PC? = PCIC = PC

�ICIC = ¡PC� is the
CSTA GIPNS null 5-vector point PC?.

It is also possible to produce the CSTA GOPNS 5-vector hyperhyperboloid of two sheets
(imaginary hyperpseudosphere) �C� as the wedge of �ve well-chosen points that span the
surface.

4.5.13 CSTA GOPNS 5-vector hyperplane
A hyperplane is a subspace of dimension (n¡ 1) in a space of dimension n. In 4D space-
time, a hyperplane is a 3D subspace at a �xed coordinate along a fourth perpendicular
axis. Intersecting with a hyperplane serves to set or �x one coordinate. The signature of
the hyperplane space can be (2; 1) or (3; 0).

The wedge of three non-collinear CSTA points PCi= C(pMi) spans a spatial circle or
spacetime pseudocircle CC�. Adding the CSTA point at in�nity e1, then the four CSTA
points span a spatial plane or spacetime plane�C

�. Adding a �fth CSTA point that is non-
coplanar to the other four points, then the �ve points span a 3D space. The wedge of �ve
well-chosen CSTA points is the CSTA GOPNS 5-vector hyperplane EC� that represents a
3D subspace of the 4D spacetime.
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The CSTA GOPNS 5-vector hyperplane EC� is the wedge the CSTA point at in�nity
e1 and four CSTA points PCi on the surface that span the hyperplane

EC
� = PC1^PC2^PC3^PC4^ e1 (4.279)
= ECIC

¡1 (4.280)

and is the CSTA dual of the CSTA GIPNS 1-vector hyperplane EC (�4.4.3) up to a
homogeneous scalar factor.

4.6 CSTA operations

4.6.1 CSTA dualization

The CSTA dual AC�C of a CSTA multivector AC is

AC
�C = ACIC

¡1=ACIC�: (4.281)

The CSTA undual AC of a CSTA multivector AC�C is

AC = AC
�CIC=ACIC

¡1IC: (4.282)

4.6.2 CSTA spatial projection

The G1;4 CSA1 spatial projection ACS1 of a G2;4 CSTA1 multivector AC1 is

ACS1 = (AC1 � ICS1)ICS1¡1 (4.283)

where the G1;4 Conformal Space Algebra 1 (CSA1) unit pseudoscalar ICS1 is

ICS1 = e1 � IC1= IS1e5e6: (4.284)

The G1;4 CSA2 spatial projection ACS2 of a G2;4 CSTA2 multivector AC2 is

ACS2 = (AC2 � ICS2)ICS2¡1 (4.285)

where the G1;4 Conformal Space Algebra 2 (CSA2) unit pseudoscalar ICS2 is

ICS2 = e7 � IC2= IS2e11e12: (4.286)

The spatial projections ACS drop the time components of AC, and may be useful for
extracting geometrical results in space.

4.6.3 CSTA spatial rotor

The spatial rotor R is the same in G0;3 SA S, G1;3 STAM, G1;4 CSA CS, and G2;4 CSTA C.
The CSTA 2-versor spatial rotor RC is equal to the SA rotor RS

R=RS=RM=RCS=RC = e
1

2
�n̂S
�S

(4.287)

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
n̂SIS

� (4.288)

where the SA unit vector n̂S is the axis of rotation, and � is the angle of rotation around
the axis by the right-hand rule on a system of right-handed axes. The rotor operation
RCACRC� on any CSTA entity AC spatially rotates the entity in the usual way in space,
leaving any time component unchanged.
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The CSTA rotor operation that spatially rotates any CSTA entity AC by angle �
around SA axis n̂S is de�ned as

AC
0 = RCACRC�: (4.289)

The rotor R can be de�ned as

R = �C2�C1; (4.290)

which is the successive re�ections in two non-parallel spatial CSTA GIPNS planes
(�4.4.10) that intersect in the rotation axis n̂S through the origin. The angle of rota-
tion � is twice the angle subtended by the two planes. More generally, the two spatial
planes can intersect in an arbitrary spatial CSA GIPNS 2-vector line

LCS = ¡0 �LC (4.291)
= (¡0 ��C2)^ (¡0 ��C1) (4.292)
= �CS2^�CS1 (4.293)

as the rotation axis (�4.6.5).
As a 2-versor, the rotor R can also be de�ned as

R = EC2EC1; (4.294)

which is the successive re�ections in two non-parallel CSTA GIPNS 1-vector hyperplanes
(�4.4.3). The rotation is by twice the angle subtended by the two spatial hyperplane
normal vectors, from nS1 toward nS2. The right-handed rotation axis is the SA undual
n=¡(nS2^nS1)IS. If the two hyperplanes are both centered on pS, then the rotation axis
is the line through pS in the direction of n.

4.6.4 CSTA translator

The CSTA 2-versor translator TC, adapted from the CGA translator, is de�ned as

TC = e
¡1

2
dMe1 (4.295)

= 1¡ 1
2
dM^ e1: (4.296)

The translation vector dM is an STA spacetime displacement vector. Translations through
space and of time are possible.

The CSTA translator operation that translates CSTA entity AC in spacetime by STA
spacetime displacement dM is the two-sided versor �sandwich� operation

AC
0 = TCACTC�: (4.297)

The translator TC can be de�ned as

TC = �C2�C1; (4.298)

which is the successive re�ections in two parallel CSTA GIPNS planes (�4.4.10) that are
separated by 1

2
dM, half the spacetime displacement dM of the translator. The transla-

tion is by twice the spacetime displacement between the planes. The orientation of the
displacement dM is from �C1 toward �C2.

As a 2-versor, the translator TC can also be de�ned as

TC = EC2EC1; (4.299)
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which is the successive re�ections in two parallel CSTA GIPNS 1-vector hyperplanes
(�4.4.3). The translation is by twice the spacetime displacement between the two hyper-
planes. For the spacetime translation vector is dM= pM2¡ pM1, the hyperplanes can be

EC1 =
1
2
pM1+

1
4
pM1

2 e1 (4.300)

EC2 =
1
2
pM2+

1
4
pM2

2 e1: (4.301)

4.6.5 CSTA spatial rotor around a line

The CSTA spatial line rotor LC is de�ned as

LC = e
¡1

2
�0�LC (4.302)

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
(¡0 �LC): (4.303)

The line rotor LC rotates around the spatial line LC by the angle �. The CSTA GIPNS
3-vector line (�4.4.11)

LC = d�M+(pM �d�M)e1 (4.304)

should be a purely spatial line, with a spatial unit vector direction d = d̂S through a
spatial point pM = pS. The direction of rotation follows the right-hand rule, which is
anticlockwise � radians around the spatial direction d= d̂S.

To understand how the spatial line rotor LC is derived, consider the following. The
STA dual of the unit spatial direction d= d̂S of the line LC is

d�M = (4.305)
d̂SIM

¡1 = (4.306)
¡d̂SIM = (4.307)
0d̂SIS : (4.308)

Therefore, the line LC in the spatial direction of d= d̂S through the spatial point pM=pS
is

LC = 0d̂SIS+
¡
pS �

¡
0^

¡
d̂SIS

���
^ e1 (4.309)

= 0^
¡
d̂SIS

�
¡ 0^

¡
pS �

¡
d̂SIS

��
^ e1: (4.310)

The spatial line rotor LC uses the generator

¡0 �LC = (4.311)
¡
¡
d̂SIS¡

¡
pS �

¡
d̂SIS

��
^ e1

�
= (4.312)

d̂S
�S¡

¡
pS � d̂S�S

�
^ e1 = LCS=L (4.313)

which has the same form as a spatial G4;1 CGA GIPNS 2-vector line L, but is a line entity
in the similar G1;4 Conformal Space Algebra (CSA) CS. If the line L were at (or through)
the origin, then it would be L= d̂S

�S, which should be a unit bivector as a rotor generator.
Therefore, d= d̂S should be a unit SA direction. But, the line L is translated from the
origin to point pS as

L = TCd̂S
�STC�= d̂S

�S¡
¡
pS � d̂S�S

�
^ e1 (4.314)

by CSTA translator TC (�4.6.4) for translation by pS.
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The SA dualization of an SA unit direction vector d̂S is de�ned to create a rotor unit
bivector generator d̂S

�S that is isomorphic to a quaternion versor without a reversal in
orientation or sign and obeying the usual right-hand rule for rotation orientation around
an axis d̂S through the origin.

Now, consider a rotor R and translators T and T� by pS and ¡pS, respectively,

R = e
1

2
�d̂S
�S

(4.315)

T = e
¡1

2
pS^e1 (4.316)

T� = e
1

2
pS^e1 (4.317)

and their composition that translates pS to the origin, then rotates around the line of
the unit vector dS through the origin, and then translates the origin back to pS, which is
applied to an entity E as

TRT�ETR�T� : (4.318)

The versor TRT� is a spatially translated rotor

TRT� = (4.319)

T

�
cos
�
1
2
�

�
+ sin

�
1
2
�

�
d̂S
�S
�
T� = (4.320)

cos
�
1
2
�

�
+ sin

�
1
2
�

�
T d̂S

�S
T� = (4.321)

cos
�
1
2
�

�
+ sin

�
1
2
�

�
L = (4.322)

e
1

2
�L

= (4.323)

e
1

2
�(¡0�LC) = LC: (4.324)

This composition, the translated rotor LC, is a versor for rotation around the spatial line
LC by the angle �. The spatial line LC should be unit scale, with the spatial line direction
given by a unit vector d= d̂S that passes through the spatial point pM=pS.

All of the CSTA GIPNS 1-vector entities can be transformed by the CSTA versors
that are de�ned in this section, including LC in this subsection. All of the CSTA GIPNS
k-vector entities can be constructed as the wedge, or intersection, of �ve or less CSTA
GIPNS 1-vector entities. By versor outermorphism, all of the CSTA GIPNS k-vector
entities can be correctly transformed by the CSTA versors. By the CSTA dualization
transformation of the CSTA GIPNS entities into CSTA GOPNS entities, all of the CSTA
GOPNS k-vector entities can also be correctly transformed by the CSTA versors.

4.6.6 CSTA isotropic dilator

The CSTA 2-versor isotropic dilator DC, adapted from the CGA dilator, is de�ned as

DC =
1
2
(1+ d)+

1
2
(1¡ d)e1 ^ eo: (4.325)

The scalar d is the dilation factor . The CSTA isotropic dilator DC is a spacetime dilator ,
which includes the dilation of the time and space components of an entity by the factor d.

The CSTA isotropic dilation operation that isotropically dilates CSTA entity AC by
factor d in spacetime is the two-sided versor �sandwich� operation

AC
0 = DCACDC�: (4.326)
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It can be veri�ed algebraically that the dilator DC correctly dilates by factor d any CSTA
GIPNS 1-vector entity. By versor outermorphism, DC also correctly dilates any CSTA
GIPNS k-vector entity, which can always be formed as the wedge of k CSTA GIPNS 1-
vector entities. By CSTA dualization of GIPNS entities to GOPNS entities, all CSTA
GOPNS entities are also dilated correctly by the dilator.

The dilatorDC can be derived from successive inversions in two CSTA GIPNS 1-vector
hyperpseudospheres �C1 and �C2 (�4.4.5) centered on the origin e1 with radius r1 = 1

and r2= d
p

, respectively, as

DC = ¡�C2�C1'�C2�C1 (4.327)

The minus sign can be dropped since it cancels in the versor operation. DC dilates relative
to (around) the origin eo, but it can be translated by pM using a translator TC to make
the CSTA translated-dilator DC

p (�4.6.7) around point PC= C(pM).

4.6.7 CSTA translated-dilator

The CSTA 2-versor translated-dilator DC
p that dilates by factor d around PC= C(pM) is

DC
p = TCDCTC

� (4.328)

= TC

�
1
2
(1+ d)+

1
2
(1¡ d)e1^ eo

�
TC� (4.329)

=
1
2
(1+ d)+

1
2
(1¡ d)TC(e1^ eo)TC� (4.330)

=
1
2
(1+ d)+

1
2
(1¡ d)

¡
e1 ^ P̂C

�
: (4.331)

The �at point (�4.5.5) in reverse orientation

P̂C
�
= e1 ^ P̂C (4.332)

should be unit scale ¡
P̂C
��2 = P̂CP̂C=1 (4.333)

P̂C =
PC

¡PC � e1
: (4.334)

The orientation of P̂C
�
is important since its reverse makes reverse operations. For d> 0,

the translated dilator can also be formulated as

DC
p = e

atanh
�
1¡d
1+d

�
e1^P̂C (4.335)

= e
¡1

2
ln(d)e1^P̂C: (4.336)

Using the unit scale �at point in standard orientation P̂C = P̂C ^ e1 (per �4.5.5), the
translated dilator can be written as

DC
p = e

1

2
ln(d)P̂C (4.337)

= cosh
�
1
2
ln(d)

�
+ sinh

�
1
2
ln(d)

�
P̂C, for d> 0: (4.338)

The translated-dilator DC
p can be derived from successive inversions in two CSTA GIPNS

1-vector hyperpseudospheres �C1 and �C2 (�4.4.5) centered on PC = C(pM) with radius
r1=1 and r2= d

p
, respectively, as

DC
p = ¡�C2�C1'�C2�C1 (4.339)
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The minus sign can be dropped since it cancels in a versor operation. Any CSTA entity
E with center position pM can be dilated in situ as

E0 = DC
pEDC

p�: (4.340)

The identity

atanh
�
1¡ d
1+ d

�
= ¡1

2
ln(d); (4.341)

which can also be written as

ln(d) = 2 atanh
�
d¡ 1
d+1

�
; (4.342)

may not be familiar, but can be derived or veri�ed as follows.

d+1

d¡ 1

y=mx

(d+1)2¡ (d¡ 1)2=4d

m=
rise
run =

d¡ 1
d+1

y

x

x2¡ y2=4d= r2

Area
A=

'

2
r2= '2d

Arc 'r= '2 d
p

r=2 d
pd

0

Figure 4.1. Area A= 'r2/2= '2d of hyperbolic angle '

Referring to Figure 4.1, and noting the analogy between the trigonometry of circles
and the trigonometry of hyperbolas (spacetime pseudocircles), then

2 atanh
�
d¡ 1
d+1

�
= (4.343)

2 atanh
�
r sinh(')
r cosh(')

�
=2'=2

1
2d
A = (4.344)

1
d

Z
0

d¡1�
4d+ y2

p
¡ d+1
d¡ 1 y

�
dy = (4.345)

1
d

��
y
2

4d+ y2
p

+
4d
2
ln
�
y+ 4d+ y2

p ��[21]
¡
�
d+1
d¡ 1

�
y2

2

�
0

d¡1
= (4.346)

1
d

�
4d
2
ln(d¡ 1+ d+1)

�
¡ 1
d

�
4d
2
ln
¡
2 d
p ��

= (4.347)

2ln(2d)¡ 2ln
¡
2 d
p �

=2ln
�

2d

2 d
p

�
=2 ln

¡
d

p �
= ln(d) (4.348)
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4.6.8 CSTA spacetime boost

CSTA inherits the STA boost operator BM (�3.2.3) as the CSTA boost operator BC=BM.
The boost BC =Bv by a spacetime velocity v = o+ v (with proper time � = tpv) can be
applied to any CSTA spacetime surface entity. An STA spacetime surface point p (with
coordinate time t = tcu = tpo) of a CSTA spacetime entity E represents an observable
spacetime position of the form

p(t) = p0+ p_ t (4.349)
= p0+(o+p_ )t: (4.350)

The boost of the entity BvEBv� is congruent to the set of all boosted surface points
BvpBv�. For GIPNS entity E, the set of spacetime surface points is

NIG(E) = f p : C(p) �E=0 g (4.351)

and the set of the boosted entity is

NIG(BvEBv�) = f BvpBv� : C(BvpBv�) � (BvEBv�)= 0 g: (4.352)

A point p is boosted as

BvpBv� = Bv(p0+ p_ t)Bv�= p�v (4.353)
= Bvy

� (p0+ot+p_ t)Bvy= p	vy (4.354)
= Bvy

� (¡o+o+p0)Bvy+Bvy
� (o+p_ )Bvyt (4.355)

= ¡Bvy� oBvy+Bvy
� (o+p0)Bvy+Bvy

� (o+p_ )Bvyt (4.356)
= ¡v(o+v)+ p0	vy(o+p0	vy)+ p_	vy(o+p_ 	vy)t (4.357)
= p0	vy+(p_ 	vy)t (4.358)
= p0	vy+(o+p_ 	vy)� (4.359)
= p0�v+(o+p_ �v)t: (4.360)

This boost can be interpreted at least two ways: (Eq. 4.359) as p relative to vy= o¡ v
and expressed in the frame of vy as a passive change of frame, or (Eq. 4.360) as p
actively boosted up into the frame of v = o + v but passively expressed in the frame
of o as an active relativistic velocity addition. The boost of a spacetime surface entity
BvEBv�, representing the set of all boosted spacetime surface points BvpBv�, has a similar
interpretation: that the entity is either (Eq. 4.359) relative to vy in its frame as a passive
frame change, or (Eq. 4.360) boosted up into the frame of v but expressed (viewed) in
the frame of o as an active relativistic velocity addition.

The CSTA boost operator BC for a natural speed �v in the SA unit direction v̂S is
de�ned as

BC=BM=Bv = (vv/o)
1

2 = e
1

2
'vv̂S0 (4.361)

= exp
�
1
2
'vv̂S0

�
(4.362)

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S ^ 0: (4.363)

For more information, see the STA boost operator (�3.2.3).

Conformal Space-Time Algebra (CSTA) 61



4.6.9 CSTA translated-boost
The CSTA 2-versor translated-boost BCd by '= atanh(�) in direction v̂ centered at dM is
de�ned as

BC
d=TCBCTC� = e

¡1

2
dMe1e

1

2
'v̂0e

1

2
dMe1 (4.364)

= cosh
�
1
2
'

�
+ sin

�
1
2
'

�
e
¡1

2
dMe1v̂0e

1

2
dMe1 (4.365)

= cosh
�
1
2
'

�
+ sin

�
1
2
'

�
(v̂0¡ (dM � (v̂0))e1) (4.366)

= e
1

2
'(v̂0¡(dM�(v̂0))e1) (4.367)

= e
1

2
'�C (4.368)

where the plane

�C = D�M¡ (pM �D�M)e1 (4.369)

has unit bivector direction D= v̂0IM through point pM=dM.

4.6.10 CSTA di�erential operators
Some of the CSTA point value-extraction elements Cs have inverses. These inverses allow
the following CSTA 2-vector di�erential elements to be de�ned as

Dw
C = C1Cw

¡1= 0^ e1 (4.370)
Dt
C = C1Ct

¡1= c0^ e1 (4.371)
Dx
C = C1Cx

¡1= 1^ e1 (4.372)
Dy
C = C1Cy

¡1= 2^ e1 (4.373)
Dz
C = C1Cz

¡1= 3^ e1: (4.374)

The CSTA di�erential elements are free vectors [4], which are translation-invariant and
represent directions without location.

Using the commutator product �, the CSTA di�erential operators are de�ned as

@w
C =

@
@w

=Dw
C � (4.375)

@t
C =

@
@t
=Dt

C� (4.376)

@x
C =

@
@x

=Dx
C� (4.377)

@y
C =

@
@y

=Dy
C� (4.378)

@z
C =

@
@z

=Dz
C� : (4.379)

The di�erential elements and operators in CSTA1 and CSTA2 can be denoted Ds
C1 and

@s
C1, and Ds

C2 and @s
C2, respectively. The CSTA di�erential operators can be used for entity

analysis. A di�erent, but similar, set of di�erential elements and operators are de�ned in
DCSTA (�5.8.1).

A CSTA directional derivative operator Dn
C � , in the direction of a vector

nM = nw0+nx1+ny2+nz3; (4.380)

can be formed as the linear combination

Dn
C � = (nwDw

C +nxDx
C+nyDy

C+nzDz
C)� : (4.381)
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The simplest example of using a CSTA di�erential operator Dn
C � is to take the derivative

of any CSTA GIPNS 1-vector entity �C in the n-direction as

@n
C�C =

@�C
@n

=Dn
C ��C: (4.382)

5 Double Conformal Space-Time Algebra (DCSTA)
The G4;8 Double Conformal Space-Time Algebra (DCSTA) is a straightforward extension
of the G2;8 Double Conformal Space Algebra (DCSA), which is similar to the G8;2 Double
Conformal / Darboux Cyclide Geometric Algebra (DCGA) that is introduced in the paper
[7] and discussed further in the papers [5] and [6]. There are only some di�erences in signs
between G2;8 DCSA and G8;2 DCGA, such that all the results of DCGA transfer to DCSA
with only some sign changes.

The key idea of DCSTA is that any CSTA1 entity or versor AC1 and its double AC2 in
CSTA2 can be multiplied to form the corresponding DCSTA entity or versor AD, where

AD = AC1AC2=AC1^AC2: (5.1)

According to the outermorphism property for transformation operators [16], or versors
that operate as the two-sided versor �sandwich� operation, any doubled versor VD, which
can be for rotation RD (�5.7.6), translation TD (�5.7.7), dilation DD (�5.7.8), boost BD
(�5.7.3), or any of their compositions, operates on a doubled entity ED as

ED
0 = VDEDVD� (5.2)
= VC1VC2(EC1^EC2)VC2�VC1� (5.3)
= (VC1VC2EC1VC2

�VC1
�)^ (VC1VC2EC2VC2�VC1�) (5.4)

= (VC1EC1VC1
�)^ (VC2EC2VC2�) (5.5)

= EC1
0 ^EC20 =EC1

0 EC2
0 : (5.6)

Therefore, the CSTA1 entity EC1 is correctly transformed by the CSTA1 versor VC1, and
similarly for the CSTA2 entity EC2. The product of the two correctly transformed CSTA
entities is the correctly transformed DCSTA entity. For example, the DCSTA point entity
PD (�5.2) is correctly transformed by all of the DCSTA versors. The DCSTA point value-
extraction elements Ts (�5.2.3) extract correctly transformed values from a point PD,
leading to the ability to form entities in the general form of Darboux cyclides that can be
correctly transformed by all of the DCSTA versors.

As a subalgebra of DCSTA, all the results of DCSA (or DCGA) are available in
DCSTA. DCSTA extends DCSA with the pseudospatial time axis (w= ct)0, a variety of
spacetime entities, and the spacetime boost (hyperbolic rotor) operator. In DCSTA, the
DCSA GIPNS 2-vector quadric surfaces are surfaces in spacetime at zero velocity that can
be boosted into any velocity. The boosted quadric surfaces display spacetime contraction
e�ects.

DCSTA includes many operations on quadric surface entities, including

� Rotation in space

� Translation in spacetime

� Isotropic dilation in spacetime

� Anisotropic dilation (directed length dilation) in space
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� Spacetime active boosts of velocity with length contraction e�ect

� Spacetime passive boosts relative to a new observer frame

� Intersection with standard entities that are doubled CSTA entities.

The general DCSTA GIPNS 2-vector surface entity 
 has the general form of a Darboux
cyclide in spacetime, which has degenerate forms that include Dupin cyclides, horned
Dupin cyclides, parabolic cyclides, and the quadric surfaces. In DCSTA, the Darboux
cyclide surface entities can be formed, similarly as in DCSA or DCGA, as linear combi-
nations of the spatial DCSTA point value-extraction elements Ts (�5.2.3) that represent
spatial cyclide surfaces in the 3D G0;3 SA space (at zero velocity). Darboux cyclide enti-
ties can also be formed from spacetime value-extraction elements to represent spacetime
cyclides in a 3D G1;2 STA spacetime, where the spacetime cyclides are called pseudocy-
clides, pseudoquadrics, etc.

The DCSTA quadric surfaces support anisotropic length contraction and dilation
(�5.7.9) since these forms can be written in terms of the DCSTA value-extraction ele-
ments. On the other hand, the higher-degree surfaces, which include cubic parabolic
cyclides and quartic Darboux and Dupin cyclides, do not support anisotropic length
contraction and dilation forms. Any DCSTA GIPNS 2-vector surface entity 
 represents
an implicit surface function in spacetime F (w; x; y; z) and supports function di�erentia-
tion @nF (or 2F@nF for doubled entities ED≘F 2) using the di�erential operations (�5.8) for

� Di�erentiation with respect to w= ct, t, x, y, or z

� Directional derivative with respect to a unit-norm direction n in spacetime.

The DCSTA forms of conic sections can also support the operations for

� Orthographic projection

� Perspective projection

as discussed in the paper [5].

5.1 DCSTA unit pseudoscalar
The DCSTA 12-vector unit pseudoscalar ID with signature (+¡¡¡+¡+¡¡¡+¡) is

ID = IC1^ IC2=
^
i=1

12

ei (5.7)

= ID
�= ID

¡1 (5.8)
ID
2 = 1: (5.9)

5.2 DCSTA point

5.2.1 DCSTA point embedding

The DCSTA null 2-vector point embedding PD=D(p) of STA position vector

p= pM = pw0+ px1+ py2+ pz3 (5.10)
= pw0+pS (5.11)
= p0+ p_ t (5.12)
= p0+(o+p_ )t (5.13)
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is de�ned as the doubling of the CSTA point PC= C(p) as

PD = C(pM1)^C(pM2) (5.14)
= PC1^PC2 (5.15)
= D(p) (5.16)

where

pM1 = pwe1+ pxe2+ pye3+ pze4= pwe1+pS1 (5.17)
pM2 = pwe7+ pxe8+ pye9+ pze10= pwe7+pS2: (5.18)

The DCSTA null 2-vector point at the origin is

eo = eo1^ eo2: (5.19)

The DCSTA null 2-vector point at in�nity is

e1 = e11^ e12: (5.20)

In general, the doubled CSTA entities, as DCSTA entities, represent the same entities as
de�ned in CSTA (�4).

As a GIPNS entity, the DCSTA point embedding PD = D(p) represents a space-
time hypercone (lightcone) centered on vertex p and is the DCSTA GIPNS null 2-vector
standard hypercone PD=KD.

As a GOPNS entity, the DCSTA point embedding PD=D(p) represents the point
p and is the DCSTA GOPNS null 2-vector standard point PD.

A point embedding PD=D(p) will often be called a point , but it should be understood
that it is a GOPNS point and not a GIPNS point. For the purpose of testing any GIPNS
or GOPNS surface entity for a surface point p, the point embedding PD = D(p) is the
test point entity . Point p is on the surface of GIPNS entity E i� D(p) �E = 0. Point p
is on the surface of GOPNS entity E� i� D(p)^E�=0.

5.2.2 DCSTA point projection (inverse embedding)

The projection of DCSTA point PD back to STA1 vector pM1 is

pM1 = C¡1(PD � e12) (5.21)

=

�
PD � e12

¡(PD � e12) � e11
� IM1

�
� IM1
¡1 : (5.22)

The projection of DCSTA point PD back to STA2 vector pM2 is

pM2 = C¡1(PD � e11) (5.23)

=

�
PD � e11

¡(PD � e11) � e12
� IM2

�
� IM2
¡1 : (5.24)

5.2.3 DCSTA point value-extraction elements

The DCSTA test point TD=D(t) is the point embedding of the STA test vector

t = w0+ x1+ y2+ z3 (5.25)
= ct0+x1+ y2+ z3: (5.26)
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The DCSTA 2-vector extraction elements Ts are de�ned as

Tw =
1
2
(e1^ e12+ e11^ e7) (5.27)

Tt =
1
c
Tw (5.28)

Tx =
1
2
(e12^ e2+ e8^ e11) (5.29)

Ty =
1
2
(e12^ e3+ e9^ e11) (5.30)

Tz =
1
2
(e12^ e4+ e10^ e11) (5.31)

Tw2 = e7^ e1 (5.32)

Tt2 =
1
c2
Tw2 (5.33)

Tx2 = e8^ e2 (5.34)
Ty2 = e9^ e3 (5.35)
Tz2 = e10^ e4 (5.36)

Twx =
1
2
(e1^ e8+ e2^ e7) (5.37)

Twy =
1
2
(e1^ e9+ e3^ e7) (5.38)

Twz =
1
2
(e1^ e10+ e4^ e7) (5.39)

Ttx =
1
c
Twx (5.40)

Tty =
1
c
Twy (5.41)

Ttz =
1
c
Twz (5.42)

Txy =
1
2
(e9^ e2+ e8^ e3) (5.43)

Tyz =
1
2
(e10^ e3+ e9^ e4) (5.44)

Tzx =
1
2
(e8^ e4+ e10^ e2) (5.45)

Twt2 = e1^ eo2+ eo1^ e7 (5.46)

Ttt2 =
1
c
Twt2 (5.47)

Txt2 = eo2^ e2+ e8^ eo1 (5.48)
Tyt2 = eo2^ e3+ e9^ eo1 (5.49)
Tzt2 = eo2^ e4+ e10^ eo1 (5.50)

T1 = ¡e1 (5.51)
Tt2 = eo2^ e11+ e12^ eo1 (5.52)
Tt4 = ¡4eo: (5.53)

The value s is extracted from a point TD as

s = Ts �TD=TD �Ts: (5.54)

The DCSTA 2-vector extraction elements Ts are inner product extraction operators .
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The DCSTA 2-vector extraction elements Ts are used to de�ne the DCSTA GIPNS
2-vector entities that are similar to those that can be de�ned in DCSA or DCGA. The
general DCSTA GIPNS 2-vector spacetime surface entity 
 is a linear combination of the
DCSTA extraction elements Ts. For example, an ellipsoid entity E can be de�ned as

E = Tx2/a
2+Ty2/b

2+Tz2/c
2¡ T1: (5.55)

In general, any DCSTA GIPNS 2-vector spatial quadric entity Q, formed similarly to the
ellipsoid entity E as a linear combination of spatial extraction elements Ts, is independent
of time w = c t and exists for all time at its current spatial position, which can be
translated using the DCSTA translator (�5.7.7). A spatial quadric surface entity Q is
�pseudocylindrical� with the pseudospatial time w-axis as a type of hypercylinder entity.
The interpretation in spacetime is that the spatial quadric Q is at zero velocity � = 0.
The DCSTA 4-versor boost operator Bv (�5.7.3) can actively boost any spatial quadric
Q into any velocity v = �vcv̂ (into the rest frame of v = o + v) as a spacetime quadric
Q = BvQBv�. Only a DCSTA GIPNS 2-vector spatial quadric surface entity Q can be
formed independently of time w= ct as a linear combination of spatial extraction elements
Ts. The DCSTA GIPNS 2-vector cubic (parabolic cyclide) and quartic (Darboux and
Dupin cyclide) entities use the extraction elements Ts that include t as its square t2 or
square square t4 and are dependent on time w=ct, with the interpretation that the spatial
cubic and quartic entities exist at time w= ct=0 or are translated to exist at some time
w= pw= ctw.

5.2.4 DCSTA point value-extraction pseudo-inverse elements

The pseudo-inverse of A is denoted A+ and has the relation

A �A+ = 1: (5.56)

If A¡1 exists, it may be equal to A+. The inverse or pseudo-inverse of an extraction element
Ts can be useful for formulating certain other elements and operators, such as pseudo-
integral operators (�5.9). The pseudo-inverses of some of the extraction elements are

Tw2
¡1=Tw2

+ = ¡Tw2 (5.57)
Tt2
¡1=Tt2

+ = ¡c2Tw2 (5.58)
Tx2
¡1=Tx2

+ = ¡Tx2 (5.59)
Ty2
¡1=Ty2

+ = ¡Ty2 (5.60)
Tz2
¡1=Tz2

+ = ¡Tz2 (5.61)

Tw
+ = Twt2 (5.62)

Tt
+ = c2Ttt2 (5.63)

Tx
+ = ¡Txt2 (5.64)

Ty
+ = ¡Tyt2 (5.65)

Tz
+ = ¡Tzt2 (5.66)

Twx
+ = 2Twx (5.67)

Twy
+ = 2Twy (5.68)

Twz
+ = 2Twz (5.69)
Ttx
+ = 2c2Ttx (5.70)

Tty
+ = 2c2Tty (5.71)
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Ttz
+ = 2c2Ttz (5.72)

Txy
+ = ¡2Txy (5.73)

Tyz
+ = ¡2Tyz (5.74)

Tzx
+ = ¡2Tzx (5.75)

T1
+ = ¡1

4
Tt4 (5.76)

Tt2
+ = ¡1

2
Tt2 (5.77)

Tt4
+ = ¡1

4
T1: (5.78)

5.3 DCSTA GIPNS standard entities
The DCSTA GIPNS standard surface entities are the doubling of the CSTA GIPNS
entities. The wedge of corresponding CSTA1 and CSTA2 GIPNS entities, XC1 and XC2,
forms the DCSTA GIPNS standard entityXD=XC1^XC2 representing the same surface.
The following subsections provide some explicit examples of the doubling.

The DCSTA GIPNS standard entities have special properties and can act as operators
for re�ections and intersections. All DCSTA entities can be re�ected in the standard
entities. The re�ection in a standard sphere is called inversion in a sphere. All DCSTA
entities can be intersected with standard entities. A DCSTA GIPNS intersection entity is
a wedge of GIPNS entities, similar to a DCGA GIPNS intersection entity and with similar
limitations on what combinations of entities can be wedged to form a valid intersection
entity. The basic examples of intersection entities are the DCSTA GIPNS 6-vector stan-
dard line LD = �D ^ ED (�5.3.7) and DCSTA GIPNS 6-vector standard (pseudo)circle
CD=�D^�D (�5.3.8).

5.3.1 DCSTA GIPNS null 2-vector hypercone

The DCSTA GIPNS null 2-vector standard hypercone KD is de�ned as

KD = KC1^KC2=PC1^PC2=PD (5.79)

which is the wedge of the same point embedding (hypercone) (�4.2) in CSTA1 and CSTA2.

5.3.2 DCSTA GIPNS 2-vector standard hyperplane

The DCSTA GIPNS 2-vector standard hyperplane ED is de�ned as

ED = EC1^EC2 (5.80)

which is the wedge of the same hyperplane (�4.4.3) embedded in CSTA1 and CSTA2.

5.3.3 DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet (hyperpseudosphere)
�D is de�ned as

�D = �C1^�C2 (5.81)

which is the wedge of the same hyperpseudosphere (�4.4.5) embedded in CSTA1 and
CSTA2.
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5.3.4 DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets

The DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets (imaginary hyper-
pseudosphere) �D is de�ned as

�D = �C1^�C2 (5.82)

which is the wedge of the same imaginary hyperpseudosphere (�4.4.6) embedded in CSTA1
and CSTA2.

5.3.5 DCSTA GIPNS 4-vector standard sphere or pseudosphere

The DCSTA GIPNS 4-vector standard sphere or pseudosphere SD is de�ned as

SD = SC1^SC2 (5.83)

which is the wedge of the same sphere (�4.4.7) or pseudosphere (�4.4.8) embedded in
CSTA1 and CSTA2.

5.3.6 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane �D is de�ned as

�D = �C1^�C2 (5.84)

which is the wedge of the same plane (�4.4.10) embedded in CSTA1 and CSTA2.

5.3.7 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line LD is de�ned as

LD = LC1^LC2 (5.85)

which is the wedge of the same line (�4.4.11) embedded in CSTA1 and CSTA2.

5.3.8 DCSTA GIPNS 6-vector standard circle or pseudocircle

The DCSTA GIPNS 6-vector standard circle or pseudocircle CD is de�ned as

CD = CC1^CC2 (5.86)

which is the wedge of the same circle (�4.4.12) or pseudocircle (�4.4.13) embedded in
CSTA1 and CSTA2.

5.3.9 DCSTA GIPNS 8-vector standard point pair

The DCSTA GIPNS 8-vector standard point pair 2D is de�ned as

2D = 2C1^2C2 (5.87)

which is the wedge of the same point pair (�4.4.14) embedded in CSTA1 and CSTA2.

5.3.10 DCSTA GIPNS null 10-vector standard point

The DCSTA GIPNS null 10-vector standard point PD? is de�ned as

PD
? = PC1

? ^PC2? (5.88)
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which is the wedge of the same GIPNS point (�4.4.17) embedded in CSTA1 and CSTA2.

5.4 DCSTA GOPNS standard entities

The DCSTA GOPNS standard entities are the DCSTA duals (�5.7.1) of the DCSTA
GIPNS standard entities . The DCSTA GOPNS standard entities can also be formed as
the wedges of DCSTA points by the same formulas as in CSTA. Only the DCSTA GOPNS
standard entities can be formed as wedges of DCSTA null 2-vector points .

The DCSTA GIPNS 2-vector non-standard entities that are formed as linear combina-
tions of the DCSTA 2-vector value-extraction elements Ts (�5.2.3) have DCSTA dual forms
as DCSTA GOPNS 10-vector non-standard entities, but these GOPNS entities cannot
be formed as wedges of DCSTA points. All DCSTA GIPNS entities have a DCSTA dual
that is the DCSTA GOPNS entity that represents the same surface.

5.5 DCSTA GIPNS 2-vector non-standard surface entities

The DCSTA GIPNS 2-vector non-standard surface entities 
 are de�ned as linear com-
binations


 =
X

�iTi (5.89)

of the DCSTA 2-vector value-extraction elements Ts (�5.2.3).
In a straightforward way, an entity 
, which has the general form of a spacetime

Darboux (pseudo)cyclide, is formulated in terms of the value-extraction elements Ts to
represent an implicit surface function

F (w; x; y; z) = TD �
: (5.90)

A pseudocyclide or pseudoquadric has the form of a spatial cyclide or quadric, but one
of the spatial axes is replaced by the pseudospatial time w-axis.

In terms of the value-extraction elements Ts, these entities 
 are de�ned exactly as
they are in the G8;2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA)
that is introduced in [7]. The reader should refer to [7] for additional details that are not
repeated in this paper.

The DCSTA GIPNS 2-vector, or dual GOPNS 10-vector, non-standard surface enti-
ties 
 can be translated in spacetime using the DCSTA translator TD (�5.7.7), spatially
rotated in space using the DCSTA spatial rotor RD (�5.7.6), and isotropically dilated in
spacetime using the DCSTA isotropic dilator DD (�5.7.8).

The DCSTA GIPNS 2-vector, or dual GOPNS 10-vector, non-standard quadric surface
entities Q can also be boosted in spacetime using the DCSTA spacetime boost oper-
ator (�5.7.3) with the interpretation that the quadric surface relativistically gains the
spacetime velocity v of the active boost Bv. A spatial quadric surface (at zero velocity)
Q at position p can also be anisotropically dilated (�5.7.9) in position p by a factor d
in a speci�c direction v̂ in space using the DCSTA translated-boost BDv

p (�5.7.4) with
an imaginary natural boost speed �v that is followed by a DCSTA spatial projection
Q0=(Q � IDS)IDS¡1 (�5.7.2). The spatial projection discards all time components to recover
a spatial quadric surface Q0 that is again at zero velocity.
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5.6 DCSTA conic section entities
It should be straightforward to adapt the DCGA conic sections into DCSTA and its spatial
subalgebra DCSA. The reader is referred to the paper [5] for details on conic sections in
DCGA and possible applications that include orthographic and perspective projection of
conic sections.

5.7 DCSTA operations

5.7.1 DCSTA dualization

The dual DCSTA GOPNS (12¡ k)-vector surface entity Q�D of any DCSTA GIPNS k-
vector surface entity Q is obtained by the DCSTA dualization as

Q�D = QID=Q � ID: (5.91)

The undual operation is

Q = Q�D � ID: (5.92)

The dual and undual operations are the repeated application of the same dualization
operation. Therefore, DCSTA dualization is an involution.

The DCSTA GIPNS k-vector surface entity Q and its dual DCSTA GOPNS (12¡ k)-
vector surface entity Q�D represent the same surface.

5.7.2 DCSTA spatial projection

The DCSTA spatial projection of a DCSTA entity 
D is de�ned as


DS = (
D � IDS)IDS¡1 ; (5.93)

which is the projection into the G2;8 DCSA subalgebra, where

IDS = (e1^ e7) � ID= IS1e5e6IS2e11e12 (5.94)
= ¡IDS� =¡IDS¡1 (5.95)

is the DCSA unit pseudoscalar. The projection produces the G2;8 DCSA entity 
DS
representing the G4;8 DCSTA entity 
D at time w= ct=0.

The DCSA null 2-vector point is de�ned as

PDS = DS(pS) (5.96)
= CS1(pS1)^CS2(pS2)= CS1(pS1)CS2(pS2) (5.97)
= C1(pS1)^C2(pS2)= C1(pS1)C2(pS2) (5.98)
= D(pS) (5.99)

=

�
pS1+

1
2
pS1
2 e11+ eo1

�
^
�
pS2+

1
2
pS2
2 e12+ eo2

�
; (5.100)

which is just the doubled embedding of a G0;3 SA spatial point of the form

pS = px1+ py2+ pz3 (5.101)

without a time w= pw component .
The DCSA GIPNS entity 
DS, or dual GOPNS entity 
DS�DS, that is produced by the

DCSTA spatial projection should be tested against only spatial DCSA pointsPDS=D(pS)
that represent spatial positions at time w= ct=0.
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The DCSTA spatial projection is speci�cally de�ned for the spatial projection of any
DCSTA quadric surface entity Q as

Q=QDS = (Q � IDS)IDS¡1 ; (5.102)

which is a DCSA quadric surface entity that represents the DCSTA quadric Q at time
w= ct=0. The DCSTA anisotropic (directed or non-uniform) dilation operation (�5.7.9)
is de�ned for any DCSA quadric entity Q formed as a linear combination of quadric
extraction elements Ts without a time component. The anisotropic dilation is implemented
as a boost by a natural speed � = 1¡ d2

p
that may be imaginary for dilations d > 1.

Directed dilation using an imaginary � results in imaginary time components that are only
artifacts of the directed dilation operation and should usually be discarded. The DCSTA
spatial projection of a DCSTA quadric Q, which may be a spatial DCSA quadric Q that
has been boosted for directed dilation, discards any time components and produces the
quadric at time w= ct=0 as a DCSA quadric Q. The DCSA quadric Q is again a DCSTA
quadric Q at zero velocity �=0.

5.7.3 DCSTA spacetime boost

The DCSTA 4-versor boost operator is de�ned as

BD = BC1^BC2; (5.103)

which is the doubling of the CSTA 2-versor boost BC (�4.6.8) in CSTA1 and CSTA2.
For a DCSTA 4-versor boost, the notation Bv is de�ned as

Bv=BDv = BC1v^BC2v (5.104)

= exp
�
1
2
'vv̂S1e1

�
^ exp

�
1
2
'vv̂S2e7

�
; (5.105)

which is an active boost into the frame of the observable spacetime velocity

v = o+v (5.106)
= c0+ �vcv̂: (5.107)

The observable worldline vt, with initial position p0 = 0 (the spacetime origin) at time
t= 0, is also being called the observable v or the frame v. The frame of v is carried at
the position vt of the observable.

All DCSTA entities can be boosted. A boosted surface entity represents the set of all
boosted surface points. For a full discussion of the boost operator, see the CSTA boost
BC (�4.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q is boosted as

Q0 = BDQBD�: (5.108)

The quadric surface Q should have initial position p0=0 at time w= ct=0. If p0=/ 0 at
time w=ct=0, then the quadric Q with position p=p0 can be boosted using the DCSTA
4-versor translated-boost operator (�5.7.4)

BD
p0 = BC1

p0BC2
p0 (5.109)

that is centered on the initial position p0. The translated-boost of Q is

Q0 = BD
p0QBD

p0�; (5.110)
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where the position of Q0 is preserved as p=p0 at time w= ct=0.
Since entities are homogeneous and any general spacetime dilation factor  of the

boosts can always be divided out (as a normalization of the entity) without a�ecting
the surface representation, the boost of a quadric surface has the interpretation that
the quadric surface undergoes a relativistic velocity addition for an active boost and
a relativistic velocity subtraction for a passive boost. A boosted quadric displays the
spacetime (length) contraction e�ect of the boost, which is possible since general quadrics
can be represented by the DCSTA extraction elements Ts (�5.2.3). For active boosts
Bv, the length contraction of displacements is as seen by the observable v = o + v in
its contracted spacetime frame. For passive boosts Bv� =B¡v, the length contraction of
displacements is as seen by the observable vy= o¡ v in its contracted spacetime frame,
as if the boost is the active boost B¡v. The boost is viewed in the active orientation,
and the quadric is boosted up into the frame of the active boost observable v=o+v for
Bv, or the frame of the active boost observable vy=o¡v for Bv�=Bvy=B¡v. In either
case, the length contraction factor is the same, 1/v=1/¡v= 1¡ �v

2
p

, and the quadric
surface relativistically gains the velocity v or ¡v of the frame it is boosted into.

For example, consider a spatial quadricQ=QDS that is initially at zero velocity �0=0
and at position p0= 0 (the origin) in the rest frame of the conventional coordinate time
t observable o. It is then boosted as

Q = BvQBv�=Q�v: (5.111)

Q is Q boosted or moved into the rest frame of v = o+ v. Local to the frame of v, Q
is still at the origin and still at rest as it was in the frame of o. Q is carried along in
the frame of v at the frame velocity v= �vcv̂ and with position displacement vt in the
frame of coordinate time t observable o. Since the entity Q is homogeneous, it displays
as the contracted quadric, by contraction factor 1¡ �v

2
p

in direction v̂, as seen by the
observable v in its own contracted frame, but Q moves with coordinate time t in the
frame of observable o at the velocity v as seen by o while Q is carried at rest and at the
origin in the frame of v that moves at velocity v.

The boosted quadric surface Q can be symbolically evaluated [19] for its implicit
surface function F as

D(tM) �Q = F (w; x; y; z); (5.112)

which can be graphed in xyz-space at any selected time w= ct. The graph of Q should
show it to be centered in space at a position consistent with the elapsed coordinate time
t in the frame of the observable o, and the shape of the quadric surface should show a
length contraction e�ect consistent with the speed of the boost that has been applied.

5.7.4 DCSTA translated-boost

The DCSTA 4-versor translated-boost operator BDv
p is the doubling of the CSTA 2-versor

translated-boost BCv
p (�4.6.9) and de�ned as

BDv
p = BC1v

p ^BC2v
p =BC1v

p BC2v
p (5.113)

= exp
�
1
2
'v�C1

�
^ exp

�
1
2
'v�C2

�
; (5.114)

where

�C1 = DC1
�M1¡ (p0S1 �DC1

�M1

)e11 (5.115)
�C2 = DC2

�M2¡ (p0S2 �DC2
�M2

)e12 (5.116)
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and

DC1 = v̂S1e1IM1 (5.117)
DC2 = v̂S2e7IM2 (5.118)
pS1 = pxe2+ pye3+ pze4 (5.119)
pS2 = pxe8+ pye9+ pze10: (5.120)

The translated-boost is centered on the spatial point

p=p0 = px1+ py2+ pz3 (5.121)

and actively boosts into the rest frame of the translated observable with worldline

vp0(t) = p0+(o+v)t (5.122)
= p0+(c0+ �vcv̂)t: (5.123)

If p0=0, then BDv
p0 =BDv (�5.7.3).

For example, the point p0=p can be the center position p of a spatial quadric surface
Q, or it can be the initial point p0 at time w=ct=0 of a DCSTA GIPNS 6-vector standard
line LD (�5.3.7) that represents an observable worldline.

The translated-boost operator BDv
p is used in the de�nition of the DCSTA anisotropic

dilation operation (�5.7.9), which is valid for the directed scaling of DCSTA quadric
surface entities.

5.7.5 DCSTA spacetime reframe (reverse boost)

The DCSTA reframe operation is the reversed application of the active boost operation
(�5.7.3) and is often interpreted as a passive transformation relative to a new frame of
reference. For a full discussion of the boost operator, see the CSTA boost (�4.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q is reframed (passively trans-
formed) into (relative to) the frame of observable v=o+v as

Q0 = Bv�QBv=Q	v (5.124)
= B¡vQB¡v� =BvyQBvy

� =Q�vy: (5.125)

One way to interpret the reframe is that Q is initially (being carried) in the frame of
v=o+v, where it sees v as its conventional coordinate time � = tpv observer ov, and it
is actively boosted down or moved into the frame of the actual coordinate time t = tpo
observer o as Q0. From the perspective of observer o, Q0 relativistically loses the velocity
v as a velocity subtraction.

Another way to interpret the reframe is that Q is initially in the frame of o, and it is
actively boosted up into the frame of vy= o¡v. The frame of v= o+ v and the frame
of vy are conjugate frames that carry boosted entities in opposite directions with the
same proper time � = tpv = tpvy relative to the coordinate time t= tpo of observer o. In
many respects, conjugate frames are the same frame, and they also see the same length
contraction factor 1¡ �v

2
p

. Entities that are actively boosted or moved into the frame
of vy are how entities carried in the frame of o appear to v when they are passively
transformed (not actively boosted or moved) into the frame of v by a relative or passive
boost.

If an entity Q has an initial position p0=/ 0 at time w=ct=0, then a passive translated-
boost Bv

p0� (�5.7.4) should be used.
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5.7.6 DCSTA rotor

The DCSTA 4-versor rotor RD is de�ned as

RD = RC1^RC2 (5.126)

which is the wedge of the same rotor (�4.6.3) in CSTA1 and CSTA2.
Any DCSTA entity Q is rotated by the rotor operation

Q0 = RDQRD
�: (5.127)

The CSTA 2-versor line rotor (translated rotor) RC
p=LC (�4.6.5) can also be doubled into

the DCSTA 4-versor translated rotor RD
p =LD=LC1^LC2.

5.7.7 DCSTA translator

The DCSTA 4-versor translator TD is de�ned as

TD = TC1^TC2 (5.128)

which is the wedge of the same translator (�4.6.4) in CSTA1 and CSTA2.
A DCSTA entity Q is translated by the translator operation

Q0 = TDQTD
�: (5.129)

5.7.8 DCSTA isotropic dilator

The DCSTA 4-versor isotropic dilator DD is de�ned as

DD = DC1^DC2 (5.130)

which is the wedge of the same isotropic dilator (�4.6.6) in CSTA1 and CSTA2.
A DCSTA entity Q is isotropically dilated by the dilator operation

Q0 = DDQDD
�: (5.131)

The DCSTA 4-versor translated dilator DD
p that dilates relative to the center point pM is

the doubling of the CSTA 2-versor translated dilator DC
p (�4.6.7) as

DD
p = DC1

p ^DC2
p : (5.132)

5.7.9 DCSTA anisotropic dilator

Introduction
A spatial DCSTA GIPNS 2-vector quadric surface entity Q at center position

p=p0=pS = px1+ py2+ pz3; (5.133)

formed similarly to a DCGA GIPNS 2-vector quadric as a linear combination of quadratic
DCSTA point value-extraction elements Ts (�5.2.3) without time components, can be
anisotropically dilated (for non-uniform, directed scaling) in situ at p = p0, by dilation
factor d in a unit direction v̂= v̂S, as a translated-boost BDv

p (�5.7.4) that is followed by
a DCSTA spatial projection using IDS (�5.7.2). The natural speed �v of the translated-
boost, for the dilation factor d, is

�v = 1¡ d2
p

; (5.134)
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which is an imaginary number for d> 1. The rapidity of the translated-boost is

'v = atanh(�v)= atanh
¡

1¡ d2
p �

; (5.135)

which can also be imaginary when �v is imaginary. The translated-boost spacetime
velocity is

v = o+v= c0+ �vcv̂; (5.136)

which can be an imaginary spacetime velocity when �v is imaginary. A spatial quadric Q
(at zero velocity) is boosted by the translated-boost BDv

p to be in the moving observable
frame as Q and is carried along the observable worldline at velocity v with position

vp0(t) = p0+(o+v)t (5.137)
= p0+(c+ �vcv̂)t: (5.138)

The observed dilation of quadric surface Q in the moving frame as Q is by factor

d = 1¡ �v
2

p
(5.139)

in the direction v̂, where d > 1 for imaginary �v. The length dilation in the direction v̂
of the boost follows from the standard formula for special relativity length contraction

L =
L0
v

=L0 1¡ �v
2

p
=L0d: (5.140)

The moving, and anisotropically dilated, quadric Q can be evaluated at time w= ct=0
to observe the anisotropic dilation at its position p. By projecting Q into the spatial
G2;8 CSTA subalgebra, an anisotropically dilated spatial quadric Q0 at zero velocity is
recovered.

De�nition
The DCSTA anisotropic dilator operation, on a spatial DCSTA GIPNS 2-vector

quadric surface Q with position p, for dilation factor d in the direction v̂ is de�ned as

Q0=QDS
0 = ((BDv

p QBDv
p�) � IDS)IDS¡1 (5.141)

= (Q � IDS)IDS¡1 ; (5.142)

where the observable of the translated-boost (�5.7.4) is

vp(t) = p+(o+v)t (5.143)
= p+(c0+ �vcv̂)t (5.144)

with

�v = 1¡ d2
p

(5.145)
'v = atanh(�v) (5.146)
p = px1+ py2+ pz3: (5.147)

Discussion
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The dilated entity QDS0 can be symbolically evaluated as an implicit surface function

F (x; y; z) = TD �QDS (5.148)

that graphs at position p as anisotropically dilated in the unit direction v̂S by factor d.
The spatial quadric Q0 has zero velocity and exists at all times at the same position

p. If Q0 should exist only at a speci�c time w = pw, then this can be represented as an
intersection of Q0 with a DCSTA 2-vector standard hyperplane ED (�5.3.2),

ED = EC1^EC2 (5.149)
EC1 = pwe1+ pw

2 e11 (5.150)
EC2 = pwe7+ pw

2 e12; (5.151)

that �xes the time w= ct= pw. The intersection is the GIPNS 4-vector intersection entity

Qh4i
0 w=pw = Q0^ED: (5.152)

The entity Qh4i
0 w=pw can be translated in spacetime using the DCSTA translator (�5.7.7).

The entity Q0 can subsequently be boosted from zero velocity into a real velocity
v=vS= �vcv̂S with natural speed 0��v<1 by the action of an active DCSTA translated-
boost operation (�5.7.4)

Qv
0 = BDv

p Q0BDv
p�: (5.153)

The boosted quadric entity Qv
0 exists at all times t, but its spacetime position

pp(t) = p+ p_ t (5.154)
= p+(o+p_ )t (5.155)
= p+(o+v)t (5.156)

has velocity v relative to the observer o, and its geometric surface shape undergoes a
contraction by factor d= 1¡ �v

2
p

along the direction of its velocity v. The contraction
is consistent with special relativity.

5.8 DCSTA di�erential calculus

The DCSTA di�erential calculus is a straightforward extension of the DCGA di�erential
calculus that is introduced in the paper [6].

5.8.1 DCSTA di�erential elements

Some of the DCSTA point value-extraction elements Ts have inverses. These inverses allow
the following DCSTA 2-vector di�erential elements to be de�ned as

Dw = 2TwTw2
¡1 (5.157)

Dt = 2TtTt2
¡1 (5.158)

Dx = 2TxTx2
¡1 (5.159)

Dy = 2TyTy2
¡1 (5.160)

Dz = 2TzTz2
¡1: (5.161)
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5.8.2 DCSTA antisymmetric di�erential operators

The DCSTA antisymmetric di�erential operators are de�ned as

@w=
@
@w

= Dw� (5.162)

@t=
@
@t

= Dt� (5.163)

@x=
@
@x

= Dx� (5.164)

@y=
@
@y

= Dy� (5.165)

@z=
@
@z

= Dz� (5.166)

where the symbol � is the antisymmetric commutator product . For any multivectors A
and B, the commutator product is

A�B =
1
2
(AB ¡BA): (5.167)

Any DCSTA GIPNS 2-vector surface entity 
 (�5.5), de�ned in terms of the extraction
elements Ts (�5.2.3), can be di�erentiated as Dn�
, where Dn is one of the di�erential
elements or is a linear combination of di�erential elements (�5.8.1).

Higher-order mixed partial derivatives can also be computed as successive di�erential
operations. For example,

d2

@x@y

= Dx� (Dy�
)=Dy� (Dx�
): (5.168)

As required of partial di�erential operators, the sequence in which the derivatives are
computed does not a�ect the result.

5.8.3 DCSTA directional derivative operator

The DCSTA n-directional derivative operator is de�ned as

@n=
@
@n

= (nwDw+nxDx+nyDy+nzDz)� (5.169)

where n is a unit norm spacetime direction

n =
n
knk =

n

n �ny
p =nw0+nx1+ny2+nz3: (5.170)

5.8.4 DCSTA time derivative operator

The DCSTA time t derivative operator is

@t=
@
@t

= Dt� : (5.171)

The time t derivative of any DCSTA GIPNS 2-vector spacetime entity 
 (�5.5) is


_ = @t
=
@

@t

= Dt�
: (5.172)

The DCSTA 2-vector spacetime entity 
 (�5.5) is the most general DCSTA GIPNS 2-
vector non-standard surface entity that is formed as a linear combination of the DCSTA
2-vector extraction elements Ts (�5.2.3).
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5.9 DCSTA pseudo-integral calculus
In the paper [6], the DCGA pseudo-integral calculus is introduced. A straightforward
adaptation and extension into DCSTA is possible by using the DCSTA extraction pseudo-
inverse elements Ts

+ (�5.2.4).

6 DCSTA computing with SymPy

DCSTA computing with SymPy (http://sympy.org) [19] is possible by using
the Geometric Algebra Module for Sympy (GAlgebra) by Alan Bromborsky
(https://github.com/brombo/galgebra) [2]. This section provides sample code listings and
example computations in DCSTA using GAlgebra. The Anaconda and SciPy python
distributions both include SymPy and the Mayavi [17] data visualization package. The
current version of the GAlgebra module for SymPy can be downloaded and installed from
GitHub. The Jupyter Notebook web application (http://jupyter.org) is recommended
for running the sample code and example computations.

6.1 Sample code
The sample code that is listed in the following subsections can be inserted into cells of
a Jupyter notebook �le and executed in the order listed. The sample code initializes
the GAlgebra modules and de�nes functions and symbols for DCSTA computing. The
example computations use the functions and symbols that are de�ned in the sample code.
The sample code is provided as is for experimental testing and educational purposes only!

6.1.1 Imports

Import the SymPy and GAlgebra modules:

from sympy import *
from sympy.printing import *
from galgebra.ga import *
from galgebra.mv import *
from galgebra.lt import *
from galgebra.metric import *
from galgebra.printer import *
init_printing()

6.1.2 Basis vectors

G4;8 DCSTA requires twelve unit vectors (�1), which can be setup as follows:

(e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12) = MV.setup(
'e*1|2|3|4|5|6|7|8|9|10|11|12',
metric=[1,-1,-1,-1,1,-1, 1,-1,-1,-1,1,-1]

)

6.1.3 Points at the origin and at in�nity

The CSTA1, CSTA2 (�4.2), and DCSTA (�5.2) points at the origin and at in�nity are
de�ned as follows:
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(eo1,ei1,eo2,ei2,eo,ei) = symbols(
'e_o1 e_i1 e_o2 e_i2 e_o e_i'

)
# CSTA1 points
eo1 = Pow(2,-1)*(-e5+e6)
ei1 = (e5+e6)
# CSTA2 points
eo2 = Pow(2,-1)*(-e11+e12)
ei2 = (e11+e12)
# DCSTA points
eo = eo1^eo2
ei = ei1^ei2

6.1.4 Unit pseudoscalars

The unit pseudoscalars in G0;3 SA1 (�2.1), G1;3 STA1 (�3.1.2), G2;4 CSTA1 (�4.1), G0;3
SA2, G1;3 STA2, G2;4 CSTA2, and G4;8 DCSTA (�5.1), respectively, are de�ned as follows:

(I31,I41,I61,I32,I42,I62,ID IDS) = symbols(
'I_31 I_41 I_61 I_32 I_42 I_62 I_D I_DS'

)
# SA1 unit pseudoscalar
I31 = e2^e3^e4
# STA1 unit pseudoscalar
I41 = e1^I31
# CSTA1 unit pseudoscalar
I61 = I41^ei1^eo1
# SA2 unit pseudoscalar
I32 = e8^e9^e10
# STA2 unit pseudoscalar
I42 = e7^I32
# CSTA2 unit pseudoscalar
I62 = I42^ei2^eo2
# DCSTA unit pseudoscalar
ID = I61^I62
# G2,8 anti-DCGA (spatial) unit pseudoscalar
IDS = (e1^e7)|ID

The last value, IDS, is the G2;8 DCSA unit pseudoscalar for an algebra that is very
similar to G8;2 DCGA. The IDS unit pseudoscalar is used to project entities (�5.7.2) into
a purely spatial algebra that drops the two time dimensions e1 and e7. When these time
dimensions are dropped, or rejected, by a projection of an entity onto IDS, then the entity
is e�ectively located at w= ct=0 in spacetime as a spatial DCSA entity that should be
tested against spatial DCSA points. The projection onto IDS is useful after a directed
scaling (anisotropic dilation) of a quadric surface (�5.7.9).

6.1.5 Point embeddings

CSTA1 point embedding (�4.2):
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def EV1(v):
# Embed STA1 vector v as CSTA1 point.
v1 = v
return ( v1 + Pow(2,-1)*(v1*v1)*ei1 + eo1 )

CSTA2 point embedding (�4.2):

def EV2(v):
# Embed STA1 vector v as CSTA2 point.
# STA1 vector v is converted to an STA2 vector v2.
v2 = (v|e1)*e7 - ( (v|e2)*e8 + (v|e3)*e9 + (v|e4)*e10 )
return ( v2 + Pow(2,-1)*(v2*v2)*ei2 + eo2 )

DCSTA point embedding (�5.2):

def EV(v):
# Embed STA1 vector v as DCSTA point.
return ( EV1(v)^EV2(v) )

6.1.6 Point projections
CSTA1 point projection (�4.2.6) to an STA1 vector:

def PV1(V1):
# Project CSTA1 point to STA1 vector.
# 1) Normalize point.
# 2) Use multivector projection to project vector part.
return Pow(scalar(-V1|ei1),-1)*(V1|I41)*I41.inv()

CSTA2 point projection (�4.2.6) to an STA1 vector:

def PV2(V2):
# Project CSTA2 point to STA1 vector.
# 1) Normalize point.
# 2) Use multivector projection to project vector part.
# 3) Convert into main STA1 space.
v2 = Pow(scalar(-V2|ei2),-1)*(V2|I42)*I42.inv()
return ( (v2|e7)*e1 + (-v2|e8)*e2 + (-v2|e9)*e3 + (-v2|e10)*e4 )

DCSTA point projection (�5.2.2) to an STA1 vector:

def PV(V):
# Project DCSTA point V to an STA1 vector.
# 1) Contract DCSTA point into CSTA1 point using ei2.
# 2) Project CSTA1 point V1 to an STA1 vector.
V1 = V|ei2
return PV1(V1)

6.1.7 Symbolic vectors and points
Symbols for coordinates, parameters, and vectors:

w,x,y,z,c,t,g,b = symbols('w x y z c t g b')
pw,px,py,pz = symbols('p_w p_x p_y p_z')
rx,ry,rz = symbols('r_x r_y r_z')
nw,nx,ny,nz = symbols('n_w n_x n_y n_z')
vx,vy,vz = symbols('v_x v_y v_z')
v,v1,v2,V,V1,V2 = symbols('v v1 v2 V V1 V2')
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The pw,px,py,pz are used as symbolic position coordinates for the center position of
surface entities. The rx,ry,rz are used as symbolic radii parameters of implicit quadric
surface functions. The nw,nx,ny,nz may be used as symbolic coordinates of a normalized
unit vector n. The vx,vy,vz may be used to hold the velocity components of a velocity
vector v. The symbol c is used as the symbolic speed of light, and symbol t is time.

Symbolic values, vectors, and points:

w = c*t
v = w*e1 + x*e2 + y*e3 + z*e4
v1 = v
v2 = w*e7 + x*e8 + y*e9 + z*e10
V1 = EV1(v)
V2 = EV2(v)
V = EV(v)

The embedding of the symbolic STA1 and STA2 vectors v1 and v2 are symbolic CSTA1
and CSTA2 points V1 and V2, respectively. The DCSTA embedding of a symbolic STA1
vector v is the symbolic DCSTA point V. In symbolic calculations, these symbolic point
embeddings V1, V2, and V are useful to check results.

6.1.8 CSTA extraction elements

A CSTA point value-extraction element Cs (�4.3) extracts the value s from an embedded
CSTA point TC= C(tM) as

s = TC �Cs: (6.1)

C11,C1t,C1w,C1x,C1y,C1z,C1t2 = symbols(
'C1_t C1_1 C1_w C1_x C1_y C1_z C1_t2'

)
C21,C2t,C2w,C2x,C2y,C2z,C2t2 = symbols(

'C2_t C2_1 C2_w C2_x C2_y C2_z C2_t2'
)
# CSTA1 (C1) point value-extraction elements
C11 = -ei1
C1w = e1
C1t = Pow(c,-1)*C1w
C1x = -e2
C1y = -e3
C1z = -e4
C1t2 = -2*eo1
# CSTA2 (C2) point value-extraction elements
C21 = -ei2
C2w = e7
C2t = Pow(c,-1)*C2w
C2x = -e8
C2y = -e9
C2z = -e10
C2t2 = -2*eo2
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For example, in CSTA1, the element symbol C1t2 extracts tM2 from an embedded point TC.

6.1.9 CSTA di�erential elements

Using the commutator product �, a CSTA di�erential element Dn
C (�4.6.10) can take a

partial derivative of an implicit surface function that is represented by a CSTA entity E as

@n
CE =

@E
@n

=Dn
C �E: (6.2)

The simplest example is when E is any CSTA GIPNS 1-vector entity. The CSTA di�er-
ential element Dn

C , for di�erentiating in the direction n, can be a linear combination of
the CSTA di�erential elements.

C1Dw,C1Dt,C1Dx,C1Dy,C1Dz,C2Dw,C2Dt,C2Dx,C2Dy,C2Dz = symbols(
'C1Dw C1Dt C1Dx C1Dy C1Dz C2Dw C2Dt C2Dx C2Dy C2Dz'

)
# CSTA1 (C1) differential elements
C1Dw = C11*C1w.inv()
C1Dt = C11*C1t.inv()
C1Dx = C11*C1x.inv()
C1Dy = C11*C1y.inv()
C1Dz = C11*C1z.inv()
# CSTA2 (C2) differential elements
C2Dw = C21*C2w.inv()
C2Dt = C21*C2t.inv()
C2Dx = C21*C2x.inv()
C2Dy = C21*C2y.inv()
C2Dz = C21*C2z.inv()

6.1.10 DCSTA extraction elements

The DCSTA point value-extraction elements Ts (�5.2.3) are used to extract the value s
from a DCSTA point TD as

s = TD �Ts: (6.3)

The extraction elements are de�ned in code as:
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(
Tw,Tx,Ty,Tz,
Tww,Txx,Tyy,Tzz,
Txy,Tyz,Tzx,Twx,Twy,Twz,
Twt2,Txt2,Tyt2,Tzt2,
Tt,Ttt,Ttx,Tty,Ttz,Ttt2,
T0,T1,Tt2,Tt4

) = symbols(
'Tw Tx Ty Tz '
'Tww Txx Tyy Tzz '
'Txy Tyz Tzx Twx Twy Twz '
'Twt2 Txt2 Tyt2 Tzt2 '
'Tt Ttt Ttx Tty Ttz Ttt2 '
'T0 T1 Tt2 Tt4'

)
# Coordinates; linear extractions
Tw = Pow(2,-1)*((e1^ei2)+(ei1^e7))
Tt = Pow(c,-1)*Tw
Tx = -Pow(2,-1)*((e2^ei2)+(ei1^e8))
Ty = -Pow(2,-1)*((e3^ei2)+(ei1^e9))
Tz = -Pow(2,-1)*((e4^ei2)+(ei1^e10))
# Squares; quadratic extractons
Tww = e7^e1
Ttt = Pow(c,-2)*Tw
Txx = e8^e2
Tyy = e9^e3
Tzz = e10^e4
# Cross terms; quadratic extractions
Twx = Pow(2,-1)*((e1^e8)+(e2^e7))
Twy = Pow(2,-1)*((e1^e9)+(e3^e7))
Twz = Pow(2,-1)*((e1^e10)+(e4^e7))
Ttx = Pow(c,-1)*Twx
Tty = Pow(c,-1)*Twy
Ttz = Pow(c,-1)*Twz
Txy = Pow(2,-1)*((e8^e3)+(e9^e2))
Tyz = Pow(2,-1)*((e10^e3)+(e9^e4))
Tzx = Pow(2,-1)*((e10^e2)+(e8^e4))
# Coordinates * squared test vector; cubic extractions
Twt2 = (e1^eo2)+(eo1^e7)
Ttt2 = Pow(c,-1)*Twt2
Txt2 = (eo2^e2)+(e8^eo1)
Tyt2 = (eo2^e3)+(e9^eo1)
Tzt2 = (eo2^e4)+(e10^eo1)
# Unit scalar extraction
T1 = -ei
# Squared test vector; quadratic extraction
Tt2 = (eo2^ei1)+(ei2^eo1)
# Squared squared test vector; quartic extraction
Tt4 = -4*eo
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6.1.11 DCSTA extraction pseudo-inverse elements

A DCSTA extraction pseudo-inverse element (�5.2.4) has the property

Ts �Ts+ = 1: (6.4)

The extraction pseudo-inverse elements are de�ned in code as:

(
iTw,iTx,iTy,iTz,iTt,
iTww,iTxx,iTyy,iTzz,iTtt,
iTxy,iTyz,iTzx,iTwx,iTwy,iTwz,iTtx,iTty,iTtz,
iT1,iTt2,iTt4 ) = symbols(
'i_Tww i_Txx i_Tyy i_Tzz i_Ttt '
'i_Tw i_Tx i_Ty i_Tz iTt '
'i_Txy i_Tyz i_Tzx i_Twx i_Twy i_Twz i_Ttx i_Tty i_Ttz '
'i_T1 i_Tt2 i_Tt4'

)
iTw = Twt2
iTx = -Txt2
iTy = -Tyt2
iTz = -Tzt2
iTt = Pow(c,2)*Ttt2
iTww = -Tww
iTxx = -Txx
iTyy = -Tyy
iTzz = -Tzz
iTtt = -Pow(c,2)*Tww
iTxy = -2*Txy
iTyz = -2*Tyz
iTzx = -2*Tzx
iTwx = 2*Twx
iTwy = 2*Twy
iTwz = 2*Twz
iTtx = 2*Pow(c,2)*Ttx
iTty = 2*Pow(c,2)*Tty
iTtz = 2*Pow(c,2)*Ttz
iT1 = -Pow(4,-1)*Tt4
iTt2 = -Pow(2,-1)*Tt2
iTt4 = -Pow(4,-1)*T1

6.1.12 DCSTA di�erential elements

The DCSTA di�erential (�5.8.1) and pseudo-integral elements (�5.9) are:
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(
Dw,Dx,Dy,Dz,Dt,
Iw,Ix,Iy,Iz,It

) = symbols(
'D_w D_x D_y D_z D_t '
'I_w I_x I_y I_z I_t'

)
# Differential elements
Dw = 2*Tw*Tww.inv()
Dx = 2*Tx*Txx.inv()
Dy = 2*Ty*Tyy.inv()
Dz = 2*Tz*Tzz.inv()
Dt = 2*Tt*Ttt.inv()
# Pseudo-integral elements
Iw = Pow(2,-1)*Tww*iTw
Ix = Pow(2,-1)*Txx*iTx
Iy = Pow(2,-1)*Tyy*iTy
Iz = Pow(2,-1)*Tzz*iTz
It = Pow(2,-1)*Ttt*iTt

In recent versions of the GAlgebra module [2], the commutator product A�B is coded
as (A>>B), and the anti-commutator product A�� B is coded as (A<<B). The parentheses
are required to ensure that the precedence rules for Python operators do not interfere. For
example, the derivative of a DCSTA GIPNS 2-vector surface entity 
 (�5.5) with respect
to t is written @t
=
_ =Dt�
, and if 
 is assigned to variable E, then the derivative
is coded as (Dt>>E) and evaluated symbolically as (V|(Dt>>E)). The operation (A|B)
is the inner product.

6.1.13 DCSTA directional derivative operator

The DCSTA n-directional derivative operator (�5.8.3) is de�ned in code as:

def Dn(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Dw + x*Dx + y*Dy + z*Dz)

Only the direction of the spacetime vector

n = we1+xe2+ ye3+ ze3 (6.5)

is signi�cant. The n-directional derivative uses the norm-unit of n, which is

n
knk =

n

nw
2 +nx

2+ny
2+nz

2
p : (6.6)

The directional derivative of a DCSTA GIPNS 2-vector surface entity E is coded as (Dn(w,
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x,y,z)>>E).

6.1.14 DCSTA pseudo-integral operator

The DCSTA n-directional pseudo-integral operator (�5.9) is de�ned in code as:

def In(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Iw + x*Ix + y*Iy + z*Iz)

The directional pseudo-integral of a DCSTA GIPNS 2-vector surface entity E is coded as
(In(w,x,y,z)>>E).

6.1.15 DCSTA GIPNS 2-vector surface entities

The following subsections de�ne, in code, many of the same surface entities that are
discussed in the paper on G8;2 DCGA [7]. The most general DCSTA GIPNS 2-vector
surface entity 
 (�5.5) is the linear combination of the value-extraction elements Ts
(�6.1.10). The value-extraction elements can form a general DCSTA GIPNS 2-vector
quadric surface entityQ that supports anisotropic dilations (�5.7.9). The value-extraction
elements Ts (�5.2.3) can form particular cubic surfaces known as parabolic cyclides and
particular quartic surfaces known as Dupin and Darboux cyclides that do not support
anisotropic dilations. All of the DCSTA GIPNS 2-vector surfaces 
 can be boosted
(�5.7.3) into a velocity in spacetime, but only the quadric surface entities can correctly
display length contraction or dilation e�ects.

6.1.16 DCSTA GIPNS 2-vector toroid

The DCSTA GIPNS 2-vector toroid is coded as:

def GIPNS_Toroid(R,r):
# Torus centered at the origin circling the z-axis.
# R is the major radius
# r is the minor radius
# R=0 degenerates into exactly -4*Sphere(0,r)
# R=r=0 degenerates into exactly -4*eo
# r=0 degenerates into non-standard circle radius R
# Note, -Tt2 since signatures are negative
return (

Tt4 +
-Tt2*2*(R**2 - r**2) +
T1*(R**2 - r**2)**2 +
(Txx + Tyy)*(-4)*R**2

)

The Toroid is evaluated at w= ct=0 to obtain the same toroid as in G8;2 DCGA:
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EV(c*0*e1+x*e2+y*e3+z*e4)|Toroid(R,r)

The cyclide surface that is formed from the toroid at other times t=/ 0 could be researched
further. Most surfaces are evaluated at t=0 to obtain a surface similar to those in DCGA.

6.1.17 DCSTA GIPNS 2-vector Dupin cyclide

The DCSTA GIPNS 2-vector Dupin cyclide is coded as:

def GIPNS_DupinCyclide(R,r1,r2):
# DupinCyclide generalizes the torus.
# Types of cyclide:
# Ring cyclide when (r1+r2)<2R
# Spindle cyclide when (r1+r2)>2R
# Types of torus:
# Horn torus when (r1=r2)=R
# Ring torus when (r1=r2)<R
# Spindle torus when (r1=r2)>R
#
# R is major radius in the xy-plane.
# r1 and r2 are minor radii.
# r1 is the radius of sphere centered at x=+R.
# r2 is the radius of sphere centered at x=-R.
# When r1=r2, we get exactly a Toroid(R,r=r1=r2).
# When r1+r2=2R, we get the union of two spheres
# that touch in a tangent point, exactly.
#
# Note: -Tt2 since signatures are negative.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-c**2)
return (

Tt4 +
-2*(b**2-u**2)*Tt2 +
(b**2-u**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

The DupinCyclide is evaluated at t=0 to obtain the same Dupin cyclide as in G8;2 DCGA:

EV(c*0*e1+x*e2+y*e3+z*e4)|DupinCyclide(R,r1,r2)

6.1.18 DCSTA GIPNS 2-vector horned Dupin cyclide

The DCSTA GIPNS 2-vector horned Dupin cyclide is coded as:
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def GIPNS_HornedDupinCyclide(R,r1,r2):
# Compared to DupinCyclide, just exchange values of
# u and c to get horned Dupin cyclide.
# For r1=r2: symmetrical, with horn points on y-axis.
# For (r1+r2)<2R: horned ring cyclide.
# For (r1+r2)>2R: horned spindle cyclide.
# For (r1+r2)=2R: union of two spheres exactly.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-u**2)
return (

Tt4 +
-2*(b**2-c**2)*Tt2 +
(b**2-c**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

6.1.19 DCSTA GIPNS 2-vector ellipsoid

The DCSTA GIPNS 2-vector ellipsoid is coded as:

def GIPNS_Ellipsoid(px,py,pz,rx,ry,rz):
# Axis-aligned ellipsoid.
return (

Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-Tx*2*px*Pow(rx**2,-1) +
-Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)

An ellipsoid, or any other quadric surface entity (�5.5), that has an initial position (px;
py; pz) can be boosted using a translated-boost (�5.7.4). After the boost operation(s) on
a quadric surface entity, the boosted entity can be evaluated at any time t, where the
entity has a moving position and displays a length contraction e�ect.

6.1.20 DCSTA GIPNS 2-vector elliptic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cylinder is coded as:
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def GIPNS_ECylinderX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic cylinder.
return (

T1*(py**2*Pow(ry**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.21 DCSTA GIPNS 2-vector elliptic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.22 DCSTA GIPNS 2-vector elliptic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+py**2*Pow(ry**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1)

)

6.1.23 DCSTA GIPNS 2-vector elliptic cone, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cone is coded as:
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def GIPNS_ConeX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic cone.
return (

-T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.24 DCSTA GIPNS 2-vector elliptic cone, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cone is coded as:

def GIPNS_ConeY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.25 DCSTA GIPNS 2-vector elliptic cone, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cone is coded as:

def GIPNS_ConeZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1)

)
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6.1.26 DCSTA GIPNS 2-vector elliptic paraboloid, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic paraboloid.
return (

-2*pz*Tz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tx*Pow(rx,-1) +
Tzz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*px*Pow(rx,-1)

)

6.1.27 DCSTA GIPNS 2-vector elliptic paraboloid, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py*Pow(ry,-1)

)

6.1.28 DCSTA GIPNS 2-vector elliptic paraboloid, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)
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6.1.29 DCSTA GIPNS 2-vector hyperbolic paraboloid

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic paraboloid is coded as:

def GIPNS_HParaboloidZ(px,py,pz,rx,ry,rz):
# z-axis aligned hyperbolic paraboloid.
# A saddle-like shape
# that "saddles" x-axis
# and "straddles" y-axis
# with "up" direction as z-axis.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.30 DCSTA GIPNS 2-vector hyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperboloid of one sheet is coded as:

def GIPNS_Hyperboloid1(px,py,pz,rx,ry,rz):
# z-axis aligned hyperboloid of one sheet.
# An hourglass-like shape that
# is elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.31 DCSTA GIPNS 2-vector hyperboloid of two sheets

The DCSTA GIPNS 2-vector hyperboloid of two sheets is coded as:
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def GIPNS_Hyperboloid2(px,py,pz,rx,ry,rz):
# z-axis aligned hyperboloid of two sheets.
# A shape like two dishes that
# are elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (

Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.32 DCSTA GIPNS 2-vector parabolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderX(px,py,pz,rx,ry,rz):
# Cylinder along x-axis with
# constant parabola cross-section in yz-plane.
return (

-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Tyy*Pow(ry**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.33 DCSTA GIPNS 2-vector parabolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderY(px,py,pz,rx,ry,rz):
# Cylinder along y-axis with
# constant parabola cross-section in xz-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.34 DCSTA GIPNS 2-vector parabolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned parabolic cylinder is coded as:
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def GIPNS_PCylinderZ(px,py,pz,rx,ry,rz):
# Cylinder along z-axis with
# constant parabola cross-section in xy-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py*Pow(ry,-1)

)

6.1.35 DCSTA GIPNS 2-vector hyperbolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderX(px,py,pz,rx,ry,rz):
# Cylinder along x-axis with
# constant hyperbola cross-section in yz-plane
# opening up and down the y-axis.
return (

-Ty*2*py*Pow(ry**2,-1) +
Tz*2*pz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.36 DCSTA GIPNS 2-vector hyperbolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderY(px,py,pz,rx,ry,rz):
# Cylinder along y-axis with
# constant hyperbola cross-section in xz-plane
# opening up and down the z-axis.
return (

-Tz*2*pz*Pow(rz**2,-1) +
Tx*2*px*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1

)

6.1.37 DCSTA GIPNS 2-vector hyperbolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic cylinder is coded as:
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def GIPNS_HCylinderZ(px,py,pz,rx,ry,rz):
# Cylinder along z-axis with
# constant hyperbola cross-section in xy-plane
# opening up and down the x-axis.
return (

-Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
-T1

)

6.1.38 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to x-axis
The DCSTA GIPNS 2-vector parallel planes pair ?x-axis is coded as:

def GIPNS_PPlanesPairX(px1,px2):
# Parallel planes pair, x=px1 and x=px2.
return ( Txx - (px1+px2)*Tx + px1*px2*T1 )

6.1.39 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to y-axis
The DCSTA GIPNS 2-vector parallel planes pair ?y-axis is coded as:

def GIPNS_PPlanesPairY(py1,py2):
# Parallel planes pair, y=py1 and y=py2.
return ( Tyy - (py1+py2)*Ty + py1*py2*T1 )

6.1.40 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to z-axis
The DCSTA GIPNS 2-vector parallel planes pair ?z-axis is coded as:

def GIPNS_PPlanesPairZ(pz1,pz2):
# Parallel planes pair, z=pz1 and z=pz2.
return ( Tzz - (pz1+pz2)*Tz + pz1*pz2*T1 )

6.1.41 DCSTA GIPNS 2-vector non-parallel planes pair, x-axis aligned
The DCSTA GIPNS 2-vector x-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairX(py,pz,ry,rz):
# The non-parallel planes pair aligned with x-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the yz-plane. The lines
# intersect at (py,pz), and the slopes of the two
# lines are +rz/ry and -rz/ry.
return (

-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)
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6.1.42 DCSTA GIPNS 2-vector non-parallel planes pair, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairY(px,pz,rx,rz):
# The non-parallel planes pair aligned with y-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the xz-plane. The lines
# intersect at (px,pz), and the slopes of the two
# lines are +rz/rx and -rz/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)

6.1.43 DCSTA GIPNS 2-vector non-parallel planes pair, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairZ(px,py,rx,ry):
# The non-parallel planes pair aligned with z-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the xy-plane. The lines
# intersect at (px,py), and the slopes of the two
# lines are +ry/rx and -ry/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1)

)

6.1.44 CSTA1 GIPNS 1-vector hyperplane

The CSTA1 GIPNS 1-vector hyperplane (�4.4.3) is coded as:

def GIPNS_HPlane1(p,n):
# CSTA1 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( n + (p|n)*ei1 )
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6.1.45 CSTA2 GIPNS 1-vector hyperplane

The CSTA2 GIPNS 1-vector hyperplane (�4.4.3) is coded as:

def GIPNS_HPlane2(p,n):
# CSTA2 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
p2 = (p1|e1)*e7 + (-p1|e2)*e8 + (-p1|e3)*e9 + (-p1|e4)*e10
n2 = (n1|e1)*e7 + (-n1|e2)*e8 + (-n1|e3)*e9 + (-n1|e4)*e10
return ( n2 + (p2|n2)*ei2 )

6.1.46 DCSTA GIPNS 2-vector hyperplane

The DCSTA GIPNS 2-vector hyperplane (�5.3.2) is coded as:

def GIPNS_HPlane(p,n):
# DCSTA 2-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( GIPNS_HPlane1(p,n)^GIPNS_HPlane2(p,n) )

6.1.47 CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�4.4.5)
is coded as:

def GIPNS_HPSphere1(p,r):
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( EV1(p) + Pow(2,-1)*r**2*ei1 )

6.1.48 CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�4.4.5)
is coded as:

def GIPNS_HPSphere2(p,r):
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( EV2(p) + Pow(2,-1)*r**2*ei2 )

6.1.49 DCSTA GIPNS 2-vector hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�5.3.2)
is coded as:
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def GIPNS_HPSphere(p,r):
# DCSTA 2-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( GIPNS_HPSphere1(p,r)^GIPNS_HPSphere2(p,r) )

6.1.50 CSTA1 GIPNS 2-vector plane

The CSTA1 GIPNS 2-vector plane (�4.4.10) is coded as:

def GIPNS_Plane1(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
# The STA1 plane bivector B is da^db
p1 = p
B1 = da^db
N1 = Pow(sqrt(scalar(B1|(e1*B1.rev()*e1))),-1)*B1
D1 = ((1*N1*1)|I41.inv())
return ( D1 - ((p1|D1)^ei1) )

6.1.51 CSTA2 GIPNS 2-vector plane

The CSTA2 GIPNS 2-vector plane (�4.4.10) is coded as:

def GIPNS_Plane2(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
da2 = (da|e1)*e7+(-da|e2)*e8+(-da|e3)*e9+(-da|e4)*e10
db2 = (db|e1)*e7+(-db|e2)*e8+(-db|e3)*e9+(-db|e4)*e10
B2 = da2^db2
N2 = Pow(sqrt(scalar(B2|(e7*B2.rev()*e7))),-1)*B2
D2 = (N2|I42.inv())
return ( D2 - ((p2|D2)^ei2) )

6.1.52 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane (�5.3.6) is coded as:

def GIPNS_Plane(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
return ( GIPNS_Plane1(p,da,db)^GIPNS_Plane2(p,da,db) )

The standard plane can be intersected with all other DCSTA GIPNS surface entities.
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6.1.53 CSTA1 GIPNS 3-vector line

The CSTA1 GIPNS 3-vector line (�4.4.11) is coded as:

def GIPNS_Line1(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
D1 = d1|(-I41)
return ( D1 + ((p|D1)^ei1) )

6.1.54 CSTA2 GIPNS 3-vector line

The CSTA2 GIPNS 3-vector line (�4.4.11) is coded as:

def GIPNS_Line2(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
d2 = (d1|e1)*e7+(-d1|e2)*e8+(-d1|e3)*e9+(-d1|e4)*e10
D2 = d2|(-I42)
return ( D2 + ((p2|D2)^ei2) )

6.1.55 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line (�5.3.7) is coded as:

def GIPNS_Line(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
return ( GIPNS_Line1(p,d)^GIPNS_Line2(p,d) )

The standard line can be intersected with all other DCSTA GIPNS surface entities.

6.1.56 CSTA1 plane-line intersection

The CSTA1 plane-line intersection (�4.5.5) is coded as:

def GIPNS_PlaneLineIntersection1(p,l):
# Intersect GIPNS_Plane1 p and GIPNS_Line1 l
plwedge = (p^l)
if plwedge != 0: return ei1
plmeet = (((p|I41.inv())^(l|I41.inv()))|I41)
if plmeet == 0: return l
return ((e1*plmeet*e1)|p)^l

6.1.57 CSTA2 plane-line intersection

The CSTA2 plane-line intersection (�4.5.5) is coded as:
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def GIPNS_PlaneLineIntersection2(p,l):
# Intersect GIPNS_Plane2 p and GIPNS_Line2 l
plwedge = (p^l)
if plwedge != 0: return ei2
plmeet = (((p|I42.inv())^(l|I42.inv()))|I42)
if plmeet == 0: return l
return ((e7*plmeet*e7)|p)^l

6.1.58 CSTA1 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA1 GOPNS 2-vector point pair (�4.5.3) is coded as:

def GOPNS_PointPairDecomp1(pp,pm):
# pp is a CSTA1 GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA1 null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pp|pp)))*(-ei1|pp).inv() )

6.1.59 CSTA2 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA2 GOPNS 2-vector point pair (�4.5.3) is coded as:

def GOPNS_PointPairDecomp2(pp,pm):
# pp is a CSTA2 GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA2 null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pp|pp)))*(-ei2|pp).inv() )

6.1.60 CSTA1 GOPNS 2-vector �at point projection

The projection of the point of a CSTA1 GOPNS 2-vector �at point (�4.5.5) is coded as:

def GOPNS_FlatPointProj1(fp):
# fp is a CSTA1 GOPNS 2-vector flat point
# returns the STA1 vector projection of the point
E = eo1^ei1
return ( -(fp|eo1)*Pow(scalar(E|fp),-1) - eo1 )

6.1.61 CSTA2 GOPNS 2-vector �at point projection

The projection of the point of a CSTA2 GOPNS 2-vector �at point (�4.5.5) is coded as:

def GOPNS_FlatPointProj2(fp):
# fp is a CSTA2 GOPNS 2-vector flat point
# returns the STA2 vector projection of the point
E = eo2^ei2
return ( -(fp|eo2)*Pow(scalar(E|fp),-1) - eo2 )

6.1.62 SA1, STA1, and CSTA1 2-versor rotor

The CSTA1 2-versor spatial rotor (�2.6) is coded as:
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def Rotor1(axis,angle):
# Spatial rotor in SA1, STA1, and CSTA1, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax1|(-I31))

)

6.1.63 SA2, STA2, and CSTA2 2-versor rotor

The CSTA2 2-versor spatial rotor (�2.6) is coded as:

def Rotor2(axis,angle):
# Spatial rotor in SA2, STA2, and CSTA2, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ax2 = (-ax1|e2)*e8 + (-ax1|e3)*e9 + (-ax1|e4)*e10
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax2|(-I32))

)

6.1.64 DCSTA 4-versor rotor

The DCSTA 4-versor spatial rotor (�5.7.6) is coded as:

def Rotor(axis,angle):
# Spatial rotor in DCSTA, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees
return ( Rotor1(axis,angle)^Rotor2(axis,angle) )

6.1.65 CSTA1 2-versor line rotor

The CSTA1 2-versor line rotor (�4.6.5) for the rotation around a line is coded as:

def LRotor1(p,d,a):
# Rotor around a line l by angle a in degrees
# line l is given by STA1 point p and direction d
l = GIPNS_Line1(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-e1|l) )

6.1.66 CSTA2 2-versor line rotor

The CSTA2 2-versor line rotor (�4.6.5) for the rotation around a line is coded as:
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def LRotor2(p,d,a):
l = GIPNS_Line2(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-e7|l) )

6.1.67 DCSTA 4-versor line rotor

The DCSTA 4-versor line rotor (�5.7.6) for the rotation around a line is coded as:

def LRotor(p,d,a):
return LRotor1(p,d,a)^LRotor2(p,d,a)

6.1.68 STA1 and CSTA1 2-versor hyperbolic rotor (boost operator)

The CSTA1 2-versor spacetime hyperbolic rotor (boost operator) (�3.2.3) is coded as:

def HRotor1(b,d):
# STA1 and CSTA1 boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
v1 = Pow(sqrt(scalar(-d|d)),-1)*d
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v1^e1) )

The b is the natural speed �v. The d is the SA1 spatial velocity direction v̂ that is
normalized as v1. The spatial velocity of the boost is v = �vcv̂ = kvkv̂ relative to an
observer o= cte1. The r is the rapidity 'v= atanh(�v).

6.1.69 STA2 and CSTA2 2-versor hyperbolic rotor (boost operator)

The CSTA2 2-versor spacetime hyperbolic rotor (boost operator) (�4.6.8) is coded as:

def HRotor2(b,d):
# STA2 and CSTA2 boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
v1 = Pow(sqrt(scalar(-d|d)),-1)*d
v2 = (-v1|e2)*e8 + (-v1|e3)*e9 + (-v1|e4)*e10
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v2^e7) )

6.1.70 DCSTA 4-versor hyperbolic rotor (boost operator)

The DCSTA 4-versor spacetime hyperbolic rotor (boost operator) (�5.7.3) is coded as:

def HRotor(b,d):
# DCSTA boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
return ( HRotor1(b,d)^HRotor2(b,d) )

For an anisotropic dilation (�5.7.9) of a quadric surface Q by factor d in direction d, then
speed b should be set to �v= 1¡ d2

p
, which may be an imaginary number.
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The anisotropic dilation of Q by a dilation factor d in an SA1 direction
v=vx*e2+vy*e3+vz*e4 is coded as:

((
HRotor(sqrt(1-d**2),v)*
Q*
HRotor(sqrt(1-d**2),v).rev()

)|IDS)*IDS.inv()

The projection using IDS is the space projection (�5.7.2) into the G2;8 anti-DCGA, which
discards imaginary components that are by-products of the directed scaling operation. A
good example to try can use Q=Ellipsoid(px,py,pz,rx,ry,rz).

6.1.71 CSTA1 2-versor translator

The CSTA1 2-versor spacetime translator (�4.6.4) is coded as:

def Translator1(d):
# CSTA1 spacetime translator, where
# d is an STA1 spacetime displacement vector.
d1 = d
return ( 1 - Pow(2,-1)*(d1^ei1) )

6.1.72 CSTA2 2-versor translator

The CSTA2 2-versor spacetime translator (�4.6.4) is coded as:

def Translator2(d):
# CSTA2 spacetime translator, where
# d is an STA1 spacetime displacement vector.
d2 = (d|e1)*e7 + (-d|e2)*e8 + (-d|e3)*e9 + (-d|e4)*e10
return ( 1 - Pow(2,-1)*(d2^ei2) )

6.1.73 DCSTA 4-versor translator

The DCSTA 4-versor spacetime translator (�5.7.7) is coded as:

def Translator(d):
# DCSTA spacetime translator, where
# d is an STA1 spacetime displacement vector.
return ( Translator1(d)^Translator2(d) )

6.1.74 CSTA1 2-versor isotropic dilator

The CSTA1 2-versor spacetime isotropic dilator (�4.6.6) is coded as:

def Dilator1(d):
# CSTA1 isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei1^eo1) )
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6.1.75 CSTA2 2-versor isotropic dilator

The CSTA2 2-versor spacetime isotropic dilator (�4.6.6) is coded as:

def Dilator2(d):
# CSTA2 isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei2^eo2) )

6.1.76 DCSTA 4-versor isotropic dilator

The DCSTA 4-versor spacetime isotropic dilator (�5.7.8) is coded as:

def Dilator(d):
# DCSTA isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Dilator1(d)^Dilator2(d) )

The anisotropic dilator (�5.7.9) on quadric surface entities is implemented using the
hyperbolic rotor (�6.1.70).

6.2 Example computations

6.2.1 Reframe to new observer in STA

The observer position is ot= cte1, and an observable vt= (o+ v)t moves relative to o,
where

v = �vce2=
1
2
ce2: (6.7)

We want to passively transform observable o, which is the conventional coordinate time t
observer, relative to the rest frame of the observable v with proper time � . However, we
prefer not to passively transform t into � , and prefer to get a velocity subtraction in the
frame of o. Solution: use a passive boost operation (�3.2.3) on o, followed by a spacetime
contraction.

o_rel_v = (
HRotor1( Rational(1,2), e2 ).rev()*
( c*t*e1 )*
HRotor1( Rational(1,2), e2 )

)
normalized = c*t*Pow( scalar(o_rel_v|e1), -1 )*o_rel_v
normalized

normalized = cte1¡
ct
2
e2: (6.8)
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Observable o is seen to be moving with velocity v=¡1

2
ce2 relative to observable v. The

spacetime contraction is a normalization of the conventional observer component o into
the normalized spacetime velocity value c0 or spacetime position value ct0.

6.2.2 Collinear velocity addition in STA

A particle moves with velocity u= 3

4
ce2 relative to another particle moving with velocity

v=
1

2
ce2 relative to an observer o= ce1. The two velocities u and v are collinear, and if we

simply add the velocities, we may conclude that u relative to o is a velocity v+u= 5

4
ce2.

However, this speed is greater than light speed c, which according to the physical theory
of special relativity is an impossible speed. Velocities cannot be simply added, and we
must use a reframe operation to reframe u relative to o. Relative to v = o + v, the
particle moving with velocity u is written ut=ot+ut= cte1+ut, where this o is v as the
observer and this time t is its proper time. We want this u reframed relative to observer
o of v=o+v. The solution is to apply to u the operation for the reverse of the reframe
relative to v that goes back to relative to its o, and this reframe is also seen as boosting
the particle u=o+u by the velocity v relative to o.

u_rel_o = (
HRotor1( Rational(1,2), e2 )*
( c*t*e1 + Rational(3,4)*c*t*e2 )*
HRotor1( Rational(1,2), e2 ).rev()

)
normalized = c*t*Pow( scalar(u_rel_o|e1), -1 )*u_rel_o
normalized

normalized = cte1+
10
11
cte2: (6.9)

The result is relativistic velocity addition, where the boost of velocities does not exceed
the speed of light c.

6.2.3 Velocity addition in STA

The velocities u and v need not be collinear, and the same operation of the previous
section (�6.2.2) for collinear velocities can be applied to reframe any velocity u relative to
v=o+v into u relative to o. The result is the so-called velocity-addition formula, which
could also be called the velocity boost formula,

urelv!urelo = o+urelo (6.10)
= o+u�v (6.11)

c0+
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

(6.12)

where o= c0, and the G0;3 SA metric gives

v̂ =
v
kvk =

v

¡v2
p (6.13)

v̂2 = ¡1 (6.14)
u �v = ¡kukkvkcos(�uv): (6.15)
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The notation u� v can be read �u boosted by v� since this is the actual operation, but
this may be backwards compared to some other literature. In general, u�v=/ v�u. Some
other identities are

u=ujjv̂+u?v̂ = (u � v̂+u^ v̂)v̂¡1=(¡u � v̂)v̂+(v̂^u) � v̂ (6.16)

�v =
kvk
c

(6.17)

v =
1

1¡ �v
2

p : (6.18)

When the boost velocity approaches light speed kvk! c, we get

u�v =
kukcos(�uv)v̂+ cv̂

1+
kukcos(�uv)

c

=
c(kukcos(�uv)+ c)v̂
c+ kukcos(�uv)

= cv̂=v: (6.19)

For collinear u and v, then

u�v=�v�v=v�u =
u+v

1+
kukkvk
c2

(6.20)

where as the boost velocity approaches light speed kvk! c,

u�v ! c(kuk+ c)û
c+ kuk = cû=v: (6.21)

For perpendicular u and v, then

u�v = 1¡ kvk
2

c2

r
u+v=

1
v
u+v (6.22)

where as the boost velocity approaches light speed kvk ! c, u/ v! 0 and u � v! v.
The velocity-addition formula is derived and discussed more in [9] and (�3.2.3).

6.2.4 Boost of an ellipsoid entity for contraction e�ect

Any DCSTA GIPNS 2-vector quadric surface entity can be boosted into a velocity in
spacetime. Boosting sets the quadric surface into motion at constant velocity and gives the
surface a length contraction e�ect. As an example of the contraction e�ect, we can boost
an ellipsoid to a natural speed �v= 1¡ d2

p
for the dilation factor d. A good example is

to choose d= 1/2 to squeeze the ellipsoid into one-half its length in the direction of the
velocity.

moving_ellipsoid = (
HRotor( sqrt(1-Rational(1,2)**2), e2 )*
GIPNS_Ellipsoid(0,0,0,10,10,10)*
HRotor( sqrt(1-Rational(1,2)**2), e2 ).rev()

)
print( N(V|moving_ellipsoid) )

The moving_ellipsoid is evaluated at a symbolic point V. The full symbolic output can
be long, therefore numeric output has been generated using N(). The result is printed
in plain text using print(). Output of this form can be graphed using Mayavi . For
graphing, it works well to use natural units, where c=1, so that the graph can be near the
origin. Mayavi seems to work best if graphing can be limited to a small cube around the
origin that is about �20 units on each axis. If Mayavi is installed and working, a small
mayavi.py python �le can be created to graph this output (copied into surface) as:

DCSTA computing with SymPy 107



from __future__ import division
from numpy import *
from mayavi import mlab

mlab.figure(bgcolor=(1,1,1))
x, y, z = mgrid[-20:20:100j, -20:20:100j, -20:20:100j]

# axes
cylx = y**2 + z**2 - 1/10
cyly = x**2 + z**2 - 1/10
cylz = y**2 + x**2 - 1/10
mlab.contour3d(x,y,z,cylx,contours=[0],opacity=0.25,color=(1,0,0))
mlab.contour3d(x,y,z,cyly,contours=[0],opacity=0.25,color=(0,1,0))
mlab.contour3d(x,y,z,cylz,contours=[0],opacity=0.25,color=(0,0,1))

# function for rendering a dot somewhere
def dotat(px,py,pz):

blackdot = (x-px)**2 + (y-py)**2 + (z-pz)**2 - 1/sqrt(5)
mlab.contour3d(

x, y, z, blackdot, contours=[0],
opacity=0.5, color=(0,0,0)

)
return

# plot some dots
dotat(5,0,0)
dotat(0,10,0)
dotat(0,0,10)

# Set the light speed (units per second)
# Use a small unit or else boosted moving surfaces move
# out of graphing range after only a few time units.
c = 1
# Set the time.
# Boosted surfaces move natural-speed units per time unit.
# At t=20, a surface at speed c=1 moves out of graphing range.
t = 0
# The numerical printed output, copied into here:
surface = (

0.03*c**2*t**2 - 0.0692820323027551*c*t*x +
0.04*x**2 + 0.01*y**2 + 0.01*z**2 - 0.999999999999999

)
# Mayavi rendering function
mlab.contour3d(

x, y, z, surface, contours=[0], opacity=0.5,
color=(0.0, 1.0, 1.0)

)
mlab.show()
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The mayavi.py �le is saved and then run from a command line as:

ipython mayavi.py

y: e3

x: e2
x=5

y= 10

Figure 6.1. Ellipsoid (sphere r= 10) boosted to �v= 1¡
¡ 1
2

�
2

q
in x-direction

Figure 6.1 shows a boosted ellipsoid at time t = 0. The ellipsoid was initially at
the origin and spherical with radius r = rx = ry = rz = 10. The spherical ellipsoid was

boosted into a natural speed �v= 1¡
¡ 1
2

�
2

q
for a dilation factor d= 1

2
in the x-direction

v̂= 1= e2. The boosted sphere is squeezed by the boost into an ellipsoid that is length-
contracted to half-size in the x-direction with rx=5, while the y and z directions hold their
sizes with ry= rz= 10. As the time t is increased, the boosted sphere moves toward the
right along the x-axis. For natural units c=1, the boosted sphere moves �v= 3

p
/2�0.866

units per time unit.

6.2.5 Boost of an ellipsoid entity for dilation
As an example of dilating a quadric surface by dilation factor d = 2 using the boost
operation, we can take a spherical ellipsoid with radius r=5 centered at 5(e2+e3+e4) and
boost it into an imaginary natural speed �v= 1¡ d2

p
in the unit direction 1

3
p (e2+ e3+

e4). Following the boost for dilation, the result is projected onto the spatial subalgebra
using the G2;8 anti-DCGA pseudoscalar IDS. The projection discards imaginary time
components and resets the entity at time t=0. The dilation is coded as:

dilated_ellipsoid = ((
HRotor( sqrt(1-2**2), e2+e3+e4 )*
GIPNS_Ellipsoid(5,5,5,5,5,5)*
HRotor( sqrt(1-2**2), e2+e3+e4 ).rev()

)|IDS)*IDS.inv()
print( N(V|dilated_ellipsoid) )
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1

3
p (e2+ e3+ e4)

y: e3

x: e2

z: e4

(10,10,10)

10

10

y=5

z=5

x=5

o

Figure 6.2. Ellipsoid (sphere r=5) dilated by factor d=2 in direction 1

3
p (e2+ e3+ e4)

Figure 6.2 shows the graph of the dilated ellipsoid. In the unit direction 1

3
p (e2+e3+e4)

of dilation by factor d= 2, the spherical ellipsoid is dilated from a diameter of 10 into a
diameter of 20. The spherical diameter remains 10 orthogonal to the direction of dilation.
The center point (5; 5; 5) of the original spherical ellipsoid is dilated into (10; 10; 10) as
the new center point of the dilated ellipsoid.

7 Conclusion
The G4;8 Double Conformal Space-Time Algebra (DCSTA) has been presented in this
paper as a straightforward extension of the G8;2 Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA) [7][5][6][8]. DCSTA is a large, complicated algebra and this
paper may contain some mistakes and has probably overlooked some things that should
have been discussed. Nevertheless, this author feels that this paper substantially conveys
the basic ideas and concepts of DCSTA. Certainly, much further research can be done
into DCSTA and its applications.
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