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We report some nonsmooth dynamics of a Bloch state in a one-dimensional tight binding model.
After a sudden change of the potential of some site, quantities like the survival probability of the
particle in the initial Bloch state show cusps periodically. This phenomenon is a nonperturbative
counterpart of the nonsmooth dynamics observed previously (Zhang and Haque, arXiv:1404.4280)
in the tight binding model. We explain it by exactly solving a truncated and linearized model.
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I. INTRODUCTION

In quantum mechanics, there exist two parallel themes.
One is about the static properties of a system, namely the
eigenstates and eigenvalues of the Hamiltonian. Techni-
cally, in the nonrelativistic case, it is about the time-
independent Schrödinger equation. The other is about
the dynamics of the system, namely how the wave func-
tion or the expectation values of various physical quan-
tities evolve. Technically, it is about the time-dependent
Schrödinger equation. While for the former, there exist
many theorems which give us a good picture of the wave
functions in many cases; for the latter, the relevant math-
ematics is far less developed, and hence we often have
little intuition. Actually, the dynamics of the system can
turn out to be very surprising. This is the case even
in the single particle case, as the celebrated phenomena
of dynamical localization [1] and coherent destruction of
tunneling [2] demonstrate.

In this paper, we report some unexpect dynamics in
the setting of the one-dimensional tight binding mod-
el, which is arguably the simplest model in solid state
physics. It is about a very simple scenario. We take
a tight binding model with periodic boundary condition
and put a particle in some eigenstate, i.e., a Bloch state
with some momentum. Then suddenly we quench it by
changing the potential of some site. The rough picture is
that the particle will be reflected by the newly introduced
barrier, and the particle will do Rabi oscillation between
the initial Bloch state and its time-reversed counterpart.
However, exact numerical simulation reveals the unex-
pected fact that the curves of some physical quantities
like the probability of finding the particle in the initial
state, are structured. Specifically, they show cusps peri-
odically in time.

The cusps here are somehow similar to the cusps ob-
served previously [3], which is also in the tight binding
model setting (the cusps there were observed earlier in
quantum optics settings [4, 5] but were not fully account-
ed for). However, the crucial difference is that, while
there it is a perturbative effect and survives only in the
weak driving limit, here it is a generic nonperturbative
effect and thus is very robust.

In the following, we shall first describe the phenomenon

by presenting the numerical observations in Sec. II. Then
in Sec. III we will identify the essential features of the un-
derlying Hamiltonian, from which we define an idealized
toy model. The phenomenon is then accounted for by
solving the dynamics of the toy model analytically.

II. PERIODICALLY APPEARING CUSPS

The N -site tight binding model Hamiltonian is (~ = 1
throughout this paper)

Ĥ0 = −
N−1
∑

n=0

(â†nân+1 + â†n+1ân). (1)

Here â†n (ân) is the creation (annihilation) operator for a
particle in the Wannier function |n〉 on site n. With the
periodic boundary condition, the eigenstates are the well-
known Bloch states 〈n|k〉 = exp(i2πkn/N)/

√
N . Here k

is an integer defined up to an integral multiple of N .
Now consider such a scenario. Initially the particle is

in the Bloch state |ki〉. Suddenly, at time t = 0, the
potential on site 0 is changed to U . That is, we add

the term Ĥ1 = Uâ†0â0 to the Hamiltonian (1). As the
wave function Ψ(0) = |ki〉 of the particle is no longer
an eigenstate of the new Hamiltonian, nontrivial evolu-
tion starts. Two quantities of particular interest are the
survival probability and the reflection probability

Pi(t) = |〈+ki|Ψ(t)〉|2, Pr(t) = |〈−ki|Ψ(t)〉|2, (2)

which are, respectively, the probability of finding the
particle in the initial Bloch state and the momentum-
reversed Bloch state. Both quantities can be easily cal-
culated numerically as in Fig. 1. There we show the
numerical results of Pi and Pr as functions of time. The
lattice is of size N = 401, and three different sets of val-
ues of (ki, U) are investigated.
The most prominent feature of the curves is the cusps.

In each panel of Fig. 1, the cusps are equally spaced in
time. They appear simultaneously in the curves of Pi

and Pr. Sometimes, the cusp in one of the two curves
is not so clearly visible, but the corresponding one in
the other curve is well shaped. Of all of the three panels,
panel (b) is especially regular. Not only the cusps appear
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FIG. 1. (Color online) Time evolution of the probability of finding the particle in the initial Bloch state |ki〉 (Pi, solid lines)
and in the momentum-reversed Bloch state |−ki〉 (Pr, dotted lines). Note that Pi+Pr 6= 1 in general as other Bloch states are
occupied too. In all of the three panels, the size of the lattice is N = 401. The values of the parameters (ki, U) are (80, 1.5),
(100, 2), and (100, 12) in (a), (b), and (c), respectively.

periodically, both curves are simply periodic. Moreover,
when the cusps happen, Pi,r = 0.5 or 1.
It is worthy to emphasize the essential difference be-

tween the cusps here and those observed previously in
Ref. [3]. There it is a first order perturbative effect. The
cusps exist only in the weak driving limit, or specifically,
only when the survival probability (namely Pi) is close to
unity, and between the cusps the survival probability is a
linear function of time. In contrast, here apparently the
cusps are still very sharp even when Pi constantly drop-
s to zero. Moreover, the functional form of the curves
between the cusps is neither linear nor, as we shall see
below, exponential.

III. EXPLANATION BY A TRUNCATED AND

LINEARIZED MODEL

To account for the cusps in Fig. 1, we need to have a
close survey of the structure of the un-perturbed Hamil-
tonian Ĥ0 and perturbation Ĥ1. Figure 2 shows the dis-
persion relation, ε = −2 cos q with q = 2πk/N , of Ĥ0.

The perturbation Ĥ1 couples two arbitrary Bloch states
with an equal amplitude

g = 〈k1|Ĥ1|k2〉 = U/N, (3)

regardless of the difference k1 − k2.
A crucial fact revealed by numerics is that in the evo-

lution of the wave function, essentially only those few
Bloch states with energy close to the energy ε(qi) of the
initial Bloch state participate. Or in other words, only
those Bloch states with q ≃ ±qi contribute significantly
to the wave function. Now since locally the dispersion
curve ε(q) can be approximated by a straight line (it is
especially the case at qi = π/2), we are led to truncate
and linearize the model.
Of all the Bloch states, we retain only two groups cen-

tered at | ± ki〉. Each group consists of 2M + 1 states

−π π q

ε

qi−qi

FIG. 2. (Color online) Dispersion relation ε(q) = −2 cos q
of the tight binding model (1). The parameter qi = 2πki/N
denotes the wave vector of the initial Bloch state. The dotted
straight lines are local linear approximations to the dispersion
curve. Only the Bloch states inside the circles participate
significantly in the dynamics and thus are retained in the
truncated Hamiltonian.

with wave numbers symmetrically distributed around
ki or −ki. Let us now refer to them as {|Rn〉} and
{|Ln〉}, where R and L mean right-going and left-going,
respectively, and n ranges from −M to M . By choice,
|Rn〉 = |ki + n〉 and |Ln〉 = | − ki − n〉. After linearizing
the dispersion curve at ±qi, the energy of the degenerate
states |Rn〉 and |Ln〉 is n∆, with ∆ = 4π sin qi/N . Again,

the perturbation Ĥ1 couples two arbitrary states in the
retained set of states with equal amplitude g = U/N .
This truncated and linearized model can be partially

diagonalized by introducing a new basis as

|A±
n 〉 =

1√
2
(|Rn〉 ± |Ln〉). (4)

Referring to the original Hamiltonian Ĥ0, they are even-
and odd-parity states with respect to the defected site,
respectively. It is easy to see that |A−

n 〉 are eigenstates

of the total Hamiltonian Ĥ = Ĥ0 + Ĥ1 with eigenvalues
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FIG. 3. (Color online) A generic (red solid lines) trajectory of
ψ0 on the complex plane according to Eq. (20). It is analogous
to the bouncing of a ball inside a circular billiard. The green
dashed closed trajectory corresponds to the case of θ = π/2.

n∆. This is understood as that the odd-parity states do
not feel the barrier at all. In the yet to be diagonalized
subspace of {|A+

n 〉}, the matrix elements of Ĥ0 and Ĥ1

are

〈A+
n |Ĥ0|A+

n 〉 = n∆, 〈A+
n1
|Ĥ1|A+

n2
〉 = 2g, (5)

for arbitrary n1,2.
Now the scenario is like this. Initially the system is in

the level |Ψ(0)〉 = |R0〉. The problem is, how does the
probability of finding the system in the initial level |R0〉
evolve in time? We have the decomposition

|Ψ(0)〉 = |R0〉 =
1√
2
|A−

0 〉+
1√
2
|A+

0 〉. (6)

Since |A−
0 〉 is an eigenstate of Ĥ, we see that at an arbi-

trary time later, the wave function has the form

|Ψ(t)〉 = 1√
2
|A−

0 〉+
1√
2

M
∑

n=−M

ψn|A+
n 〉. (7)

Here the initial value of ψn is δn,0. The quantity wanted
is ψ0(t), in terms of which the probabilities Pi and Pr are

Pi =
1

4
|1 + ψ0|2 , Pr =

1

4
|1− ψ0|2 . (8)

The Schrödinger equation for the ψ’s is then

i
∂

∂t
ψn = n∆ψn + 2g

M
∑

m=−M

ψm. (9)

Note that the term in the summation is independent of
n. Therefore, we define the collective quantity

S(t) =

M
∑

m=−M

ψm(t). (10)

The Schrödinger equation (9) can then be rewritten in
the form

i
∂

∂t
ψn = n∆ψn + 2gS. (11)

This equation can be easily solved by Duhamel’s principle

ψn(t) = e−in∆tδn,0 − i2g

∫ t

0

dτe−in∆(t−τ)S(τ). (12)

Plugging this into (10), we get an integral equation of S,

S(t) = 1− i2g

∫ t

0

dτ

(

M
∑

n=−M

e−in∆(t−τ)

)

S(τ). (13)

Here we use some fact verified by numerics (see Figs. 4
and 5). Numerically, it is easy to find that as M → ∞,
the dynamics of the system converges quickly. Therefore,
it is legitimate to replace the finite summation in the
bracket by an infinite summation. That is,

S(t) ≃ 1− i2g

∫ t

0

dτ

(

+∞
∑

n=−∞

e−in∆(t−τ)

)

S(τ). (14)

Here we note that the infinite summation in the parenthe-
ses is periodic sampling of an exponential function, and
thus, the famous Poisson summation formula applies [6].
We have

+∞
∑

n=−∞

e−in∆(t−τ) = T
+∞
∑

n=−∞

δ(t− τ − nT ), (15)

where the period T ≡ 2π/∆. Substituting this into (14),
we get

S(t) = 1− i2gT

(

1

2
S(t)

)

, (16)

for 0 < t < T , by using the fact that
∫∞

0 dtδ(t) = 1/2.
We then solve

S(t) =
1

1 + igT
, (17)

which is a constant, for 0 < t < T . Substituting this into
(12), we get

ψ0(t) = 1− i2gt

1 + igT
=

1− i2g(t− T/2)

1 + igT
, (18)

which is linear in t. We note that as t→ T−,

ψ0(t) →
1− igT

1 + igT
= e−iθ (19)

for some θ ∈ R. That is, after one period, ψ0 returns
to its initial value, except for a phase accumulated. This
complete revival means, for rT < t < (r+1)T , the value
of ψ0 is

ψ0(t) =
1− i2g[t− (r + 1/2)T ]

1 + igT
e−irθ. (20)
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FIG. 4. (Color online) Time evolution (blue solid lines) of (a) the auxiliary quantity S and (b) ψ0 for M = 10. In each panel,
the red line indicates the analytical predictions of (23) or (20). Compare (b) with Fig. 3. The parameters are ∆ = 1, g = 0.125,
and T = 2π/∆.
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FIG. 5. (Color online) Time evolution of |ψ0|
2 for a finite

M . In each panel, the blue solid line indicates the numerical
exact value while the dashed green line the analytical formula
(20), which is valid in the M → ∞ limit. In each period, the
latter is a parabola. The parameters are ∆ = 1, g = 0.5, and
T = 2π/∆.

We thus see that |ψ0|2 is a periodic function of time t.
At t = rT , r ∈ N, it returns to unity and in-between it
is a quadratic function of t. In Fig. 3, the trajectory of
ψ0 on the complex plane is illustrated. It bounces inside
the unit circle elastically like a ball.
Another way to derive (20) from (13) is as follows.

Take the Laplace transform of both sides of (13). Let
L(p) =

∫∞

0
dte−ptS(t). We note that the integral on the

right hand side of (13) is in the convolution form. Hence,
we have the simple linear equation of L(p),

L(p) =
1

p
− i2g

(

M
∑

n=−M

1

p− in∆

)

L(p). (21)

In the limit of M → ∞, by using Euler’s identity of
∑

n∈Z
1/(z − n) = π cot(πz) [7], we get

L(p) =
1/p

1 + gT cot(−ipT/2)

=
1− e−pT

(1 + igT )p

∞
∑

r=0

e−r(iθ+pT ), (22)

where e−iθ is defined as in (19). Then it is not difficult
to see that

S(t) =
1

1 + igT

∞
∑

r=0

e−irθχ(rT < t < (r + 1)T ). (23)

Here the characteristic function χ takes the value of u-
nity if the condition in the parentheses is satisfied, and
zero otherwise. We see that S takes a constant value in
each interval of (rT, (r + 1)T ). By (12) and (23), it is
straightforward to get ψ0 as in (20). Conversely, (23) is
anticipated in view of (17) and (20).
A peculiar feature of (17) and (23) is that S is not

continuous at t = rT . For example, by the definition
(10), S(t = 0) = ψ0(t = 0) = 1, however by (17),
S(t = 0+) 6= 1. This should be an artifact of our treat-
ment involving the M → ∞ limit. To see how this diffi-
culty is solved for finite M , we demonstrate the typical
time evolution behavior of S with M = 10 in Fig. 4(a).
We see that in the interval of rT < t < (r + 1)T , S os-
cillates rapidly around the constant value predicted by
(23), and at about t = rT , the orbit of S quickly transits
from around one constant value to around the next. A-
long with the time evolution of S in Fig. 4(a), we show in
Fig. 4(b) the time evolution of ψ0. We see that the nu-
merical exact value of ψ0 follows the analytical prediction
of (20) closely, with much smaller oscillation amplitude
than S. This is reasonable in view of (12), where S ap-
pears in the integral and thus its oscillation is averaged
out.
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FIG. 6. (Color online) Comparison between the numerical exact values of Pi,r and the analytical predictions. The panels
correspond to those in Fig. 1 one to one and in order. The analytical curves are solid (respectively, dotted) if the corresponding
numerical curves are dotted (respectively, solid). The dotted lines are hardly visible, which proves that the numerical and
analytical results agree very well.

Further evidences demonstrating that the simple for-
mula (20) is a good approximation for finite M (Anyway,
there are only a finite number of levels in the original
tight binding model) are presented in Fig. 5. There we
see that even for M = 5, the formula (20) captures the
behavior of |ψ0|2 on the scale of T very well, and as M
increases, the curve converges to that predicted by (20)
very quickly.
Having verified that (20) is reliable even for finite lev-

els, we now apply the theory to the original problem.
There we have ∆ = 4π sin qi/N and g = U/N . Using
(8) and (20), we can calculate Pi,r in Fig. 1 analytically.
The results are presented in Fig. 6 together with those
numerical data in Fig. 1. We see that the analytical ap-
proximation and the numerical exact results agree very
well. We can also understand the regularity of Fig. 1(b)
now. For U = 2 and qi = π/2, gT = 1 (regardless of
the value of N) and hence θ = π/2 and the trajectory of
ψ0 is the closed one in Fig. 3. By (8), it results in the
regular behavior of Pi,r in Fig. 1(b).

IV. CONCLUSION AND DISCUSSION

In conclusion, we have found the reflection dynamics
of a Bloch state against a site defect to be nonsmooth.
Specifically, the survival probability Pi and the reflec-

tion probability Pr both show cusps periodically in time.
This phenomenon is explained by analytically solving the
dynamics of an idealized model retaining the essential
features of the original tight binding model, namely, the
locally equally spaced spectrum and the equal coupling
between two arbitrary states.

The cusps are different on the one hand from those
reported in Refs. [3–5] in that they are deeply non-
perturbative, and on the other hand from those in Ref-
s. [8–10] in that the functions in-between the cusps are
not exponential but quadratic.

Although we do not believe the phenomenon reported
here is universal, we do think it provides a good exam-
ple demonstrating that the dynamics of a model, even
the simplest one, can be very surprising. The point is
that, thorough understanding of the static properties of
a model (as we do for the model in question) does not im-
ply thorough understanding of its dynamical properties.
The former does not help much for the latter in many
cases.
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