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Abstract

The main objective of this paper is to describe the formulation of Quarter-Sweep Successive
Over-Relaxation (QSSOR) iterative method using the Caputos time fractional derivative together
with Quarter-Sweep implicit finite difference approximation equation for solving one-dimensional
linear time-fractional diffusion equations. To solve the problems, a linear system will be
constructed via discretization of the one-dimensional linear time fractional diffusion equations
by using the Caputos time fractional derivative. Then the generated linear system has been
solved by using the proposed QSSOR iterative method. Computational results are provided
to demonstrate the effectiveness of the proposed methods as compared with the FSSOR and
HSSOR methods.

Keywords : Caputos fractional derivative, Implicit finite difference, QSSOR method.

1 Introduction

Based on previous studies, many problems in engineering and science involve fractional partial
differential equations (FPDEs) ([1], [2], [3], [4],[5]). The applications of fractional partial differential
equations are encountered in many fractional problems to obtain numerical and/or analytical
solutions. To solve one-dimensional diffusion model with constant coefficients a fractional derivative,
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which replaces the first-order space partial derivative in a diffusion model will lead to slower
diffusion. Actually, many numerical methods have been proposed.

For instance, Yuste and Acedo [6] proposed a numerical methods for solving the time fractional
diffusion equations (TFDE), such explicit and implicit finite difference methods [7]. Nevertheless
the explicit methods are conditionally stable, this finite difference schemes are available in the
literature [8].

For solving the problems of the time-fractional diffusion equations (TFDEs) numerically, the
problems need to be discretized. By using the implicit finite difference scheme and Caputo fractional
operator, a linear system at each time level can be constructed through the Caputos implicit
finite difference approximation equations. In order to solve a linear systems, many researchers
have also discussed the concept of iterative methods such as Young [9], Hackbush [10] and Saad
[11]. Besides these iterative methods, the concept of block iteration has also been introduced
by Evans [12], Ibrahim and Abdullah [13],Yousif and Evans ([14],[15]) to show the efficiency of
its computation cost. Actually for solving the large linear system, Abdullah [16] has initiated
Half-Sweep iteration via Explicit Decoupled Group (EDG) method for solving two dimensional
Poisson equation, which is one of the most known and widely used iterative techniques to solve
in solving any linear systems. Motivated by this finding, extension of the concept of half sweep
iterations has been used to introduce quarter-sweep iteration via the Modified Explicit Group
(MEG) iterative method [17] to solve two-dimensional Poisson equations. Further studies to verify
the effectiveness of the quarter-sweep iterations have been carried out, see (See [18], [19], [20], [21],
[22])

In this paper, we examine the applications of Quarter-Sweep Successive Over-relaxation (QSSOR)
iterative method to solve time-fractional parabolic partial differential equations (TPPDEs) based
on the Caputos implicit finite difference approximation equation. To show the performance of the
QSSOR method, we implement the Full-Sweep Successive Over-relaxation (FSSOR) and Half-Sweep
Successive Over-relaxation (HSSOR) iterative methods being used as a control method.

Firstly, for the derivation of the QSSOR iterative method, consider time-fractional diffusion
equation (TFDEs) be defined as

∂αU (x, t)

∂αt
= a (x)

∂2U (x, t)

∂2t
+ b (x)

∂U (x, t)

∂t
+ c (x)U (x, t) , (1)

where a(x), b(x) and c(x) are known functions or constants, whereas is a parameter which refers
to the fractional order of time derivative.

The outline of this paper is organized as follows: In Sections 2 and 3, the approximate equation
of the Caputos fractional derivative operator and numerical procedure for solving time fractional
diffusion equation(1)by means of the implicit finite difference method is given. The analysis of
stability of method is determined in Section 4, formulation of the QSSOR iterative method is
introduced in Section 5. Then, In Section 6 shows numerical examples and its results and conclusion
is given in Section 7.
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2 Preliminaries

This section gives some definitions that can be applied for fractional derivative theory before
developing the approximation equation of Problem (1).

Definition (1). [8] The Riemann-Liouville fractional integral operator,Jα of order- α is defined
as

Jαf (x, t) =
1

Γ (α)

∫ x

0

(x− t)α f (t) dt α > 0, x > 0, (2)

Definition (2) [8]The Caputos fractional partial derivative operator, Dα of order-α is defined
as

Jαf (x, t) =
1

Γ (α)

∫ x

0

(x− t)α f (t) dt α > 0, x > 0, (3)

with m− 1 < α ≤ m, m ∈ N , x > 0.
To solve TFDEs in Eq.(1) as mentioned in the first section, we get numerical approximations

by using implicit finite difference scheme via the Caputos derivative definition with Dirichlet
boundary conditions and the non-local fractional derivative operator. This Caputos implicit finite
difference approximation equation can be categorized as unconditionally stable scheme. Before
solving Problem (1), the solution domain of the problem has been restricted to the finite space
domain0 ≤ x ≤ γ, with0 < α < 1, whereas the parameter α refers to the fractional order of space
derivative. Also, let us consider the initial and boundary conditions of Problem (1) be given as

U(0, t) = g0 (t) , U (`, t) = g1 (t) ,

and the initial condition
U (x, 0) = f (x) ,

where g0 (t) , g1 (t) , and f (x) , are given functions. To discretize the time-fractional derivative in
Eq.(1), we consider Caputos fractional partial derivative of order α defined by ([8],[9]):

∂αu(x, t)

∂tα
=

1

Γ (n− 1)

∫ ∞
0

∂u (x− s)
∂t

(t− s)−α ds, t > 0, 0 < α < 1. (4)

3 Caputos Implicit Finite Difference Approximation

By applying Eq.(4), the formulation of Caputos fractional partial derivative of the first order
approximation method is given as [23] :

Dα
t Ui,n

∼= σα,k

n∑
j=1

ω
(α)
j (Ui,n−j+1 − Ui,n−j) , (5)

and we have the following expressions
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σα,k =
1

Γ (1− α) (1− α) kα
,

and

ω
(α)
j = j1−α − (j − 1)

1−α
.

Before discretizing Problem (1), let the solution domain of the problem be partitioned uniformly.
To do this, we consider some positive integers m and n in which the grid sizes in space and time
directions for the finite difference algorithm are defined as h = ∆x = γ−0

m and k = ∆t = T
n

respectively. According to these grid sizes, we develop the uniformly grid network of the solution
domain where the grid points in the space interval [0, γ] are shown as the numbers xi = ih,i =
0, 1, 2, ...,m and the grid points in the time interval [0, T ] are labeled tj = jk,j = 0, 1, 2, ..., n.
Then the values of the function U (x, t) at the grid points are denoted as Ui,j = U (xi, tj). As
mentioned in Eq.(5)and using the Quarter-Sweep implicit finite difference discretization scheme,
the Caputos Quarter-Sweep implicit finite difference approximation equation of Problem (1) the
grid point, (xi, tj) = (ih, nk) is given as

σα,k

n∑
j=1

ω
(α)
j (Ui,n−j+1 − Ui,n−j)

= ai
1

16h2
(Ui−4,n − 2Ui,n + Ui+4,n) + bi

1

8h
(Ui+4,n − Ui−4,n) + ciUi,n, (6)

for i=4,8,12,...,m-4.
Now, the approximation equation (6) is known as the fully Quarter-Sweep implicit finite difference

approximation equation, which is consistent first order accuracy in time and second order in space.
Actually, the approximation can be rewritten based on the specified time level. For instance, we
have for n ≥ 2 :

σα,k

n∑
j=1

ω
(α)
j (Ui,n−j+1 − Ui,n−j) = piUi−4,n + qiUi,n + riUi+4,n, (7)

where

pi =
ai

16h2
− bi

8h
,

qi = ci −
ai

8h2
,

ri =
ai

16h2
+
bi
8h
.

also, we get for n = 1,
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−piUi−4,1 + q∗i Ui,1 − riUi+4,1 = fi,0, i = 4, 6, ...,m− 4 (8)

where

ω
(α)
j = 1,

q∗i = σα,k − qi,

fi,0 = σα,kUi,0.

According to Eq.(8), it can be seen that the tridiagonal linear system can be constructed in
matrix form as

AU
∼

= f
∼
. (9)

where

A =



q∗4 −r4
−p8 q∗8 −r8

−p12 q∗12 −r12
. . .

. . .
. . .

−pm−8 q∗m−8 −rm−8
−pm−4 q∗m−4


((m4 )−1)x(m4 −1)

,

U
∼

=
[
U4,1 U8,1 U12,1 · · · Um−8,1 Um−4,1

]T
,

f
∼

=
[
f4,1 + p1U0,1 f8,1 f12,1 · · · fm−8,1 fm−4,1 + pm−4Um,1

]T
.

4 Analysis of Stability

In this section, we have considered the stability analysis of the implicit finite difference approximation
equation in Eq.(7). For stability analysis, we use Von-Neumanns [24] and the Lax equivalence
theorem [25]. It follows that numerical solution of approximation equation in Eq.(7) converges to
the exact solution as h, k → 0.

Theorem 4.1.
The fully implicit numerical method Eq.(7), solution to Eq.(1) with 0 < α < 1 on the finite

domain 0 ≤ x ≤ 1 , with zero boundary condition U (0, t) = U (`, t) = 0 for all t ≥ 0, is consistent
and unconditionally stable.

Proof. To examine the stability of the proposed method, we find for solution of the form
Unj = ξne

iωjh, i =
√
−1, ω real. Therefore Eq.(7) becomes
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σα,kξn−1e
iωjh − σα,k

n∑
j=2

ω
(α)
j

(
ξn−j+1e

iωjh − ξn−jeiωjh
)

=

−piξneiω(j−4)h + (σα,k − qi) ξneiωjh − riξneiω(j+4)h (10)

By simplifying and reordering over Eq.(10), we have :

σα,kξn−1 − σα,k
n∑
j=2

ω
(α)
j (ξn−j+1 − ξn−j) =

ξn (((−pi − ri) cos (ωh)) + (σα,k − qi)) .

This above equation can be reduced to :

ξn =
ξn−1 +

∑n
j=2 ω

(α)
j (ξn−j − ξn−j+1)(

1 + (pi+ri)
σα,k

cos (ωh) + qi
σα,k

) . (11)

From Eq.(10), it can be observed that the conducted as(
1 +

(−pi − ri)
σα,k

cos (ωh)− qi
σα,k

)
≥ 1,

for all α, n, ω, h and k we have :

ξ1 ≤ ξ0. (12)

and

ξn ≤ ξn−1 +

n∑
j=2

ω
(α)
j (ξn−j − ξn−j+1) , n ≥ 2. (13)

Thus, for n=2, the last inequality implies

ξ2 ≤ ξ1 + ω
(α)
2 (ξ0 − ξ1) .

Again repeating the above process, we can get

ξj ≤ ξj−1, j=1,2,. . . n-1.

From Eq.(13), we finally have
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ξn ≤ ξn−1 +

n∑
j=2

ω
(α)
j (ξn−j − ξn−j+1) ≤ ξn−j .

Since each term in the summation is negative, it shows that the inequalities Eq.(12) and Eq.(13)
imply

ξn ≤ ξn−1 ≤ ξn−2 ≤ ... ≤ ξ1 ≤ ξ0.

Thus,
ξn =

∣∣Unj ∣∣ ≤ ξ0 =
∣∣U0
j

∣∣ = |fj | ,

which entails
∥∥Unj ∥∥ ≤ ‖fj‖ , and we have stability.

5 Formulation of Quarter-Sweep Successive Over-Relaxation

By considering the tridiagonal linear system in Eq.(9), it is clear that the characteristic of its
coefficient matrix has large scale and sparse. In this paper, application of the QSSOR method is
used to solve linear system Eq.(9). As we know, the main objective of the Quarter-Sweep iteration
is to reduce the computational complexities during iteration process. Due to the advantage of the
concept of QSSOR method, let the linear system Eq.(9) be expressed as summation of the three
matrices

A = D − L− V (14)

where D, L and V are diagonal, lower triangular and upper triangular matrices respectively.
From the definition in Eq.(14), QSSOR iterative method can be defined generally as [20]:

(k+1)

U
∼

= (D − ωL)
−1
(

[(1− ω)D + V ω]
(k)

U
∼

+ωf

)
(15)

where
(k)

U
∼

represents an unknown vector at kth iteration. The implementation of the QSSOR iterative

method may be described in Algorithm 1.
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Algorithm 1:QSSOR Method
i. Initializing all the parameters. Set k = 0.
ii. For i = 4, 8, 12, . . . ,m− 8,m− 4 and

j = 1, 2, . . . , n− 1, nCalculate
(k+1)

U
∼

= (D − ωL)
−1
(

[(1− ω)D + V ω]
(k)

U
∼

+ωf

)
iii. Convergence test. If the convergence criterion i.e.∥∥∥∥(k+1)

U
∼
−

(k)

U
∼

∥∥∥∥ ≤ ε = 10−10is satisfied, go to Step (iv).

Otherwise go back to Step (ii).
iv. Compute the remaining point via second order

Lagrange scheme.
v. Display approximate solutions.

6 Numerical Experiments

For the comparison purpose, two examples of time-fractional diffusion equations were considered.
Both examples will be chosen from well-posed equations. Also three different proposed iterative
methods such as FSSOR, HSSOR and QSSOR will be implemented. In this paper, we will consider
different values of α = 0.25, 0.50 and 0.75.For implementation of these three iterative schemes, the
convergence test considered the tolerance error, which is fixed as ε=10−10.

Examples 1:[26]

Consider the following time fractional initial boundary value problem be given as

∂αU (x, t)

∂tα
=
∂2U (x, t)

∂x2
, 0 < α ≤ 1, 0 ≤ x ≤ γ, t > 0, (16)

where the boundary conditions are given in fractional terms

U(0, t) =
2ktα

Γ(α+ 1)
, U(`, t) = `2 +

2ktα

Γ(α+ 1)
, (17)

and the initial condition

U (x, 0) = x2. (18)

From Problem (16), as taking α = 1, it can be seen that problem (16) can be reduced to the
standard diffusion equation

∂U (x, t)

∂t
=
∂2U (x, t)

∂x2
, 0 ≤ x ≤ γ, t > 0, (19)

with the initial and boundary conditions
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U (x, 0) = x2, U(0, t) = 2kt, U(`, t) = `2 + 2kt.

Then the analytical solution of Problem (19)is obtained as follows

U(x, t) = x2 + 2kt.

Now by applying the series

U(x, t) =

m−1∑
n=0

∂nU(x, 0)

∂tn
tn

n!
+

∞∑
n=1

m−1∑
i=0

∂mn+iU(x, 0)

∂tmn+i
tnα+i

Γ(nα+ i+ 1)

to U(x, t) for 0 < α ≤ 1, it can be shown that the analytical solution of Problem (16) is given as

U(x, t) = x2 + 2k
tα

Γ(α+ 1)
.

Examples 2:[26]
Let us consider the following time fractional initial boundary value problem be defined as

∂αU (x, t)

∂tα
=

1

2
x2
∂2U (x, t)

∂x2
, 0 < α ≤ 1, 0 ≤ x ≤ γ, t > 0, (20)

where the boundary conditions are given in fractional terms

U(0, t) = 0, U(1, t) = et, (21)

and the initial condition

U (x, 0) = x2. (22)

From Problem (20), as taking α = 1, it can be shown that Eq.(20) can also be reduced to the
standard diffusion equation

∂U (x, t)

∂t
=

1

2
x2
∂2U (x, t)

∂x2
, 0 ≤ x ≤ γ, t > 0. (23)

Then the analytical solution of Problem (23) is obtained as follows

U(x, t) = x2et.

Now by applying the series

U(x, t) =

m−1∑
n=0

∂nU(x, 0)

∂tn
tn

n!
+

∞∑
n=1

m−1∑
i=0

∂mn+iU(x, 0)

∂tmn+i
tnα+i

Γ(nα+ i+ 1)
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to U(x, t) for 0 < α ≤ 1, it can be shown that the analytical solution of Problem (19) is stated
as

U(x, t) = x2
[
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...

]
All results of numerical experiments for Problem (19) and Problem (23), obtained from implementation

of FSSOR, HSSOR and QSSOR iterative methods are recorded in Table 1 and Table 2 at different
values of mesh sizes, M = 256, 512, 1024, 2048 and 4096.

7 Conclusions

As a conclusion for the numerical solution of the time fractional diffusion problems, this paper deals
with the implementation of QSSOR iterative method to solve a linear system generated by the
Quarter-Sweep Caputos implicit approximation equations. Through numerical experiments results
from Table 1 by comparing the performance between the QSSOR, HSSOR and FSSOR iterative
methods at three different values of α = 0.25, 0.50 and 0.75, it can be seen that the percentage
reduction of number of iterations for the QSSOR iterative method have declined approximately by
51.12 − 98.45% , 51.06 − 98.73% and 51.21 − 98.36% respectively as compared with the FSSOR
method. In fact, implementations of computational time for QSSOR method are much faster about
29.32− 97.97%, 33.66− 98.19% and 32.52− 98.04% respectively than FSSOR method.

In fact, the numerical experiments results from Table 2 show that the percentage reduction
of number of iterations for the QSSOR iterative method have declined approximately by50.36 −
98.32%,51.26−98.58% and 50.27−97.64% respectively as compared with the FSSOR methods. Also,
implementations of computational time for QSSOR method are much faster about 55.61− 97.92%,
40.32−97.85% and 30.13−98.07% respectively than the FSSOR method. How it can be concluded
that the QSSOR method involves less number of iterations and computational time as compared
with HSSOR and FSSOR methods. According to the accuracy of three iterative methods, it can
be stated that their numerical solutions are in good agreement
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Table 1: Comparison of number iterations (K), the execution time ( seconds) and maximum errors
for the iterative methods using example at α = 0.25, 0.50, 0.75

Example 1
M Method α = 0.25 α = 0.50 α = 0.75

K Time Max Error K Time Max Error K Time Max Error

128 FSSOR 714 2.08 9.95e-5 703 1.99 9.84e-5 705 2.03 1.29e-4
HSSOR 349 1.47 9.95e-5 344 1.32 9.84e-5 344 1.37 1.29e-4
QSSOR 169 0.54 9.95e-5 169 0.51 9.84e-5 168 0.51 1.29e-4

256 FSSOR 1461 6.90 9.95e-5 769 4.01 9.84e-5 769 4 1.29e-4
HSSOR 357 2.12 9.95e-5 351 2.09 9.84e-5 352 2.16 1.29e-4
QSSOR 174 0.68 9.95e-5 174 0.68 9.84e-5 172 0.68 1.29e-4

512 FSSOR 6239 55.97 9.96e-5 3951 35.08 9.84e-5 1821 16.51 1.29e-4
HSSOR 730 8.22 9.95e-5 384 4.72 9.84e-5 384 4.70 1.29e-4
QSSOR 178 2.48 9.95e-5 175 1.21 9.84e-5 176 1.20 1.29e-4

1024 FSSOR 23626 415.43 9.97e-5 15229 268.33 9.86e-5 7417 129.41 1.30e-4
HSSOR 3119 64.5 9.96e-5 1975 41 9.84e-5 910 19.12 1.29e-4
QSSOR 365 8.42 9.95e-5 192 4.83 9.84e-5 192 4.82 1.29e-4

2048 FSSOR 87221 3204.74 9.95e-5 56530 2058.11 9.91e-5 27855 1006.92 1.30e-4
HSSOR 11813 489.19 9.97e-5 7614 312.34 9.85e-5 3708 151.33 1.30e-4
QSSOR 1559 66.44 9.96e-5 987 41.88 9.84e-5 455 19.69 1.29e-4
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Table 2: Comparison of number iterations (K), the execution time ( seconds) and maximum errors
for the iterative methods using example at α = 0.25, 0.50, 0.75

Example 1
M Method α = 0.25 α = 0.50 α = 0.75

K Time Max Error K Time Max Error K Time Max Error

128 FSSOR 683 6.06 1.95e-2 671 6.04 8.30e-2 671 6.06 1.37e-1
HSSOR 339 2.69 1.95e-2 327 6.29 8.30e-2 323 2.68 1.37e-1
QSSOR 168 1.26 1.95e-2 162 1.26 8.30e-2 160 0.61 1.37e-1

256 FSSOR 781 8.42 1.95e-2 762 8.30 8.30e-2 724 8.18 1.37e-2
HSSOR 341 3.03 1.95e-2 335 3.05 8.30e-2 335 3.02 1.37e-2
QSSOR 169 1.32 1.95e-2 163 1.33 8.30e-2 161 1.33 1.37e-2

512 FSSOR 2322 27.84 1.95e-2 945 14.36 8.30e-2 728 12.08 8.30e-2
HSSOR 390 9.35 1.95e-2 381 8.57 8.30e-2 362 8.44 1.37e-2
QSSOR 170 3.15 1.95e-2 167 3.15 8.30e-2 167 3.15 1.37e-2

1024 FSSOR 9260 180.21 1.95e-2 4391 90.41 8.30e-2 1925 43.11 1.37e-2
HSSOR 1161 28.92 1.95e-2 472 14.97 8.30e-2 364 12.27 1.37e-2
QSSOR 195 8.82 1.95e-2 190 8.70 8.30e-2 181 4.28 1.37e-2

2048 FSSOR 34577 1372.44 1.95e-2 16881 684.52 8.30e-2 7718 325.23 1.37e-2
HSSOR 4630 199.11 1.95e-2 2195 99.27 8.30e-2 962 44.93 1.37e-2
QSSOR 580 28.45 1.95e-2 236 14.69 8.30e-2 182 6.26 1.37e-2
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