In quantum statistical mechanics, the extension of the classical Gibbs entropy is the von Neumann entropy, obtained from a quantum-mechanical system described by means of its density matrix. Here we shortly discuss this entropy and the use of generalized entropies instead of it.

Keywords: Entropy, Quantum entropy, von Neumann entropy, Non-additive entropy, Tsallis entropy, Kaniadakis entropy.
S(ρ_A) respectively. By analogy with the classical conditional entropy, one defines the conditional quantum entropy as

\[S(\rho_{A|B}) = S(\rho_{AB}) - S(\rho_B) \]

where we have an entropy containing the conditional density operator ρ_{A|B} [3-6].

Let us concentrate on the mutual information obtained from the mutual entropy of a bipartite system. The definition of a quantum mutual entropy is modulated on the classical case too. In classical terms, given two subsystems A and B, and their probability distribution of two variables p(a, b), the two marginal distributions are given by: p(a) = Σ_b p(a, b); p(b) = Σ_a p(a, b).

The classical mutual information I(A;B) is defined by:

\[I(A;B) = S(p(a)) + S(p(b)) - S(p(a, b)) = S(A) + S(B) - S(A,B) \]

In (1), S denotes the Shannon entropy. Note that it is giving information on the dependence or independence of subsets A and B. In the case of independent subsets the mutual information is zero. For a generalized entropy, the mutual information is given by a different equation according to its specific generalized additivity [1,2].

The mutual information can also be described as a relative entropy between p(a, b) and p(a)p(b) [6]. It follows from the property of relative entropy that I(A;B) ≥ 0 and equality holds if and only if p(a, b) = p(a)p(b), which is the condition of independency of the subsets A and B.

The quantum mechanical counterpart is obtained using von Neumann entropy. Then entropy S:\(\rho_{A,B}\) becomes \(S(\rho_{AB}) = -\text{Tr}(\rho_{AB} \ln \rho_{AB})\). From the probability distribution \(p(a, b)\), the marginal distributions are obtained. Instead of a simple sum, here we have a partial trace. So one can assign to \(\rho_A\) a state on the subsystem A by \(\rho_A = \text{Tr}_B(\rho_{AB})\), where \(\text{Tr}_B\) is the partial trace with respect to system B. After, entropy \(S(\rho_A)\) is calculated. \(S(\rho_B)\) is defined in the same manner [6].

An appropriate definition of quantum mutual information should be

\[I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB}) \]

\(S(\rho)\) is additive for independent systems. Given two density matrices \(\rho_A\), \(\rho_B\) describing independent systems, we have:

\[S(\rho_{AB}) = S(\rho_A \otimes \rho_B) = S(\rho_A) + S(\rho_B), \text{ and } I(\rho_{AB}) = 0. \]

Moreover, \(I(\rho_{AB}) \leq 2 \min[S(\rho_A), S(\rho_B)]\) for a corollary of Araki-Leib theorem [5]. This implies that quantum systems can be supercorrelated.

Here some examples [7]. Let us consider independent particles so that: \(\rho_A = \frac{1}{2}(\ket{0}\bra{0} + \ket{1}\bra{1})\), we have that \(\rho_{AB} = \rho_A \otimes \rho_B\). \(S(\rho) = S(\rho_A) = -\frac{1}{2} \log_2 \frac{1}{2} = 1, S(\rho_B) = 2, I(\rho_{A;B}) = 0\) and \(S(\rho_{A;B}) = 1\).

Let us consider fully correlated particles: \(\rho_{AB} = \frac{1}{2}(\ket{00}\bra{00} + \ket{11}\bra{11})\). The density matrix for A is given by: \(\rho_A = \text{Tr}_B(\rho_{AB}) = \frac{1}{2}(\ket{00}\bra{00} + \ket{11}\bra{11})\). And we can have also entangled particles: \(|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\). The density matrix is given by: \(\rho_{AB} = |\psi_{AB}\rangle <\langle \psi_{AB}|\). We can calculate the density matrix of A: \(\rho_A = \text{Tr}_B(\rho_{AB}) = \frac{1}{2}(\ket{00}\bra{00} + \ket{11}\bra{11})\). Therefore \(S(\rho_A) = 1, S(\rho_B) = 0, S(\rho_{A;B}) = 2\) and \(S(\rho_{A;B}) = 1\) [7].

After these examples with von Neumann entropy, let us consider the case of the generalized Tsallis entropy [8]. In this paper we find the quantum Tsallis entropy. It is given by:

\[S_q(\rho) = (\text{Tr} \rho^q - 1)/(1-q) . \]
Let us remember that Tsallis entropy is non-additive, that is, for independent subsystems the joint entropy is different from the sum of the entropies. As a consequence, in the quantum case, for product states [8]:

\[
S_q(\rho_{AB}) = S_q(\rho_A \otimes \rho_B) = S_q(\rho_A) + S_q(\rho_B) + (1-q) S_q(\rho_A)S_q(\rho_B).
\]

And, also in the case of commutating operators, a correlation is induced by this non additivity [7]. Such a correlation disappers when \(q \to 1\). Quantum Tsallis entropy had been also discussed in [9].

What can we obtain, if we use the Kaniadakis entropy? It is an entropy having the following generalized additivity for independent systems \(S_\kappa(A,B) = S_\kappa(A)Y_\kappa(B) + S_\kappa(B)Y_\kappa(A)\), where \(S_\kappa = (\Sigma p_i^{-1+\kappa} - \Sigma p_i^{1+\kappa})/(2\kappa)\); \(Y_\kappa = (\Sigma p_i^{-1-\kappa} + \Sigma p_i^{1-\kappa})/2\) (see [10] for a discussion of the generalized additivity of Tsallis and Kaniadakis entropies, and the references therein). The summations run across \(i\)-states of the system with probabilities \(p_i\). In [11], the quantum Kaniadakis entropy is given in the framework of a generalized additivity involving only entropies \(S\), not function \(Y\), because the authors used a formula which is valid in the case of equiprobable states. In a more general case then, let us stress that we have to add a quantum \(Y\) function:

\[
S_\kappa(\rho) = (\text{Tr} \rho^{1+\kappa} - \text{Tr} \rho^{1-\kappa})/(2\kappa) \quad ; \quad Y_\kappa(\rho) = (\text{Tr} \rho^{1+\kappa} + \text{Tr} \rho^{1-\kappa})/2.
\]

And therefore, besides the quantum entropy, we have also to consider another quantity, which is the quantum version of function \(Y\), fundamental for any discussion of conditional and mutual information as obtained in the Kaniadakis formalism [2].

References

Information about this Article

This Article was published on 11th January, 2016 at 14:29:23 and has been viewed 3 times.