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Abstract

I propose a model for quantum black holes and gravity based on a harmonic oscillator
representing the black hole horizon covered by Planck length sized squares carrying soft
hair. An analogical entropy function is constructed to the null surfaces of spacetime.
Extremizing this entropy leads to the equation for the background metric of the space-
time with the cosmological constant as an integration constant. Secondly, I redefine the
partition function sum over horizon squares by a sum over black hole stretched hori-
zon constituents, which are black holes themselves. Based on this partition function
Bekenstein-Hawking entropy law, Hawking radiation and Unruh effects are predicted.
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1 Introduction

Thermodynamical properties, like entropy and temperature, of black holes have been
established about four decades ago [1, 2]. More recently thermodynamics has been
considered as the major agent behind general relativity [3]. Thermodynamical concepts
have been applied to black holes as well as to local Rindler, or acceleration, frames
[4]. In [5] acceleration frame considerations have been applied to a model of stretched
horizon black holes 1 calculating the partition function of the system.

I propose first a simple model for the structure of quantum black holes. The black
hole horizon is a spherical membrane covered with l2Pl size squares each of which can
be in k states. The membrane dynamics is represented by a two dimensional harmonic
oscillator. I expand the model of black hole to the entropy function leading to equation
of the metric of general relativity by a null surface extremization method [6].

Secondly, I redefine the membrane partition function as a sum over black hole
stretched horizon constituents based on [5]. This method gives as predictions Bekenstein-
Hawking entropy, Hawking radiation and Unruh effects.

Large amounts of the results of research by the various schools of thought towards
quantum gravity are widely scattered around in various journals in the literature. The
motivation of this note is to compile together some of them as I see appropriate with a
some thoughts of mine.

This note is organized as follows. After the Introduction the simple oscillator model
for black holes is described in section 2. The presentation is very concise in all sections.
In section 3 the Hamiltonian of section 2 is generalized into Riemann geometry. This
section relies on the work of done in [3, 6, 7]. In section 4 I present the main points of
the stretched horizon black hole model [5]. Finally in section 5 I give a brief discussion
of results and conclusions.

2 Membrane Model of Horizon

As the first model for black holes of any size I assume the picture of a hole as a spherical
horizon covered with l2Pl size squares. The minimal horizon radius is of the order of
lPl. All physics takes place on the surface of the sphere, and tentatively, none inside.
Suppose there are n squares on the horizon and each square can be in k soft hair states
[8]. Then the total number of states is kn. This gives for entropy S of the sphere the
well known result

S = kB log kn = kB n ln k ∝ A

l2Pl

(1)

whre kB is the Boltzmann constant and A is the area of the horizon.
The vibrations of an oscillator can be calculated in normal way. The geometry is a

two dimensional sphere

H =
−~2

2m
∇2 +

1

2
mω2~x2 (2)

The energy eigenvalues for a square are given E = ~ω(n+ 1) where n = 0, 1, 2, ... .
The partition function Q is (to be used in section 4)

Z = Σigjexp(Ei/kT ) (3)

where gi (= k in (3)) is the degeracy of the ith state and Ei its energy and T the
temperature.

1The author considers them atoms of spacetime upon which I kindly disagree.
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3 Entropy and Einstein Equation

In [6] it is shown that there is an analogical model of (2) leading to classical dynamics of
spacetime, the Einstein equation. The analogy is taken from solid state physics’ atoms.
I start directly from the model horizon (2). The entropy density function can then have
quadratic terms in both ∇aξb and ξa

S[ξ] =

∫
V

d4x
√
−g
(
4P cdab∇cξa∇dξb − Tabξaξb

)
(4)

where the fourth rank tensor tensor Pabcd should have the algebraic symmetries similar
to the Riemann tensor Rabcd and Tab turns out to be the energy momentum tensor of
matter.

The field equations are obtained from extremizing the entropy. The entropy func-
tional in (4) is well defined for any displacement vector field ξa. One can therefore
associate an entropy functional with any hypersurface in the spacetime, by choosing
the normal to the hypersurface as ξa. The null hypersurfaces will play a key role since
they act as one-way membranes which block information for a specific class of observers.
One now extremizes S[ξ] with respect to variations of the null vector field ξa and de-
mands that the resulting condition holds for all null vector fields. The equilibrium
configurations of the spacetime are the ones in which the entropy associated with every
null vector is extremized. Varying the null vector field ξa after adding a Lagrange mul-
tiplier λ for imposing the null condition ξaδξ

a = 0, the authors [6] find to the lowest
order the equation reduces to:

1

8π
Rab − T ab = F (g)δab (5)

where F is an arbitrary function of the metric. Writing this equation as

(Gab − 8πT ab ) = Q(g)δab (6)

with Q = 8πF − (1/2)R and using ∇aGab = 0,∇aT ab = 0 one gets

∂bQ = ∂b[8πF − (1/2)R] = 0 (7)

so that Q is an undetermined integration constant, say Λ, and F must have the form
8πF = (1/2)R+ Λ. The resulting equation is

Rab − (1/2)Rδab = 8πT ab + Λδab (8)

which leads to Einstein’s theory if one identifies Tab as the matter energy momentum
tensor with a cosmological constant appearing as an integration constant. In [7] a small
value of Λ ∝ exp(−36π2) is indicated which can be transformed, together with the
experimental value of Λ, to a reasonable prediction for the inflationary scale between
(1− 6)× 1015 GeV.

A key feature of the functional in (4) is that the entropy associated with null vector
fields is invariant under the shift Tab → Tab+ρgab where ρ is a scalar. This fact will play
an important role, its is a symmetry in quantum theory but not in general relativity.

4 Model of Stretched Horizon

I consider a micro black hole dressed by a (virtual reality [9]) stretched horizon, which
is a membrane hovering about a Planck length outside the event horizon and which is
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both physical and hot. A treatment of the stretced horizon has been done in [5] where it
is assumed that the stretched horizon consists of finite number of discrete constituents
each contributing to the stretched horizon an area of a non-negative integer times a
constant

A = αl2Pl(n1 + n2 + ...+ nN ) (9)

where N is the number of constituents, the ni define their area quantum states and α
is a number of the order unity, to be determined later. For the constituents themselves
one assumes simply black holes of size lPl. It is supposed that each stationary quantum
state of a black hole is determined by the quantum numbers n1, n2, ..., nN of its stretched
horizon.

To calculate the partition function of a Schwarzschild black hole one needs to know
the energy states of the system. The energy of the hole from the point of view of an
observer on its stretched horizon is called Brown-York energy [10]

E =
ac2

8πG
A (10)

where a is the (constant) proper acceleration of an observer on the stretched horizon
and A is the area of the horizon. The possible energy values of a black hole are, from the
point of view of an observer located on its stretched horizon, in terms of the acceleration

En = nα
~a
8πc

(11)

where n = n1 +n2 + ...+nN . The number of microscopic states associated with energy
En is the number of ways of writing a given positive integer n as a sum of exactly N
positive integers, whith N ≤ n, which is given by the binomial coefficient

ΩN (n) =

(
n− 1
N − 1

)
. (12)

For instance, there are

(
5− 1
3− 1

)
=

(
4
2

)
= 6 ways to express a number 5 as a sum

of exactly 3 positive integers:

5 = 3 + 1 + 1 = 1 + 3 + 1 = 1 + 1 + 3 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. (13)

It depends on n and N only, and it gives the degeneracy function g(En) needed to
calculate the partition function

Z(β) = Σng(En)e−βEn (14)

The resulting partition function Z(β) of the Schwarzschild black hole may be calculated
explicitly yielding a simple expression [5]:

Z(β) =
1

2βTC − 2

[
1−

(
1

2βTC − 1

)N+1
]

(15)

where the temperature

TC =
α~a

4(ln 2)πkBc
(16)

is called the characteristic, or critical, temperature of the hole.
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From the partition function one can calculate the average energy

E(β) = − ∂

∂β
lnZ(β) (17)

of the hole at temperature T = 1/β which yields

E(β) =

[
2βTC

2βTC − 2
− (N + 1)2βTC

(2βTC − 1)N+2 − 2βTC + 1

]
TC ln 2 (18)

The average energy per constituent is

Ē(β) =
E(β)

N
(19)

and one gets for large N

Ē(β) = Ē1(β) + Ē2(β) (20)

where

Ē1(β) =
1

N

2βTC

2βTC − 2
TC ln 2, (21a)

Ē2(β) = − 2βTC

(2βTC − 1)N+2 − 2βTC + 1
TC ln 2. (21b)

where (N + 1)/N ≈ 1 has been used.
It has been shown in [5] that when T = TC the average energy per a constituent of

the stretched horizon is, in SI units,

Ē = kBTC ln 2 (22)

and that
dĒ

dT
|T=TC

=
1

6
kB(ln 2)2N +O(1) (23)

where O(1) denotes the terms, which are of the order N0, or less. When the number
N of constituents becomes large increase of energy does not change the temperature
of the hole at T = TC . So the hole undergoes a phase transition at T = TC . When
T < TC , Ē is nearly zero. When T = TC , the curve Ē = Ē(T ) becomes practically
vertical. When T is slightly greater than TC , Ē(T ) is approximately 1.4kBTC , which is
about the same as 2 ln 2. Finally, the dependence of Ē(T ) on T becomes approximately
linear when T � TC .

The most important implication of the observed phase transition at the characteristic
temperature TC is that it predicts the Hawking effect: the result that Ē(T ) is practically
zero, when T < TC , and then suddenly jumps to L̄ = 2kBTC ln 2, when T = TC ,
indicates that the characteristic temperature TC is the lowest possible temperature
a black hole may have. If the temperature T of the black hole were less than its
characteristic temperature TC , all of the constituents of its stretched horizon, except one,
would be in vacuum, and there would be no black hole. The characteristic temperature
TC may be written in terms of the Schwarzschild mass M and the Schwarzschild radial
coordinate r of an observer on the stretched horizon as:

TC =
α

8π ln 2

(
1− 2M

r

)−1/2
M

r2
(24)
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With some more effort one can obtain the Bekenstein-Hawking entropy law for the
Schwarzschild black hole from its partition function which, in turn, followed from the
specific microscopic model of its stretched horizon [5]

S(A) =
1

4

kBc
3

~G
A (25)

When T = TC , the energy of the hole from the point of view of an observer on its
stretched horizon is exactly

E = (N + 2)kBTC ln 2 (26)

It is interesting that, up to an unimportant numerical factor 2 ln 2, this expression for
energy is the same as the one used as a starting point in the scenario for an entropic
theory of gravity in [11].

It is shown in [5] that when T = TC the entropy of the Schwarzschild black hole
may be written in terms of N , the number of the constituents of the stretched horizon,
as:

S = kB ln(2N+2). (27)

Putting in another way, this means that when the temperature T of the hole is exactly
its characteristic temperature TC , which means that its temperature from the point of
view of a faraway observer agrees with its Hawking temperature TH , each constituent
of the stretched horizon carries, on the average, exactly one bit of information. In this
sense model [5] reproduces in some respects Wheeler’s famous ”it from bit” proposal.

5 Discussion and Conclusions

Any non-inertial observer who perceives a horizon will attribute to it the Unruh tem-
perature (16)

T =
~
kBc

κ

2π
(28)

where κ is the acceleration of the observer, which is predicted in [5]. This result makes
the notion of temperature and all of thermodynamics observer dependent phenomena.

It has turned out that horizons have profound importanece in gravity both on ther-
modynamical and statistical levels. There are interesting questions of heat as inertial
effect and static observer’s virtual reality in [9]. The origin of an acceleration surface is
the stretched horizon structure of black holes presented in section 4.

The stretched horizon structure can perhaps be described by a bootstrap sum equa-
tion, or integral in the large i limit, for physical black hole states |O〉 (from opi, hole in
Greek) in terms of bare black holes |o〉

|O〉 = |o〉0 + Σi|Oi〉 (29)

where i is the number of horizon constituent and i = 0 refers to ground state.
In the UV black holes cannot be probed deeper than lPl. With increasing energy the

hole begins to grow approaching the classical regime. This model is therefore consistent
with the concept of self-completeness [12].

The regime of real quantum gravity is limited to the vicinity of mini black holes and
very early universe. Otherwise classical theory is accurate, see however for Lanczos-
Lovelock theories in [6].

Having the entropy, rather than the metric, as central concept in the model of section
2 has lead to an interesting role for the cosmological constant: a constant of integration.
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Its numerical value has been determined in [7]. This may help in dealing with possible
problems of infinities, they can subtracted away.

A model of decay and radiation of black holes has been proposed in [13, 14]. The
lightest black hole state En=0, the gravon, is expected to decay via a grand unified
theory phase finally into standard model particles. Otherwise black holes radiate by
the Hawking mechanism and by a classical no-hair theorem based mechanism producing
non-thermal particles, dominantly light leptons.

There are at present a number competing theoretical schemes for quantum gravity
like string theory, loop quantum gravity, causal dynamical triangulation, and others.
The model of section 4 goes very deep into the structure of the physical universe and
can be considered a promising candidate.
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