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Abstract

The unsteady non-DarcianCouette flow through a porous medium of a viscous incompressible
fluid bounded by two parallel porous plates is studied with heat transfer. A non-Darcy model
that obeys the Forchheimer extension is assumed for the characteristics of the porous medium.
A uniform suction and injection are applied perpendicular to the plates while the fluid motion
is subjected to a constant pressure gradient. The two plates are kept at different but constant
temperatures while the viscous dissipation is included in the energy equation. The effects of
the porosity of the medium, inertial effects and the uniform suction and injection velocity on
both the velocity and temperature distributions are investigated.

Keywords : Non-Darcian flow; Couette flow; parallel plates; Forchheimer equation; Finite
Difference; Numerical solution.

1 Introduction

The flow between two parallel plates is a classical problem that has many applications in accelerators,
aerodynamic heating, electrostatic precipitation, polymer technology, petroleum industry, purification
of crude oil, fluid droplets and sprays, magnetohydrodynamic (MHD) power generators and MHD
pumps [1]. A lot of research work concerning the flow between two parallel plates has been obtained
under different physical effects [1–10].

Fluid flow in porous media is now one of the most important topics due to its wide applications
in both science and engineering [11, 12]. In most of the previous work, the Darcy model was

∗mohamed.essawy@hti.edu.eg

1



International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 2 (February 2014) ISSN : 2277-6982

http://www.ijmes.com/

adopted when studying porous flows. The Darcy law is sufficient in studying small rate flows where
the Reynolds number is very small. For larger Reynolds numbers the Darcy law is insufficient and a
variety of models have been implemented in studying flows in porous media. The DarcyForchheimer
(DF) model is probably the most popular modification to Darcianflows utilized in simulating inertial
effects [13–16]. It has been used extensively in chemical engineering analysis and also in materials
processing simulations.

In the present study, the unsteady non-DarcianCouette flow and heat transfer in a porous
medium of an incompressible viscous fluid between two infinite horizontal porous plates is studied
and the DF model is used for the characteristics of the porous medium. The fluid is acted upon
by a constant pressure gradient and a uniform suction and injection perpendicular to the plates.
The upper plate is moving with a constant velocity while the lower plate is kept stationary. The
non-Darcy flow in the porous medium deals with the analysis in which the partial differential
equations governing the fluid motion are based on the non-Darcy law (Darcy -Forchheimer flow
model) that accounts for the drag exerted by the porous medium [17–19] in addition to the inertial
effect [16, 20–25]. The two plates are maintained at two different but constant temperatures. This
configuration is a good approximation of some practical situations such as heat exchangers, flow
meters, and pipes that connect system components. The cooling of these devices can be achieved
by utilizing a porous surface through which a coolant, either a liquid or gas, is forced. Therefore,
the results obtained here are important for the design of the wall and the cooling arrangements of
these devices. The governing equations are solved numerically taking the viscous dissipation into
consideration. The inclusion of the porosity effect, inertial effects as well as the velocity of suction
or injection leads to some interesting effects, on both the velocity and temperature distributions to
be investigated.

2 Description of the Problem

The two non-conducting plates are located at the y = ±h planes and extend from x = −∞ to
∞ and z = −∞ to ∞ embedded in a DF porous medium where a high Reynolds number is
assumed [13–16]. The lower and upper plates are kept at the two constant temperatures T1 and T2,
respectively, where T2 > T1, as shown in Fig (1). The fluid flows between the two plates under the
influence of a constant pressure gradient dP

dX in the x-direction, and a uniform suction from above
and injection from below which are applied at t = 0 with velocity v0 in the positive y-direction.
The upper plate is moving with a constant velocity U0 while the lower plate is kept stationary.

The flow is through a porous medium and affected by another inertial effects where the non-Darcy
law (Darcy -Forchheimer flow model) is assumed [16, 20–25]. From the geometry of the problem
and due to the infinite dimensions in the x and z-directions, it is evident that ∂

∂x = ∂
∂z for all

quantities, i.e. they are independent in the x and z-coordinates, apart from the pressure gradient
dp
dx which is assumed constant, thus the velocity vector of the fluid is −→v (y, t) = u(y, t)

−→
i + v0

−→
j ,

with the initial and boundary conditions (u = 0 at t0), and (u = 0 at y = −h, and u = Uo at y = h
for t > 0). The temperature T (y, t) at any point in the fluid satisfies both the initial and boundary
conditions T = T1 at t ≤ 0, T = T2 at y = +h, and T = T1 at y = −h for t > 0.
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Figure 1: The geometry of the proplem

The fluid flow is governed by the momentum equation see [26].

ρ
∂u

∂t
+ ρv0

∂u

∂y
= − p

x
+ µ

∂2u

∂y2
− µ

k
u− ρλ

k
u2. (1)

Where, ρ and µ are, respectively, the density of the fluid and the coefficient of viscosity,K is
the Darcy permeability [17–19] and λ is the inertial coefficient (i.e. the non-Darcian Forchheimer
geometrical constant which is related to the geometry of the porous medium [16]). The last two
terms in the right side of Eq.(1) represent the non-Darcy porosity forces. To find the temperature
distribution inside the fluid we use the energy equation see [26].

ρc
∂T

∂t
+ ρcv0

∂T

∂y
= k

∂2T

∂y2
+ (

∂u

∂y
)2 (2)

Where, c and k are, respectively, the specific heat capacity and the thermal conductivity of the
fluid. The second term on the right-hand side represents the viscous dissipation.

The problem is simplified by writing the equations (1) and (2) in the non-dimensional form. We
define the following non-dimensional quantities.

x̂ =
x

h
, ŷ =

y

h
, ẑ =

z

h
, p̂ =

p

ρU2
0

, û =
u

U0
, t̂ =

tU0

h
, T̂ =

T − T1
T2 − T1

where, = v0
U0

(the suction parameter), pr = µ ck , (the Prandt l number), Ec =
U2

0

c(T2−T1)
, (the

Eckert number), Re = ρU0h
µ , (the Reynolds number), β = h2k, (the porosity parameter), γ = λh

k ,

(the dimensionless non-Darcy parameter).
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In terms of the above non-dimensional variables and parameters, the basic Equations (1) and (
2) are written as (the ”hats” will be dropped for convenience):

∂u

∂t
+
∂u

∂y
= −dP

dx
+

1

Re

∂2u

∂y2
− β

Re
u− γu2. (3)

∂T

∂t
+
∂Y

∂y
=

1

RePr

∂2T

∂y2
+
Ec

Re
(
∂u

∂y
)2. (4)

The initial and boundary conditions for the velocity become:

t ≤ 0 : u = 0 and t > 0 : T = 1, y = +1 and t > 0 : T = 0, y = −1. (5)

and the initial and boundary conditions for the temperature are given by

t ≤ 0 : T = 0 and t > 0 : T = 1, y = +1 and t > 0, T = 0, y = −1. (6)

3 Numerical Solution of the Governing Equations

Equations (3) and (4) are solved numerically using finite differences [27] under the initial and
boundary conditions (5) and (6) to determine the velocity and temperature distributions for different
values of the parameters , and S. The Crank-Nicolson implicit method [28] is applied. The finite
difference equations are written at the mid-point of the computational cell and the different terms
are replaced by their second-order central difference approximations in the y-direction. The diffusion
term is replaced by the average of the central differences at two successive time levels. Finally, the
block tri-diagonal system is solved using Thomas algorithm. All calculations have been carried out
for dP

dx = −5, Re = 1, P r = 1 and Ec = 0.2.

4 Results and Discussion

Figures (2, 3, 4) show the time progression of the velocity profiles till the steady state for (S = 1) and
various values of the porosity and non-Darcian parameters β and γ. It is observed that the velocity
component u increases monotonically with time. The porosity parameter β and the non-Darcian
parameter γ have a marked effect on the time development of u. It is obvious that increasing
β decreases u and its steady state time as a result of increasing the resistive porosity force on u
while, increasing γ for each value of β decreases more the velocity u and its steady state time which
reflects the expected resistance because of the inertial effects. For γ = 0 in figures (3−a) and (4−a)
we mean a flow without additional inertial effects and the Darcian case is obtained to provide an
easier quick path for the fluid flow. Fig (2−a) represents the simpler linear Newtonian case with
β = γ = 0 obtaining the highest velocity values.
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Figure 2: Time development in the velocity t for
β = 0, S = 1 and various values of γ

Figure 3: Time development in the velocity t
for β = 1, S = 1 and various values of γ
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Figures (5−a, 6,7) show the time development of the temperature profiles for (S = 1) and
various values of β and γ. It is observed that the temperature T increases monotonically with
t.The parameters β and γ affect the time progression of the temperature T ; increasing β and γ
decreases T and its steady state time, as increasing β and γ decreases u which, in turn, decreases
the viscous dissipation which decreases T . Increasing γ for each value of β decreases more the
temperature and its steady time because of the additional resistive inertial effects on u. In figures
(6−a) and (7−a) where (γ = 0) we obtain the linear Darcian case with higher temperature values
while, figure (5−a) shows the linear Newtonian case (β = γ = 0) in which the highest temperature
values are reached. It is observed that the velocity component u and temperature T reach the
steady state monotonically and that u reaches the steady state faster than T . This is expected,
since u acts as the source of temperature.

Figures (8) and (9) indicate the effect of suction and injection on the time progression of both
the velocity u and the temperature T at the center of the channel respectively for various values
of β and γ. It is observed that increasing the suction parameter S decreases the velocity and its
steady state time at the center of the channel due to the convection of the fluid from regions in the
lower half to the center which has higher fluid speed. On the other hand, increasing the suction
parameter S decreases the temperature T at the center of the channel which is influenced more by
the convection term, which pushes the fluid more from the cold lower half towards the center.

Figures (8−a) and (9−a) indicate the linear Newtonian case where the plates are non-porous
(β = 0) and there is no inertial effects (γ = 0) to obtain the highest velocity and temperature
distributions. Figures (8−b) and (9−b) show the Darcian case in which the velocity and temperature
decrease more because of the porosity of the medium (= 1). Also, figures (8−c) and (9−c) represent
the non-Darcy flow in porous medium (β = γ = 1) which shows an obvious resistive effect in
decreasing u and T where a noticeable close in the velocity profiles for the different values of the
suction parameter S is achieved. Also, it can be seen from Figure (9) that T may exceed the value
1 which is the temperature of the hot plate and this is due to the viscous dissipation.

Tables (1) and (2) summarize the variation of the steady state values of both the velocity u and
the temperature T at the center of the channel (y = 0) respectively for various values of β and γ and
different values of the suction parameter (= 0, 1, 2). The results assure the inversely proportionality
between both the parameters β and γ with both the velocityu and the temperature T reaching the
steady state of both because the increase in the porosity resistance and the inertial effects reduce u
and hence T . The results also show that increasing the suction parameter S decreases the velocity
and the temperature and that the higher velocity and temperature values for various β and γ are
obtained at S = 0.
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Figure 4: Time development in the velocity t
for β = 2, S = 1 and various values of γ

Figure 5: Time development in the velocity t
for β = 0, S = 1 and various values of γ
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Figure 6: Time development in the velocity t
for β = 1, S = 1 and various values of γ

Figure 7: Time development in the velocity t
for β = 2, S = 1 and various values of γ
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Figure 8: Effect to the suction parameter S on
the time development on the velocity u at the
center of the channel (y = 0) for various values
of the parameters β and γ

Figure 9: Effect to the suction parameter S on
the time development on the temperature T at
the center of the channel (y = 0 for various
values of the parameters β and γ)
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Table 1: Variation of the steady state velocity u at the center of the channel (y = 0) for various
values of β and γ.

(a) S=0 γ = 0 γ = 1 γ = 2
β = 0 2.999989 1.744921 1.377762
β = 1 2.085598 1.452757 1.198116
β = 2 1.583725 1.226317 1.048155

(b) S=1 γ = 0 γ = 1 γ = 2
β = 0 2.580994 1.618268 1.30164
β = 1 1.850517 1.351063 1.132651
β = 2 1.432185 1.144794 0.9923267

(c) S=2 γ = 0 γ = 1 γ = 2
β = 0 1.90749 1.435628 1.193
β = 1 1.544194 1.212631 1.044423
β = 2 1.240852 1.039225 0.9203554

Table 2: Variation of the steady state temperature T at the center of the channel (y = 0) for various
values of and .

(a) S = 0 γ = 0 γ = 1 γ = 2
β = 0 4.049962 1.426117 1.008442
β = 1 1.980979 1.090037 0.8639441
β = 2 1.249388 0.8911143 0.7681971

(b) S = 1 γ = 0 γ = 1 γ = 2
β = 0 3.193807 1.221758 0.8334498
β = 1 1.626091 0.8984181 0.6823296
β = 2 1.013675 0.7007263 0.5787295

(c) S = 2 γ = 0 γ = 1 γ = 2
β = 0 1.844336 0.8935586 0.6171848
β = 1 1.080732 0.6489245 0.4905686
β = 2 0.6980676 0.4943847 0.4017469
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5 Conclusions

The unsteady non-DarcianCouette flow through a porous medium of a viscous incompressible fluid
has been studied in the presence of uniform suction and injection. The effect of the porosity of
the medium, inertial effects and the suction and injection velocity on the velocity and temperature
distributions has been investigated. It is found that the porosity, inertial effects and suction or
injection velocity has a marked effect on both the velocity and temperature distributions in an
inverse proportionality manner. Various cases were monitored passing through the Newtonian fluid
flow in non-porous medium, the Darcian flow model and the non-Darcian flow in porous medium
which showed the greatest flow resistance resulting in lower velocity and temperature values.
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