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Abstract

We provide a categorical interpretation for a model unifying the Galilei relativity

and the special relativity, which is based on the introduction of two times variables,

one associated to the absolute time of the Galilei relativity, and the other to the

local time of the special relativity. The relation between these two time variables is

the key point for the construction of a natural transformation relating two functors

G and L that translates to the framework of category the role of the Galilei and

the Lorentz transformations bringing with them a decomposition of the Lorentz

transformation in terms of the Galilei transformation, which in some sense unify

both relativities.

1 Introduction

In a previous work [1] we developed a model relating kinematical aspects from the Galilei

and the special relativity (SR), namely, given two inertial reference frames S and S ′

moving with relative velocity ~v we showed how the Galilei transformation of coordinate

and velocity given by

~x ′ = ~x− ~vτ, τ ′ = τ

~u ′ = ~u− ~v

with ~u := d~x
dτ
, ~u ′ := d~x ′

dτ
induce the corresponding coordinate and velocity transformations

of the SR

~x ′ = ~x− (1− γṽ)
~x · ~̃v
ṽ2

~̃v − γṽt~̃v , t′ = γṽ

(
t− ~x · ~̃v

c2

)
~̃u ′ =

~̃u− γṽ~̃v − (1− γṽ)
~̃u·~̃v
ṽ2
~̃v

γṽ
(
1− ~̃u·~̃v

c2

)
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where ~̃u := d~x
dt
, ~̃u ′ := d~x ′

dt′
and γṽ = 1/

√
1− ṽ2

c2
. We obtained this result in [1] by

reevaluating the role played by the Galilean concept of absolute time, which currently

became superseded by the interpretation of time in SR. In fact, in SR there is no concept

of absolute time, the latter being understood as any time variable transforming according

to τ = τ ′. The closer we can get to such a transformation in SR is when we consider

the low speed limit ṽ � c of the relative motion between two inertial reference frames, a

circunstance where both frames would register the same time for the ocurrence of an event,

e.g. t ' t′, as we can see by neglecting terms of order ≥ ṽ2

c2
in the time transformation

law, for example,

t′ = γṽ

(
t− ~x · ~̃v

c2

)
=
(

1− 1

2

ṽ2

c2
+ . . .

)
(t− 1

c2
~x · ~̃v) ' t .

We also obtain low speed limit cases for the other special relativity transformations, for

instance

~x ′ = ~x− ~̃vt, ~̃u′ = ~̃u− ~̃v ,

which are similar to the Galilean laws since in this low velocity limit we identify ~̃u = ~u,
~̃v = ~v, as we have seen in [1].

There is, however, a possible way to give a concrete representation for the absolute

time that goes beyond this low speed limit as treated in the SR. This is achieved by mak-

ing asssumptions borrowing elements from both relativities and consisting essentially on

assuming two ways of registering the time, one based on the absolute time τ that obeys

the laws of the Galilei relativity, and another based on the local time t that obeys the

laws of the SR. As a consequence of these assumptions we have discovered in [1] a class

of transformations - the so-called Generalized Lorentz transformation - that includes as a

particular case the standard Lorentz transformation of the SR together with other trans-

formations that we denoted by h that work as shifting the main elements of the Galilei

relativity, for example, the Galilean coordinate system and the Galilean transformation

to the corresponding elements of the Special relativity, for example, the Lorentzian coor-

dinate system and the Lorentz transformation as shown in the diagram below (we review

this construction in section 3 and define the concepts of the Galilean and Lorentzian

coordinate systems in section 4)

(τ, ~x)

h
��

Galilei // (τ, ~x ′)

h′

��
(t, ~x) Lorentz // (t′, ~x ′) .

(1)

It is the purpose of our work to investigate if the relations involving the kinematical aspects

analyzed in our previous work [1] and represented schematically in diagram (1) reveal some
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sort of mathematical structure uderlying the structure of the Galilei relativity and the

SR. In fact, all our effort it will be show that the vertical maps h, h′ shown in diagram

(1) define a natural transformation between some appropriate functors G,L : S → C,
where the categories S and C are introduced in order to characterize the distinct but

complementary roles played in physics by the concepts of inertial reference frame and

coordinate system. As we will see, these concepts become two stages on a process of

modelling the physical world into a categorical way of thinking that elucidates, from a

mathematical perspective, a connection between the formalisms of the Galilei relativity

and the SR.

Our work is organized as follows. In section 2 we discuss the concepts of event, inertial

reference frame, and coordinate system in a sense that will allow us to categorize them,

i.e. to define the categories of inertial reference frames and of coordinate systems. In

section 3 we summarize the formalism we developed in [1] describing axiomatically a

model combining aspects of the Galilei and the SR. We discuss the consistency of the

axioms and conclude that the time variable as described in SR depends on the state of

motion of the observers 1. In section 4 we introduce two particular perspectives that

are useful in the description of physical phenomena: the Galilean and the Lorentzian

coordinate systems. In section 5 we define a certain multivalued functor and fix some

of its properties. In section 6 we develop a convenient categorical formulation for the

elements introduced in sections 3 and 4 in order to reinterpret the model we developed in

[1] and to clarify within a categorical perspective the unification of the Galilei relativity

and the SR through a sort of multivalued natural transformation uniting the Galilei and

the Generalized Lorentz transformation.

In our work the term relativity refers indistinctly either to the Galilei relativity or to

the special relativity. The constant c always refer to the speed of light in vacuum.

A complete and very readable reference for relativity is given in [3], [4]. A general

reference for category is given in [5], [6]. For another treatment involving relativity and

category we suggest [7]. As to the notion of multivalued functor, it seems it has not been

extensively developed in the literature, therefore we recommend [8] for another reference

that treats the same concept but in another context and form.

2 Some physics notions

Relativity is concerned with the description of physical occurrences in space and time

and how different observers relate these descriptions among themselves. Then, in order

to make our work readable for a large class of readers, we start with a brief exposition

1This fact has been also discussed in another context in [2].
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of some basic physical concepts such as event, inertial reference frame, and coordinate

system.

An event is as any occurrence of a physical phenomenon that may be described by the

position where it takes place and the instant of time when it happens. In this definition

it is implict that an event is any idealized physical phenomenon that occurs localized in

space and time, i.e. it is any occurrence without extension and duration. In this sense a

solid body is not an event since it has an extension, while a particle is not an event since

it has a duration or, equivalently, it persists in time. However, single processes of creation

and annihilation of a particle are both events.

An inertial reference frame (for brevity, a reference frame) is any material body very

small in size and free of forces that can be used as a reference point relative to which

we can determine the position of other material bodies. This reference frame relates to

another reference frame in two ways: they are either at rest or in relative motion with

constant velocity 2. We denote reference frames by S, S ′, S ′′, . . ..

By observer we mean any inteligent person that uses an inertial reference frame (rela-

tive to which he is at rest) in order to analyze physical phenomena. In this sense, we will

make no distinction between an observer and his reference frame, using interchangeably

both terms.

A coordinate system (on a reference frame) consists of any set of rules and clocks

attached to a reference frame that are used for measuring lengths and intervals of time,

together with a prescription that associates these measurements with a 4-upla of numbers

(the prescription involves, for instance, adopting rectangular or curvilinear coordinates),

which provides a consistent way for registering events. Physically, the establishment of a

coordinate system may be thought of as an idealized process where we take a reference

frame as a material body which has attach a system of three mutually perpendicular axis.

We use the rules to form a grid in space, together with a system of clocks rigidly attached

to each point of the grid that will register the instant of time of events ocurring at the

position where the clock is placed.

By physical world we mean a 4-dimensional space whose points represent events. Then

the physical world is what an observer describes as the reality surrounding him.

2For simplicity, reference frames that are at rest relative to each other will be considered as equivalent

in the sense we may take any one of them as representing all.
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3 The unified scheme for the Galilei relativity and

the special relativity

In a previous work [1], we presented a unified scheme for the Galilei and the special

relativity. It consisted essentially in describing time through two perspectives, one based

in the Galilei relativity, where time has an absolute character, and another based on the

special relativity, where time has a local character. The precise meaning of these terms

will be given shortly after examining their transformation properties and how they are

derived from assumptions taken from both relativities. Let us denote these two time

variables by τ and t, which we call respectively the absolute and the local time.

3.1 The Axioms

We take as axioms the following assumptions:

I. Events are described relative to an inertial reference frame S by means of coordinates

{τ, t, ~x} where ~x = (x1, x2, x3) refers to the spatial coordinates marking the location where

the event occurred, while t, τ refers to the instant when the event occurred.

II. The Galilei relativity law

Relative to two inertial reference frames S, S ′ moving with uniform velocity ~v as shown

in the figure

x1

x2

x3

x′1

x′2

x′3

~x
~x ′

P

~v τ

S

S′

any event P is described by coordinates sets {τ, t, ~x}, {τ ′, t′, ~x ′} where

~x ′ = ~x− ~vτ (2)

τ ′ = τ . (3)

III. The invariance of the quadratic form Q(ct, x) := c2t2 − ~x2

Given an event P described by {τ, t, ~x}, {τ ′, t′, ~x ′} relative to two inertial reference frames

we have

c2t2 − ~x2 = c2t′2 − ~x ′ 2 . (4)

IV. The relation between the local times t and t′ is of the type

t′ = at+ b~v · ~x (5)
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with a and b two arbitrary real parameters 3.

3.2 The coordinate transformation

Working with axioms I to IV, we showed in [1] that by fixing b =
√
a2−1
vc

we obtain the

following transformation between {τ, t, ~x}, {τ ′, t′, ~x ′}

(t, ~x)
L(a(v),~v)−→ (t′, ~x ′) :

{
~x ′ = ~x− 1

v2
(1− a(v))~x · ~v ~v − c

v

√
a(v)2 − 1 t~v

t′ = a(v)t− 1
cv

√
a(v)2 − 1 ~x · ~v

(6)

where a(v) is an arbitrary function of v restricted only by the condition that |a(v)| > 1.

We call this transformation the Generalized Lorentz Transformation (GLT) and it depends

on two parameters: a(v) and the speed v. For any event (t, ~x) we also obtained that the

absolute time associated to the occurrence of the event is given by the expression

τ = (1− a(v))
~x · ~v
v2

+
√
a(v)2 − 1

c

v
t = (1− a(v′))

~x ′ · ~v ′

v′2
+
√
a(v′)2 − 1

c

v′
t′ = τ ′ (7)

with ~v ′ = −~v (note that a(v′) = a(v)). Equation (7) becomes an operational definition

for the absolute time τ .

The GLT satisfies the following property

3.2.1 Theorem: Given a GLT L(a(v), ~v) depending on an arbitrary function a(v), with

|a(v)| > 1, there is defined a choice for velocity, ~̃v, such that L(a(ṽ), ~̃v) becomes the

ordinary Lorentz transformation.

Proof: Let us take

~̃v := c

√
a(v)2 − 1

a(v)

~v

v
. (8)

Then, we obtain a(ṽ) = 1√
1− ṽ2

c2

≡ γṽ and ~v
v

=
~̃v
ṽ
. A straightforward calculation then shows

that equation (6) becomes{
~x ′ := ~x− (1− γṽ)~x·

~̃v
ṽ2
~̃v − γṽt~̃v

t′ := γṽ
(
t− ~x·~̃v

c2

)
,

(9)

which defines the ordinary Lorentz transformation, henceforth denoted by L(~̃v). �

3.2.2 Remark: There is an important physical distinction to be made between ~v and ~̃v

that is not apparent in the discussion of the previous result. In fact, let us consider in

axiom II a sucession of events represented by the movement of the origin of frame S ′ as

seen by frame S as shown in the figure below

3The parameters a and b may depend on the velocity.
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S

x1

x2

x3 S′

x′1

x′2

x′3

~x = ~vτ

Here, we have ~x ′ = 0 and from (2) we get ~x = ~vτ , which gives ~v := d~x
dτ

. Then, identifying
~̃v := d~x

dt
and using (7) we obtain the relation between ~v and ~̃v as given in (8). Now, since

the parameter a in the GLT is an arbitrary function of v the explicit form between ~̃v and ~v

will be determined only when we fix a particular form for a(v). However, despite the form

a(v) may have, when a(v) is expressed in terms of ~̃v it always produce a(ṽ) = 1/
√

1− ṽ2

c2
.

3.3 The velocity transformation

Theorem 3.2.1 has a counterpart in the case of velocity. Let us consider ~u = d~x
dτ

and
~̃u = d~x

dt
. Then,

~̃u =
d~x

dt
=
d~x

dτ

dτ

dt
⇒ ~̃u =

[
(1− a)

~̃u · ~v
v2

+
√
a2 − 1

c

v

]
~u

or equivalently

~̃u =

√
a2 − 1[

1− (1− a)~u·~v
v2

] c
v
~u . (10)

Considering in a similar way ~u ′ = d~x ′

dτ
and ~̃u ′ = d~x ′

dt
we obtain

~̃u ′ =

√
a2 − 1[

1 + (1− a)~u
′·~v
v2

] c
v
~u ′ . (11)

Now, taking the derivative relative to the absolute time in axiom II we obtain the velocity

law of the Galilei relativity, ~u ′ = ~u−~v, and using (10, 11) in this expression we obtain the

Generalized Lorentz Transformation for Velocity (GLTV), which we denote by L∗(a(v), ~v):

~̃u
L∗(a(v),~v)−→ ~̃u ′ =

~̃u−
√
a2 − 1 c

v
~v − (1− a)

~̃u·~v
v2
~v

a−
√
a2 − 1 1

cv
~̃u · ~v

. (12)

We also have a result similar to theorem 3.2.1,

3.3.1 Theorem: Given a GLTV L∗(a(v), ~v) depending on an arbitrary function a(v)

with |a(v)| > 1, there is defined a velocity ~̃v such that L∗(a(ṽ), ~̃v) is the ordinary Lorentz

transformation for velocity.

Proof: We have here the same velocity ~̃v as given in (8). Then, in this case we also get

a(v) = γṽ and
~̃v
ṽ

= ~v
v
, and by a direct calculation we obtain from (12) that

~̃u
L∗(~̃v)−→ ~̃u ′ =

~̃u− γṽ~̃v − (1− γṽ)
~̃u·~̃v
ṽ2
~̃v

γṽ
(
1− ~̃u·~̃v

c2

) (13)
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that corresponds to the law of transformation for velocities found in SR. �

3.4 A consistency requirement for axioms II and IV leading to

the dependence of the local time with the state of motion

Now, we wish to analyze the following situation. Given an event P , let it be recorded

as (τ, ~x) by S, as (τ ′, ~x ′) by S ′, and as (τ ′′, ~x ′′) by S ′′, where S, S ′, S ′′ are three inertial

observers moving according to the picture shown below

S

x1

x3

S′ x′2

x′3

S′′

x′′1

x′′2

~x

~x ′
P•

~vSS′ τ

~x ′′

~vS′S′′ τ

~vSS′′ τ

The main assumption about time made in the Galilei relativity is expressed by equation

(3) and it gives τ = τ ′ = τ ′′, therefore, from the movement of the frames represented

above we can write

~x ′ = ~x− ~vSS′τ (14)

~x ′′ = ~x ′ − ~vS′S′′τ (15)

~x ′′ = ~x− ~vSS′′τ . (16)

If the data ~x, ~x ′, ~x ′′ appearing in these equations represent values measured independently

by each observer, we expect these equations to be compatible, therefore, replacing ~x ′ given

in (14) into (15) we obtain ~x ′′ = ~x− (~vSS′ + ~vS′S′′)τ , which comparing with (16) gives

~vSS′′ = ~vSS′ + ~vS′S′′ (17)

that is the common expression for the addition of velocities in the Galilei relativity.

Now, let us consider again the same situation as before, this time with the observers

S, S ′, S ′′ recording the event P in terms of the following data (t, ~x), (t′, ~x ′), (t′′, ~x ′′). From

(2, 5) we have the following relations

~x ′ = ~x− ~vSS′τ , t′ = a(vSS′)t+ b~vSS′ · ~x (18)

~x ′′ = ~x ′ − ~vS′S′′τ , t′′ = a(vS′S′′)t
′ + b~vS′S′′ · ~x ′ (19)

~x ′′ = ~x− ~vSS′′τ , t′′ = a(vSS′′)t+ b~vSS′′ · x (20)
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Replacing t′, ~x ′ given in (18) into (19), and using (17), we obtain the following expression

~x ′′ = ~x− ~vSS′′τ (21)

t′′ = a(vS′S′′)a(vSS′)t+ b
(
a(vS′S′′)~vSS′ + ~vS′S′′

)
· ~x− b~vS′S′′ · ~vSS′τ . (22)

Comparison of equations (22) and (20) shows there is no choice for a and b that makes the

two expressions for t′′ to agree. This suggests the local time is defined only with respect

to a pair of frames, or as investigated by Horwitz, Arshansky and Elitzur, we can also say

that “in relativity then, the time at which an event occurs depends on the state of motion

of the frame (and the clocks attached to it)”( [2], pag. 1163). Then, with this view, the

local times t′′ and t appearing in equation (20) would be better written as t′′ ≡ t′′SS′′ and

t ≡ tSS′′ . The same applies to the local time appearing in the other equations. With this

prescription the previous inconsistency disappears because t′ ≡ t′SS′ occuring in equation

(18) and t′ ≡ t′S′S′′ occurring in equation (19) are not the same, then, we cannot perform

the previous calculation of replacing the t′ given in (18) for the t′ given in (19). Here, in

order to ensure that the local time is always set in a way that depends on the state of

motion of one observer relative to another, it is convenient to view the coordinate system

(t, ~x) in two complementary forms writing

(t, ~x)→ (t, ~x, {~β}) or (t, ~x)→ (t, ~x,~v) (23)

where in the notation (t, ~x, {~β}), the reference made to {~β} indicates all possible inertial

observers S ′ moving with velocity ~β relative to S, while in the notation (t, ~x,~v) we indicate

that there is already specified one observer S ′ moving with velocity ~v = ~vSS′ relative to

S. In this latter case, if S ′ uses t′ as his local time, and S uses t as his local time, then

we have t and t′ related by (6). In section 6.3 we will provide a concrete realization for

(t, ~x, {~β}) that will arise as the codomain of a certain multivalued functor.

When dealing with the notation (t, ~x,~v) we rewrite the GLT given in (6) as

(t, ~x,~v)
L(a(v),~v)−→ (t′, ~x ′, ~v ′) :

{
~x ′ = ~x− 1

v2
(1− a(v))~x · ~v ~v − c

v

√
a(v)2 − 1 t~v

t′ = a(v)t− 1
cv

√
a(v)2 − 1 ~x · ~v

(24)

and we extend the GLT to (t, ~x, {~β}) in terms of the previous one given above (24)

(t, ~x, {~β}) L(a(v),~v)−→ (t′, ~x ′, {~β ′}) := (t, ~x,~v)
L(a(v),~v)−→ (t′, ~x ′, ~v ′); ~v ′ = −~v (25)

where it is implicit that we have assumed the transformation L(a(v), ~v) acts on (t, ~x, {~β})
selecting ~β = ~v = −~β′. Since every coordinate system is subordinated to a reference

frame, the variables t and t′ appearing in equation (25) corresponds to a pair of frames

having ~v as their relative velocity.
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4 The Galilean and Lorentzian systems

In section 2 we introduced a coordinate system on a reference frame by means of a set

of rules and clocks allowing us to register the ocurrence of events. Since we assumed two

different ways for registering the time associated to the occurence of an event, using either

the local time or the absolute time, we may expect to have two distinguished coordinate

systems associated to the same reference frame, each one providing a convenient descrip-

tion for the physical world, which is proper to the view of the special relativity or to the

Galilei relativity. In order to distinguish clearly the nature of these two reference systems

we proceed to refine our notation as follows. Let S be an inertial reference frame.

A Galilean coordinate system on S is a coordinate system where the points of the

physical world are described by

(x0G, x
i
G) := (τ, ~x) . (26)

Given another reference frame S ′ endowed with a coordinate system (x′0G, x
′i
G) := (τ ′, ~x ′)

and moving with velocity ~v relative to S, the relation between the coordinate systems on

S and S ′ is given by the Galilei transformation as referred to in axiom II

(x0G, x
i
G)

G(~v)−→ (x′0G, x
′i
G) :

{
~x ′G = ~xG − ~vx0G
x′0G = x0G .

(27)

A Lorentzian coordinate system on S is a coordinate system where the points of the

physical world are described by

(x0L, x
i
L, ~v) := (t, ~x,~v) (28)

where we have borrowed the same view given on (23) by assuming the time t depends

on the relative state of motion between two observers. Given another frame S ′ endowed

with a coordinate system

(x′0L , x
′i
L, ~v

′) := (t′, ~x ′, ~v ′) (29)

with ~v ′ = −~v (that means, S ′ is moving with velocity ~v relative to S) the relation between

the coordinate systems on S and S ′ is given by a expression similar to the GLT of equation

(24), which in our notation is written as

(x0L, x
i
L, ~v)

L(a(v),~v)−→ (x′0L , x
′i
L, ~v

′) :

{
x′0L = a(v)x0L − 1

vc

√
a(v)2 − 1 ~xL · ~v

~x ′L = ~xL − 1
v2

(1− a(v)) ~xL · ~v ~v − c
v

√
a(v)2 − 1x0L ~v .

(30)

Now, we notice that equation (7) expresses a relation between the absolute and the

local times registered by an observer that uses a Galilean and a Lorentzian system of
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coordinates on the same frame S. We also have ~xG = ~xL = ~x, therefore we define

(x0G, x
i
G)

h~v−→ (x0L, x
i
L, ~v) :

{
x0L = v

c
√
a(v)2−1

(
x0G − 1

v2
(1− a(v))~xG · ~v

)
~xL = ~xG

(31)

which represents the relation between the Galilean and the Lorentzian coordinate systems

set on the same frame S.

Given another frame S ′ endowed respectively with Galilean and Lorentzian coordinates

(x′0G, x
′i
G) = (τ ′, ~x ′) and (x′0L , x

′i
L, ~v

′) = (t′, ~x ′, ~v ′) there is a similar transformation

(x′0G, x
′i
G)

h~v′−→ (x′0L , x
′i
L, ~v

′) :

{
x′0L = v′

c
√
a(v′)2−1

(
x′0G − 1

v′2
(1− a(v′))~x ′G · ~v ′

)
~x ′L = ~x ′G .

(32)

with ~v ′ = −~v.

Now we observe that the maps h~v and h~v ′ together with L(a(v), ~v) and G(~v) make the

following diagram commutative

(x0G, ~xG)

h~v
��

G(~v) // (x′0G, ~x
′
G)

h~v ′
��

(x0L, ~xL, ~v)
L(a(v),~v) // (x′0L , ~x

′
L, ~v

′)

(33)

i.e. they satisfy

h~v ′ ◦G(~v) = L(a(v), ~v) ◦ h~v . (34)

In fact, it is straightforward to check that

h~v ′ ◦G(~v)(x0G, ~xG) = (x′0L , ~x
′
L, ~v

′) = L(a(v), ~v) ◦ h~v(x0G, ~xG)

with

x′0L =
a(vSS′)√
a2(vSS′)− 1

vSS′

c
x0G +

(1− a(vSS′))√
a2(vSS′)− 1

1

cvSS′
~xG · ~vSS′

~x′L = ~xG − ~vSS′x0G .

Finally, considering h−1~v we obtain

L(a(v), ~v) = h~v ′ ◦G(~v) ◦ h−1~v (35)

and using the redefinition of ~v in terms of ~̃v given in (8) we obtain that

L(~̃v) = h~̃v ′ ◦G(~̃v) ◦ h−1~̃v , (36)

which shows how to generate the Lorentz transformation from the Galilei transformation.

We must notice that G(~̃v) := G(~v(~̃v)) where v(ṽ) is obtained from a(v) = 1√
1− ṽ2

c2

.

Later, in section §6.4 we will show how h~v arises associated to a natural transformation

between two functors, G and L that categorizes the Galilei and the Lorentz transforma-

tion.

11



5 Some category notions

We now introduce some of the concepts we will need in order to provide a categorical

interpretation for the GLT and the Galilei transformation. Given a category U we denote

by Obj U the class of objects of U and by Morf U we denote the class of morphisms of U .

Let S and C be small categories. Given S ∈ Obj S we introduce the set

Morf S(S, ·) := {S∗ ∈ Obj S : Morf S(S, S∗) 6= ∅} (37)

and we consider multivalued maps defined between the objects of S and C having the

general form

F : Obj S → Obj C

S → F (S) ⊂ Obj C
(38)

with F (S) ' Morf S(S, ·) (isomorphism). Then, we assume there is defined a bijection

associating to every S∗ ∈ Morf S(S, ·) an element of F (S) that we denote by CSS∗ .

Two elements C,C∗ ∈ Obj C are said to be F-equivalent, denoted by C ' C∗, if there is

S ∈ Obj S with C,C∗ ∈ F (S) or, in a similar way, if there are S, S ′, S ′′ ∈ Obj C such that

we identify C ≡ CSS′ and C∗ ≡ CSS′′ . In this way, all elements of F (S) are equivalent to

each other.

We assume that for any pair of equivalent objects C,C∗ there exists particular mor-

phisms called transition maps, kCC∗ : C → C∗ and kC∗C : C∗ → C, such that kCC∗ kC∗C =

IC and kC∗C kCC∗ = IC∗ , with IC and IC∗ identities.

With this notion of equivalent objects and transition maps we can give the following

prescription to compose morphisms whose domain and codomain though not equal are

equivalent objects: whenever we have morphisms of the type χ : C → C∗, ψ : C∗∗ → C∗∗∗

with C∗ ' C∗∗ we define the composition ψ ◦ χ as

ψ ◦ χ := ψ kC∗C∗∗ χ : C → C∗∗∗ (39)

with the case C∗ = C∗∗ corresponding to the usual composition of morphisms established

in the standard definition of category.

Two morphisms χ : C → C∗ and ψ : C∗∗ → C∗∗∗ are said to be F-equivalent, denoted

by χ ' ψ, if C ' C∗∗, C∗ ' C∗∗∗ and if under this equivalence the diagram below is

commutative

C

kCC∗∗
��

χ // C∗

C∗∗
ψ // C∗∗∗ .

kC∗∗∗C∗

OO (40)

12



We introduce another multivalued map, which by an abuse of notation we denote by

the same letter F used in (38)

F : Morf S(S, S ′) −→ Morf C(F (S), F (S ′))

S
f→ S ′ −→ F (S)

F (f)→ F (S ′)
(41)

with F (f) having for elements all maps that are equivalent to a certain morphism CS
f∗→

CS′ with CS ∈ F (S) and CS′ ∈ F (S ′), i.e.

F (f) = {kCS′C
′ f ∗ kCCS

: C ∈ F (S), C ′ ∈ F (S ′)} . (42)

Since the elements of F (f) are equivalent morphisms we can take any of them as rep-

resenting the class. Then, we can compose F (S ′)
F (g)→ F (S ′′) with F (S)

F (f)→ F (S ′) by

taking the composition of representative morphisms in F (g) and F (f), for instance, if

CS
f∗→ CS′ ∈ F (S) and BS′

g∗→ BS′′ ∈ F (g) then we can compose an arbitrary element

F (f) 3 kCS′C
′f ∗kCCS

: C → C ′ with another arbitrary element F (g) 3 kBS′′B
′′g∗kB′BS′

:

B′ → B′′ by means of the transition function kC′B′

kBS′′B
′′g∗kB′BS′

kC′B′kCS′C
′f ∗kCCS

: C → B′′ . (43)

Now, we define a covariant multivalued functor between the categories S and C as

a pair of maps like the ones described in (38, 41) with the property that for any two

morphisms in S having the form S
f→ S ′, S ′

g→ S ′′ we have satisfied

F
(
(S ′

g→ S ′′) ◦ (S
f→ S ′)

)
= F (S ′

g→ S ′′) ◦ F (S
f→ S ′) . (44)

Given K : S → C a functor, and F : S → C a multivalued functor we define a natural

transformation α : K → F as a multivalued map

α : Obj S → Morf C

S → αS ∈ Morf C(K(S), F (S))

such that for any morphism S
f→ S ′ the diagram below is commutative

K(S)

αS

��

K(f) // K(S ′)

αS′

��
F (S)

F (f) // F (S ′)

i.e.

F (f)αS = αS′K(f) .

6 Relativity under a categorical perspective

Now, we will interpret the physical elements we have previously introduced using the

language of categories. We do this in four stages.
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6.1 The category of inertial reference frames

Here we establish the categorical equivalent of the physical notion of inertial reference

frame.

6.6.1 Def.: The category of inertial reference frames is a small category

S := (Obj S ,Morf S , ◦) where

y Obj S is the set of objects of S and comprises all inertial reference frames S, S ′, S ′′ . . .

yMorf S is the set of morphisms of S and it is written as Morf S = ∪
S,S′∈Obj SMorf S(S, S ′),

with Morf S(S, S ′) being a set with only one element that we denote by S
~vSS′−→ S ′ and we

identify as the velocity of the frame S ′ relative to the frame S. For ease of notation we

sometimes write the morphism S
~vSS′−→ S ′ as ~vSS′ .

y Composition ◦ is an operation, ◦ : Morf S(S ′, S ′′) × Morf S(S, S ′) → Morf S(S, S ′′),

defined by (
S ′

~vS′S′′−→ S ′′
)
◦
(
S

~vSS′−→ S ′
)

=
(
S
~vSS′′−→ S ′′

)
(45)

where we identify ~vSS′′ in terms of the Galilei relativity law of velocities we have obtained

in (17): ~vSS′′ = ~vSS′ + ~vS′S′′ .

y To the object S we associate

S
~vSS−→ S (46)

with ~vSS = 0.

We note that the composition is associative and the morphism S
~vSS−→ S given in (46)

behaves as the identity for the composition ◦, which shows that C is a category.

6.2 The category of coordinate systems

Now we wish to endow the inertial reference frames introduced in §6.1 with a quantitative

way to describe the physical world allowing us to register events representing the occur-

rence of physical phenomena.

6.2.1 Def.: The category of coordinate systems is a small category C := (Obj C,Morf C, ◦)
where

y Obj C is the set of all coordinate systems of the type (x0G, ~xG), (x′0G, ~x
′
G) . . ., or (x0L, ~xL, ~v),

(x′0L , ~x
′
L, ~v

′), . . ., defined in (26, 28).

y Morf C is the set of morphisms of C and it comprises any coordinate transformations

among inertial frames, in particular, the maps G(~v), L(a(v), ~v) and h~v given in (27, 30,

31).
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y The composition f ◦ g of morphisms f, g ∈ Morf C is possible whenever we have

domain f = codomain g, for instance,[
(x′0G, ~x

′
G)

G(~v ′)−→ (x′′0G , ~x
′′
G)
]
◦
[
(x0G, ~xG)

G(~v)−→ (x′0G, ~x
′
G)
]

= (x0G, ~xG)
G(~v ′′)−→ (x′′0G , ~x

′′
G) (47)

with ~v ′′ = ~v + ~v ′, and[
(x′0L , ~x

′
L, ~v

′)
L(a(v′),~v ′=−~v)−→ (x0L, ~xL, ~v)

]
◦
[
(x0L, ~xL, ~v)

L(a(v),~v=−~v ′)−→ (x′0L , ~x
′
L, ~v

′)
]

= Id(x0L,~xL,~v ) ,

and so on. Here, the composition is also associative and C is a category.

6.3 Introducing the Galilei and the Lorentz functors G,L : S → C

The category C introduced in §6.2 is too large for our purposes, therefore, in this third

stage we define two functors that will distinguish within the category C two classes of

coordinate systems and coordinate transformations that form the core of relativity: the

Galilei transformation and the Lorentz transformation.

6.3.1 Def.: The Galilei functor

The Galilei functor G : S → C is defined as follows.

y Obj S
G→ Obj C

S
G→ G(S) := (x0G, ~xG)

y Morf S(S, S ′)
G−→ Morf C(G(S), G(S ′))

S
~vSS′−→ S ′

G→ G(S
~vSS′−→ S ′) := (x0G, ~xG)

G(~vSS′ )−→ (x′0G, ~x
′
G)

with G(~vSS′) given by (27).

We notice that G is a covariant functor from

G
((
S ′

~vS′S′′−→ S ′′
)
◦
(
S

~vSS′−→ S ′
)) (45)

= G(S
~vSS′′−→ S ′′)

= (x0G, ~xG)
G(~vSS′′ )−→ (x′′0G , ~x

′′
G) (48)

and

G(S ′
~vS′S′′−→ S ′′) ◦G(S

~vSS′−→ S ′) =
[
G(S ′)

G(~vS′S′′ )−→ G(S ′′)
]
◦
[
G(S)

G(vSS′ )−→ G(S ′)
]

=
[
(x′0G, ~x

′
G)

G(~vS′S′′ )−→ (x′′0G , ~x
′′
G)
]
◦
[
(x0G, ~xG)

G(~vSS′ )−→ (x′0G, ~x
′
G)
]

(47)
= (x0G, ~xG)

G(~vSS′′ )−→ (x′′0G , ~x
′′
G) (49)

as the equality of the right hand side of (48) and (49) gives

G
((
S ′

~vS′S′′−→ S ′′
)
◦
(
S

~vSS′−→ S ′
))

= G(S ′
~vS′S′′−→ S ′′) ◦G(S

~vSS′−→ S ′) .
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Physically, the role of the Galilei functor G is to discriminate in C a class of coordinate

systems where the events are registered as points (τ, ~x) ∈ Obj C, with τ being the abso-

lute time, together with a class of morphisms that constitute the Galilei transformations

(τ, ~x)
G(~vSS′ )−→ (τ ′, ~x ′).

6.3.2. Def.: The Lorentz functor

The Lorentz functor L : S → C is a multivalued functor defined in the sense of the defi-

nition established in (38, 41) as follows.

y L acts on objects as

Obj S
L→ Obj C

S
L→ L(S) ⊂ Obj C

L(S) ≡ (x0L, ~xL, {~β}) := {(t, ~x, ~β) : ~β ∈ Morf S(S, ·)} (50)

y L acts on morphisms as

Morf S(S, S ′)
L→ Morf C(L(S), L(S ′))

S
~vSS′−→ S ′

L→ L(S
~vSS′−→ S ′) ≡ (x0L, ~xL, {~β})

L(~vSS′ )−→ (x′0L , ~x
′
L, {~β ′})

where L(~vSS′) is the same map defined in (25), e.g.

(x0L, ~xL, {~β})
L(~vSS′ )−→ (x′0L , ~x

′
L, {~β ′}) := (x0L, ~xL, ~vSS′)

L(a(vSS′ ),~vSS′ )−→ (x′0L , ~x
′
L, ~vS′S) . (51)

Recall from section 5 that two objects (x0L, ~xL, ~v), (x′0L , ~x
′
L, ~v

′) ∈ Obj C are L-equivalent

if there is a common frame S such that (x0L, ~xL, ~v), (x′0L , ~x
′
L, ~v

′) ∈ L(S). Here, from the

structure of L(S) given in (50) we must have x′0L = x0L, ~x
′
L = ~xL and two other frames S1,

S2 such that ~v = ~vSS1 , ~v
′ = ~vSS2 . Identifying C ≡ (x0L, ~xL, ~v) and C∗ ≡ (x0L, ~xL, ~v

′) and

considering the map given in (31) we define the transition map kCC∗ giving the equivalence

of objects as

kCC∗ ≡ h~vSS2
h−1~vSS1

(52)

as it is indicated in the diagram below

(x0L, ~xL, ~v = ~vSS1)
h−1
~vSS1

uu
h~vSS2

h−1
~vSS1

��

G(S) = (x0G, ~xG)
h~vSS2

))
(x0L, ~xL, ~v

′ = ~vSS2) .

(53)

16



According to the definition of equivalent morphisms given in (40), we say that two

morphisms f and g

(x0L, ~xL, ~v)
f−→ (x′0L , ~x

′
L, ~v

′) ∈ Morf C
(
(x0L, ~xL, ~v), (x′0L , ~x

′
L, ~v

′)
)

(x0L, ~xL, ~v
′′)

g−→ (x′0L , ~x
′
L, ~v

′′′) ∈ Morf C
(
(x0L, ~xL, ~v

′′), (x′0L , ~x
′
L, ~v

′′′)
)

are L-equivalent if there are frames S, S ′ such that the square diagram below is commu-

tative

(x0L, ~xL, ~v)
f //

h~v′′h
−1
~v

��

h−1
~v

vv

(x′0L , ~x
′
L, ~v

′)

G(S) = (x0G, ~xG)
h~v ′′

((

G(S ′) = (x′0G, ~x
′
G)

h~v ′
ii

(x0L, ~xL, ~v
′′)

g // (x′0L , ~x
′
L, ~v

′′′)

h~v ′h
−1
~v′′′

OO

h−1
~v ′′′

55

(54)

i.e.

f = h~v ′h
−1
~v ′′′ g h~v ′′h

−1
~v .

Now, let us analyze how to compose morphisms under L. Let us consider the maps

(x0L, ~xL, {~β})
L(~vSS′ )−→ (x′0L , ~x

′
L, {~β ′}) ≡ (x0L, ~xL, ~vSS′)

L(a(vSS′ ),~vSS′ )−→ (x′0L , ~x
′
L, ~vS′S)

(x′0L , ~x
′
L, {~β ′})

L(~vS′S′′ )−→ (x′′0L , ~x
′′
L, {~β ′′}) ≡ (x′0L , ~x

′
L, ~vS′S′′)

L(a(vS′S′′ ),~vS′S′′ )−→ (x′′0L , ~x
′′
L, ~vS′′S′) .

Here, the codomain of L(a(vSS′), ~vSS′) is (x′0L , ~x
′
L, ~vS′S) and the domain of L(a(vS′S′′), ~vS′S′′)

is (x′0L , ~x
′
L, ~vS′S′′). As we have seen from (39), if the velocities are different we cannot com-

pose the maps L(a(vSS′), ~vSS′), L(a(vS′S′′), ~vS′S′′) directly, since x′0L(~vS′S) and x′0L(~vS′S′′)

are not the same. Then, we must use apropriate transition functions in order to compose

them, in this case, if we identify C∗ = (x′0L , ~x
′
L, ~vS′S) and C∗∗ = (x′0L , ~x

′
L, ~vS′S′′) we write

from (52) that kC∗C∗∗ = h~vS′S′′h
−1
~vS′S

and following (39) the composition L(~vS′S′′) ◦L(~vSS′)

is defined by

L(~vS′S′′) ◦ L(~vSS′) := L(a(vS′S′′), ~vS′S′′)h~vS′S′′h
−1
~vS′S

L(a(vSS′), ~vSS′) . (55)
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Explicitly we have

x′′0L =

√
a2(vSS′)− 1√
a2(vS′S′′)− 1

{
a(vS′S′′)

vS′S′′

vSS′
−
(
1− a(vS′S′′)

)~vSS′ · ~vS′S′′
vSS′vS′S′′

}
x0L +

+

(
1− a(vSS′)

)√
a2(vS′S′′)− 1

{
a(vS′S′′)

vS′S′′

cv2SS′
−
(
1− a(vS′S′′)

)~vSS′ · ~vS′S′′
cvS′S′′v2SS′

}
~xL · ~vSS′ +

+

(
1− a(vS′S′′)

)√
a2(vS′S′′)− 1

1

cvS′S′′
~xL · ~vS′S′′ (56)

~x ′′L = ~xL −
√
a2(vSS′)− 1

c

vSS′
x0L(~vSS′ + ~vS′S′′) +

−
(
1− a(vSS′)

) 1

v2SS′
~xL · ~vSS′(~vSS′ + ~vS′S′′) .

Having defined the above prescription on how to compose maps, let us verify if the

covariant transformation law given in (44) is true. From (45) we have that

L
((
S ′

~vS′S′′−→ S ′′
)
◦
(
S

~vSS′−→ S ′
))

= L(S
~vSS′′−→ S ′′)

= (x0L, ~xL, {~β})
L(~vSS′′ )−→ (x′′0L , ~x

′′
L, {~β ′′})

= (x0L, ~xL, ~vSS′′)
L(a(vSS′′ ),~vSS′′ )−→ (x′′0L , ~x

′′
L, ~vS′′S) . (57)

We have also seen from (55) that

L
(
S ′

~vS′S′′−→ S ′′
)
◦ L
(
S

~vSS′−→ S ′
)

=

=
(
(x′0L , ~x

′
L, {~β ′})

L(~vS′S′′ )−→ (x′′0L , ~x
′′
L, {~β ′′})

)
◦
(
(x0L, ~xL, {~β})

L(~vSS′ )−→ (x′0L , ~x
′
L, {~β ′})

)
= (x0L, ~xL, ~vSS′)

L(a(vS′S′′ ),~vS′S′′ )h~vS′S′′
h−1
~vS′S

L(a(vSS′ ),~vSS′ )
// (x′′0L , ~x

′′
L, ~vS′′S′) . (58)

The morphisms given in (57), (58) cannot be directly compared since the domain/codomain

of one differs from the domain/codomain of the other. However, we have a similar diagram

as the one shown in (54)

(x0L, ~xL, ~vSS′′)
f //

h~vSS′
h−1
~vSS′′

��

h−1
~vSS′′

uu

(x′′0L , ~x
′′
L, ~vS′′S)

G(S) = (x0G, ~xG)
h~vSS′

))

G(S ′′) = (x′′0G , ~x
′′
G)

h~vS′′S
ii

(x0L, ~xL, ~vSS′)
g // (x′′0L , ~x

′′
L, ~vS′′S′)

h~vS′′S
h−1
vS′′S′

OO

h−1
~vS′′S′

55

with f = L(a(vSS′′), ~vSS′′) and g = L(a(vS′S′′), ~vS′S′′)h~vS′S′′h
−1
~vS′S

L(a(vSS′), ~vSS′), which

indicates that the maps given on the rhs of equations (57) and (58) are equivalent, then

we have

L
((
S ′

~vS′S′′−→ S ′′
)
◦
(
S

~vSS′−→ S ′
))

= L
(
S ′

~vS′S′′−→ S ′′
)
◦ L
(
S

~vSS′−→ S ′
)
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and we conclude that L is a covariant multivalued functor in the sense we have defined

in (44).

6.4 Unifying the Galilei and the Lorentz transformation through

a natural transformation

In this fourth stage we give a precise meaning for the maps h~v introduced in (31). Given

the functors G,L : S → C we define a map

h : Obj S → Morf C

S → hS ∈ Morf C(G(S), L(S))

with

(x0G, ~xG)
hS→ (x0L, ~xL, {~β}) :=

{
(x0G, ~xG)

h~vSS′−→ (x0L, ~xL, ~vSS′) : S ′ ∈ Morf S(S, ·)
}

(59)

or, in a compact form, we simply write hS = {h~vSS′
: S ′ ∈ Morf S(S, ·)}. Since hS ∈

Morf C
(
G(S), L(S)

)
is class of maps we prescribe that L(~v) ◦ hS = L(~v) ◦ h~v, and hS′ ◦

G(~v) := h~v ′ ◦ G(~v) with ~v ′ = −~v. Having set these prescriptions it is straightforward to

check that the diagram below is commutative

G(S) = (x0G, ~xG)
G(~vSS′ ) //

hS

��

G(S ′) = (x′0G, ~x
′
G)

hS′

��

L(S) = (x0L, ~xL, {~β})
L(~vSS′ ) // L(S ′) = (x′0L , ~x

′
L, {~β′})

(60)

In fact, with the previous prescription on composing hS and hS′ we obtain that

hS′ ◦G(~vSS′) = h~vS′S ◦G(~vSS′)

L(~vSS′) ◦ hS = L(a(vSS′), ~vSS′) ◦ h~vSS′

and since ~vS′S = −~vSS′ we obtain from (34) that

hS′ ◦G(~vSS′) = L(~vSS′) ◦ hS

which proves the commutativity of the diagram (60) and then that hS : G → L is a

natural transformation.
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7 Conclusion

In our work we provided an interpretation for the relation (36)

L(~̃v) = h−~̃v ◦G(~̃v) ◦ h−1~̃v

that shows how the Lorentz transformation decomposes in terms of the Galilei transfor-

mation through maps h~v given in (31). This decomposition presents a new aspect between

the Galilei and the Lorentz transformation that, as far as we know, we have not seen in

the literature. The map h~v is built essentialy in terms of a relation involving the absolute

and the local time (7), but it goes far beyond this as h~v also relates two coordinate systems

for the same frame S, and this was the key element for us to interpret h : G → L as a

natural transformation of the type h : Obj S → Morf C.

Now, this categorical framework for unifying the Galilei relativity and the special

relativity offers a new perspective for investigation. In fact, the transition from the

special relativity to the general relativity is performed as a shift from the infinitesimal

line element ds2 ≡ ηµνdx
µdxν = c2dt2 − d~x2 to the more general one ds2 = gµνdx

µdxν .

Then, introducing this line element as a new data in our physical world it suggest us to

search for what new structure could be endowed to the Galilei relativity in order to obtain

a model for a general Galilei relativity as indicated in the diagram below

Galilei relativity

��

? // “general Galilei relativity”

?
��

special relativity, ds2L = ηµνdx
µ
Ldx

ν
L

// general relativity, ds2 = gµνdx
µdxν

Here, if we think on the level of ds2 we would write for the Galilei relativity ds2G =

hmndx
m
Gdx

n
G with

hmn = −gmn +
g0mg0n
g00

.

Here, our main idea is to think on what could be a suitable ds2 for a “general Galilei

relativity” model, built on the basis of making the unknow arrows in the above diagram

satisfy the same construction as seen in the diagram (1). Perhaps, the right approach may

be using instead of ds2 the invariant structure given by the relation bewteen the absolute

and the local time (7)

τ = (1− a(v))
~x · ~v
v2

+
√
a(v)2 − 1

c

v
t = (1− a(v′))

~x ′ · ~v ′

v′2
+
√
a(v′)2 − 1

c

v′
t′ = τ ′

that in the general Galilei relativity would lead us to search for a more general relation

τ = τ(t, ~x). In any situation, it seems this categorical way of thinking provide us with

20



new insigths towards the generalizaton of some current models.
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