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Khmelnik S.I. 

The Second Solution of Maxwell's Equations 
 

Annotation 
A new solution of Maxwell equations for vacuum is 

presented. First it must be noted that the proof of the solution's 
uniqueness is based on the Law of energy conservation which is 
not observed (for instantaneous values) in the known solution. 
The presented solution does not violate the Law of energy 
conservation. Besides, in this solution the electrical and 
magnetic components of intensity are shifted in phase. 

A detailed proof is given for interested readers. 
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1. Introduction 
Recently criticism of validity of Maxwell equations is heard from all 

sides. The confidence of critics is created first of all by the violation of 
the Law of energy conservation. And certainly "the density of electromagnetic 
energy flow (the module of Umov-Pointing vector) pulsates harmonically. Doesn't it 
violate the Law of energy conservation?"  [1]. certainly, it is violated, if the 
electromagnetic wave satisfies the known solution of Maxwell equations. 
But there is no other solution: "The proof of solution's uniqueness in general is 
as follows. If there are two different solutions, then their difference due to the system's 
linearity, will also be a solution, but for zero charges and currents and for zero initial 
conditions. Hence, using the expression for electromagnetic field energy we must 
conclude that the difference between solutions is equal to zero, which means that the 
solutions are identical. Thus the uniqueness of Maxwell equations solution is proved"   
[2]. So, the uniqueness of solution is being proved on the base of using 
the law which is violated in this solution. 



 

 2 

Another result following from the existing solution of Maxwell 
equations is phase synchronism of electrical and magnetic components of 
energy in an electromagnetic wave. This is contrary to the idea of 
constant transformation of electrical and magnetic components of energy 
in an electromagnetic wave. In [1[, for example, this fact is called "one of 

the vices of the classical electrodynamics". 
Such results following from the known solution of Maxwell 

equations allow doubting the authenticity of Maxwell equations. 
However, we must stress that these results follow only from the found 
solution.  But this solution, as has been stated above, can be different. 

Further we shall deduct another solution of Maxwell equation, in 
which the density of electromagnetic energy flow remains constant in 
time, and electrical and magnetic components of intensities in the 
electromagnetic wave are shifted in in phase.  

 

2. Solution of Maxwell's Equations 
First we shall consider the solution of Maxwell equation for vacuum. 

These equations in GHC system are as follows [3]: 
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In cylindrical coordinates system zr ,,   these equations look as 

follows: 
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For the sake of brevity further we shall use the following notations:   

)cos( tzco   ,     (11) 

)sin( tzsi   ,     (12) 

where е  ,,  – are certain constants. Let us present the unknown 

functions in the following form: 

 corjJ rr . ,      (13) 

sirjJ )(.   ,      (14) 

sirjJ zz )(.  ,      (15) 

 corhH rr . ,      (16) 

sirhH )(.   ,      (17) 

sirhH zz )(.  ,      (18) 

 sireE rr . ,      (19) 

coreE )(.   ,      (20) 

coreE zz )(.  ,      (21) 

 cormM rr . ,      (21) 

sirmM )(.   ,      (22) 

sirmM zz )(. ,      (23) 

where )(),(),(),( rmrerhrj - certain function of the coordinate r .  

By direct substitution we can verify that the functions (13-23) 

transform the equations system (1-10) with three arguments zr ,,   

into equations system with one argument r  and unknown 

functions )(),(),(),( rmrerhrj . 
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In Appendix 1 it is shown that for such a system there exists a 
solution of the following form (in Appendix see (24, 27, 18, 31, 33, 34, 
32) respectively): 

0
)(

)(
)(

 


r

re
re

r

re
r

r ,    (24) 

 
,0)(

)(
 



r

re
re

r

re
r     (25) 

 
  0

)(
 



r

rh
rh

r

rh
r

r ,    (26) 

 
,0)(

)(
 



r

rh
rh

r

rh
r     (27) 

 ,)( rerh r
      (28) 

  ),(rerhr        (29) 

c


         (30) 

Thus we have got a monochromatic solution of the equation 
system (1-10). A transition to polychromatic solution can be achieved 
with the aid of Fourier transform. 

If it exists in cylindrical coordinate system, then it exists in any 
other coordinate system. It means that we have got a common solution 
of Maxwell equations in vacuum. 

 

3. Intensities 
The equations system (2.24-2.29) is determined – there are 6 

equations for 4 functions  hhee rr ,,,  and two scalars  , . 

Considering this system we can see that it is equivalent to two equations 

(2.24, 2.25) for the functions eer , . The two other functions hhr ,  are 

determined by (28, 29) and satisfy the equations (26, 27). 
The two differential equations (2.24, 2.25) can be solved for the 

given initial conditions and given . First we shall consider the equation 
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The solutions of this equations is as: 
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Equations (2.24, 2.25) can be replaced by equations of the form 
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In accordance with (1, 2) we find for (3): 

  1 
 Areer

,      (5) 

  0 eer
.      (5а) 

In accordance with (1, 2) we find for (4): 

  1 
 Areer

.      (6) 

  0 eer
.      (6а) 

where (А\2) – is the amplitude of intensity. Thus, several solutions 
acceptable for equations (3, 4). In the future, we consider the solution of 
(5, 6a). From (5) and (6a) it follows: 
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From (7) it follows: 

   1222  
 rAeer

.     (10) 

Fig. 1 shows, for example, graphics of functions (7, 10) for 

8.0,1  A . 

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

e
f(

r)

0 2 4 6 8 10 12 14 16 18 20
-0.25

-0.2

-0.15

-0.1

-0.05

A
*e

f(
r)

2

Fig.1. SecondSolMax.m
 

 
Fig. 2 shows the vectors of intensities originating from the 

point  ,rA . Let us remind that  rerh r)(
 and   )(rerhr  - see 

(2.28, 2.29). The directions of vectors  rer
 and )(re  are chosen 

as:   0rer
, 0)( re . Note that the vectors HE,  are always 
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orthogonal.  The sum of the modules of these vectors is determined 
from (2.17, 2.18, 2.20, 2.21, 2.28, 2.29) and is equal to 

           222222 corhcorhsiresireHEW rr    

or 

     22
rereW r       (18) 

- see also (10) and Fig. 1. Thus, the density of electromagnetic wave 
energy is constant in all points of a circle of this radius. 
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Fig. 2.     Fig. 3. 

 
The solution exists also for changed signs of the functions (2.11, 

2.21). This case is shown on Fig 3. Fig. 2 and Fig. 3 illustrate the fact that 
there are two possible type of electromagnetic wave circular polarization.  
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To demonstrate that the components of the wave (2.13-2.23) are 

shifted in phase, in Fig. 4 shows the functions 

)cos( tzco   , )sin( tzsi    

or equivalent to them at ctz   function 
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At 1.0/2,0  c  these functions take the form  zco cos , 

 zsi sin  and shown in Fig. 4. 

 

4. Energy Flows 
The density of electromagnetic flow is Pointing vector  

HES  ,      (1) 

where  

 4c .       (2) 

In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 

вдоль the axis accordingly. They are determined by the formula 
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From (2.12-2.17, 3.4) follows that the flow passing through a given 
section of the wave in a given moment, is: 
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In Appendix 1 it is  shows that 0)( rhz , 0)( rez . 

Consequently, 0,0  ssr , i.e. the energy flow extends only along the 

axis oz and is equal to 
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In Appendix 2 shows that at a constant speed с of propagation of the 

wave from (11) we obtain 
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Let R  be the radius of the circular front of the wave. Then 
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Fig. 5 shows the function )(alfaS (13) and Fig. 6 shows the 

function )(int S . On Fig. 6 the upper and lower curves refer accordingly 

to 200R  and 100R . Из формулы (15), рис. 5 и рис 6 видно, что 
поток энергии является положительным, например, при 

8.0,1  A . 

Since the energy flow and the energy are related by the 
expression cWS  , then from (15) we can find the energy of a 
wavelength unit:  
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In Appendix 2 also shows that the energy flux density on the circle 
is determined by function of the form 

   czeeS rrz  42sin22  .    (18) 

From this and from (3.10) we obtain: 
   czrAS rz  42sin12  

.   (19) 

In Fig. 7 shows these functions, when 1,8.0,1  rA  , and 

the second term has two values: 0; 0.5 - see the solid and dashed lines, 
respectively. 

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

1.5

Fig.7. SecondSolMax.m

 
It follows that 

 flux density is unevenly distributed over the flow cross section – 
there is a picture of the distribution of flow density by the cross 
section of the wave 

 this picture is rotated while moving on the axis oz; 

 the flow of energy (15), passing through the cross-sectional area, not 

depend on zt ,,  ; the main thing is that the value does not change 

with time, and this complies with the Law of energy conservation. 
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5. Discussion 
The resulting solution describes a wave. The main distinctions 

from the known solution are as follows:  
1. Instantaneous (and not average by certain period) energy flow 

does not change with time, which complies with the Law of 
energy conservation.   

2. The energy flow has a positive value   
3. The energy flow extends along the wave. 
4. Magnetic and electrical intensities on one of the coordinate 

axes zr ,,   phase-shifted by a quarter of period. 

5. The solution for magnetic and electrical intensities is a real 
value. 

6.  The solution exists at constant speed of wave propagation. 
7. The existence region of the wave does not expand, as 

evidenced by the existence of laser.    
8. The vectors of electrical and magnetic intensities are 

orthogonal.   
9. There are two possible types of electromagnetic wave circular 

polarization.  
10. The wave and its energy are determined if the parameters 

 ,,, RA are specified. For given SR,  the parameter     

can be found. 
 

Appendix 1 
Let us consider the solution of equations (2.1-2.10) in the form of 

(2.13-2.23). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.10) in view of (2.11, 2.12) in the form 
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We multiply (8) on    and take into account (9). Then we get: 
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Comparing (1) and (12), we see that they are the same, if  
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It is important to note that this comparison is valid only for. 0)( rez . 

Thus, in accordance with (9) and 0)( rjz . In the equations (13, 14) we 
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Let us now consider the case when 0)( rez . Then according to 
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rj

r

rj
r

r ,     (22) 

We substitute (19, 20) into (22). Then we get: 

   0)()()(
1

)(
1

)(
1
2


r

rhrhrhrh
r

rh
r

rh
r

zrzz


 

 

or 

  0)()(
1

)(
1
2


r

rhrhrh
r

rh
r

rz


 

  (23) 

 
,0)(

)(
 



r

rh
rh

r

rh
r     (21) 

For the calculation of three intensities we shall get three equations (19, 

21, 23). Let us exclude )(rh  from (21, 23): 

    0)(
1

)(
1

)(
1
2











r
rh

r
rhrh

r
rh

r
rh

r
rrz





 

 

or 0)(
1
2




rh
r

z
, or 0)( rhz . Thus, and for 0)( rjz  the condition 

0)( rhz  must also be complied. Hence there follows 

Lemma 2. The equations system (1, 5-9) for 0)( rez  is 

compatible only if 0)( rhz . 

From Lemmas 1 and 2 follows  
Lemma 3. The equations system (1, 5-9) is compatible only for 

0)( rhz  and, according to (10), 0)( rmz . However, there is a case 

when 0)( rez  and 0)( rjz . 

For 0)( rez  and 0)( rhz  equations (1, 5-9) take the following 

form - equation (1, 5, 8) are simplified, and the equation (6, 7) are 
replaced by equations (13, 14): 

0
)(

)(
)(

 


r

re
re

r

re
r

r ,   (3.1) 

 
  0

)(
 



r

rh
rh

r

rh
r

r ,   (3.2) 

 ,)( rerh
c

r



     (3.3) 
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  )(rerh
c

r 



 ,    (3.4) 

 
0)(

)(
 



r

rh
rh

r

rh
r .    (3.5) 

 
Similarly we can prove 
Lemma 4. The equations system (1-5, 10) is compatible only for 

0)( rez  and, according to (9), 0)( rjz . This is similar to the formulas 

(24, 28), we obtain the formulas 

0
)(

)(
)(

 


r

re
re

r

re
r

r ,    (4.1) 

 ,)( rh
c

re r


      (4.2) 

  ),(rh
c

rer 


       (4.3) 

 
,0)(

)(
 



r

re
re

r

re
r    (4.4) 

 
  0

)(
 



r

rh
rh

r

rh
r

r .   (4.5) 

From Lemmas 3 and 4 follows  

Lemma 5. System (1-10) is compatible only for 0)( rhz , 

0)( rez , 0)( rmz , 0)( rjz . 

Consequently, the original system of equations (1-10) takes the 
form of equations listed in Lemmas 3 and 4. We combine them for the 
convenience of the reader: 

0
)(

)(
)(

 


r

re
re

r

re
r

r ,    (24) 

 ,)( rh
c

re r


       (25) 

  ),(rh
c

rer 


       (26) 

 
,0)(

)(
 



r

re
re

r

re
r     (27) 

 
  0

)(
 



r

rh
rh

r

rh
r

r ,    (28) 

 ,)( re
c

rh r


       (29) 
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  ),(re
c

rhr 


        (30) 

 
0)(

)(
 



r

rh
rh

r

rh
r .   (31) 

We multiply (26) on (29). Then we get: 

    )()(

2

2 rhre
c

rhre rr 


 








   

or 

c  .      (32) 

We substitute (32) into (26, 29). Then we get: 

 rerh r)(
.     (33) 

Thus, under the condition (32) the equations (26, 29) are equivalent to 
one equation (33). A similar relationship follows from (25, 30): 

  ),(rerhr       (34) 

Thus, the system (24-31) is equivalent to the system (24, 27, 28, 31-34). 
 

Appendix 2 
In (3.11) it is shown that the energy flow passing through the wave 

cross-section, is   

   


 
,

22

r

r ddrcosieeS .    (1) 

Let the speed of wave propagation is constant and equal to с. Then, 
ctz  .       (2) 

Then from (2, 2.11, 2.12, 2.30), we obtain: 

  zctzco  2cos)cos(    (3) 

and similarly, 

  zcsi  2sin  .     (4) 

Due to (3, 4), we can rewrite (1) as: 

       


 drdzceeS
r

r 
,

22 22sin
2

1
.  (5) 

Thus, the energy flux density on the circle defined by function of the 
form 

   czeeS rrz  42sin22  .    (5а) 

When z=0 on the axis oz have: 

     


 drdeeS
r

r 
,

22 2sin
2

1
.   (6) 
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Further, from (6) we find: 

     




























r

r drdeeS


 


2sin
2

22
.   (7) 

We have: 

      







4cos1
2

1
2sin2sin

2

0

  dd .  (8) 

From (7, 8) , we obtain: 

      
r

r dreeS 224cos1
4





.   (9) 

Substituting here (3.2), we finally obtain: 

      
r

r dree
c

S 224cos1
16




.   (10) 

Obviously, for any choice of the point z = 0 on the axis oz last 

relation is maintained.  
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