January 14th, 24th 2016 Anno Domini

Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal
Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.
Email: rameshebagadi@uwalumni.com

White Paper One {TRL88VersionII}
of
Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank,
Technology Assistance & Innovation Center, Madison, Wisconsin-53715,
United States Of America
Abstract

In this research manuscript, the author has elucidated the ‘Universal Cross Product’ of two Sets not necessarily equal in Size.

Theory

Before the author presents the concept of ‘Universal Cross Product’ the author presents three of his concepts (mentioned in the References below) ‘Universal Recursive Algorithmic Scheme For The Generation Of Sequence Of Prime Numbers (Of 2nd Order Space)’, ‘Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order {Say, Rth} Space’, ‘Classification Of Prime Numbers’ presented in Blue-Boxes:

Universal Recursive Scheme For Generating The Sequence Of Prime Numbers (Of 2nd Order Space)

Abstract

In this research monograph, the author presents a novel ‘Universal Recursive Scheme For Generating The Sequence Of Prime Numbers (Of 2nd Order Space)’.

Theory

One can note that we can represent any Asymmetric Universal Recursion Scheme as

\[\{x\} \leftrightarrow \{x - a\} \leftrightarrow \{x + b\} \]

One can simply Normalize it by simply doing the operation

\[\{x\} \leftrightarrow \left\{ x - \left(\frac{a}{x} \right) \right\} \leftrightarrow \left\{ x + \left(\frac{b}{x} \right) \right\} \]

i.e.,

\[\{x\} \leftrightarrow \left\{ \frac{x^2 - a}{x} \right\} \leftrightarrow \left\{ \frac{x^2 + b}{x} \right\} \]

Now, we consider the first three consecutive numbers starting from 0, i.e., \{0, 1, 2\} (that are supposed to indicate some Universal Recursion Scheme) \(0 \leftrightarrow 1 \leftrightarrow 2\).

We now re-write all possible 6 arrangements of \(0 \leftrightarrow 1 \leftrightarrow 2\) namely:

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of (x, a, b)</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x} \leftrightarrow \frac{x^2 - a}{x} \leftrightarrow \frac{x^2 + b}{x})</td>
<td>({0} \leftrightarrow \left{ \frac{(0)^2 - (-1)}{0} \right} \leftrightarrow \left{ \frac{(0)^2 + 2}{0} \right})</td>
<td>(x = 0, a = -1, b = 2)</td>
<td>Undefined</td>
<td>No Prime Number Select New</td>
</tr>
<tr>
<td>({1} \leftrightarrow \left{ \frac{(1)^2 - (-1)}{1}\right} \leftrightarrow \left{ \frac{(1)^2 - 1}{1}\right})</td>
<td>(x = 1, a = -1, b = -1)</td>
<td>(1 \leftrightarrow 2 \leftrightarrow 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now, noting that the next nearest Prime number found being 5, we now use the set \{0, 1, 2\} given in the beginning and use its two highest Prime numbers and couple the recently found 3 to form a new set \{1, 3\} and consequently a Asymmetric Universal Recursion Scheme. Using the same above scheme we again find a similar table for \(1 \leftrightarrow 2 \leftrightarrow 3\).

<table>
<thead>
<tr>
<th>Universal Asymmetric Recursion Scheme</th>
<th>Normalized Universal Asymmetric Recursion Scheme</th>
<th>Values Of (x, a, b)</th>
<th>Result</th>
<th>Finalized Pick From The Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \leftrightarrow 0 \leftrightarrow 1)</td>
<td>({2} \leftrightarrow \left{ \frac{(2)^2 - (2)}{2} \right} \leftrightarrow \left{ \frac{(2)^2 - 1}{2} \right})</td>
<td>(x = 2, a = 2, b = -1)</td>
<td>(4 \leftrightarrow 2 \leftrightarrow 3)</td>
<td>3 (Prime Number Nearest to 2)</td>
</tr>
<tr>
<td>(1 \leftrightarrow 0 \leftrightarrow 2)</td>
<td>({1} \leftrightarrow \left{ \frac{(1)^2 - (1)}{1} \right} \leftrightarrow \left{ \frac{(1)^2 + 1}{1} \right})</td>
<td>(x = 1, a = 1, b = 1)</td>
<td>(1 \leftrightarrow 0 \leftrightarrow 2)</td>
<td>No New Prime Number Select To</td>
</tr>
<tr>
<td>(0 \leftrightarrow 2 \leftrightarrow 1)</td>
<td>({0} \leftrightarrow \left{ \frac{(0)^2 - (2)}{0} \right} \leftrightarrow \left{ \frac{(0)^2 + 1}{0} \right})</td>
<td>(x = 0, a = -2, b = 1)</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>(2 \leftrightarrow 1 \leftrightarrow 0)</td>
<td>({2} \leftrightarrow \left{ \frac{(2)^2 - 1}{2} \right} \leftrightarrow \left{ \frac{(2)^2 - 2}{2} \right})</td>
<td>(x = 2, a = 1, b = -2)</td>
<td>(4 \leftrightarrow 3 \leftrightarrow 1)</td>
<td>3 (Prime Number Nearest to 2)</td>
</tr>
</tbody>
</table>

Now, noting that the next nearest Prime number found being 5, we now use the set \{0, 1, 2\} given in the beginning and use its two highest Prime numbers and couple the recently found 3 to form a new set \{1, 3\} and consequently a Asymmetric Universal Recursion Scheme. Using the same above scheme we again find a similar table for \(1 \leftrightarrow 2 \leftrightarrow 3\).
<table>
<thead>
<tr>
<th>R</th>
<th>(x)</th>
<th>(x^2 - ax)</th>
<th>(x^2 + bx)</th>
<th>(\text{Prime Number Next to} : 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now, noting that the next nearest Prime number found being 7, we now use the set \{2, 3, 5\} given in the beginning and couple the recently found 7 to form a new set \{3, 5, 7\} and consequently an Asymmetric Universal Recursion Scheme \(3 \leftrightarrow 5 \leftrightarrow 7\). Using the same above scheme we again find a similar table for \(3 \leftrightarrow 5 \leftrightarrow 7\) and can consequently find the next Prime Number to be 11.

We can keep repeating the aforementioned scheme many, many times so on, so forth and can generate the entire 'Sequence of Prime Numbers' up to a desired limit.

Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order (Say, \(R^n\)) Space

Abstract

In this research manuscript, the author has detailed a 'Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order (Say, \(R^n\)) Space'.

Theory

Firstly, we present a Definition.

Definition

The First Prime of any \(R^n\) Order Space Sequence Of Primes can be computed by simply considering Consecutively \((R-1)\) Number of Primes of \(2^{nd}\) Order Space Sequence Of Primes, starting from the First Prime of \(2^{nd}\) Order Space Sequence Of Primes, i.e., 2 and forming a Product Term of \((R-1)\) Number of Product Forming Factors

\[
\text{of the Form } 2 \times 3 \times 5 \times 7 \times \ldots \times \left\{P_{(R-3)}\right\} \times \left\{P_{(R-2)}\right\} \times \left\{\text{Prime Next to} \: 5\right\}
\]

which becomes the First Prime of any \(R^n\) Order Space Sequence Of Primes as it cannot be factored in terms of \(R\) Number of Unique Factors. We label this Number as \(P_1^{(R)}\).

The Second Prime of any \(R^n\) Order Space Sequence Of Primes can be computed by simply considering Consecutively \((R-1)\) Number of Primes of \(2^{nd}\) Order Space Sequence Of Primes, starting from the First Prime of \(2^{nd}\) Order Space Sequence Of Primes, i.e., 2 and forming a Product Term of \((R-1)\) Number of Product Forming Factors

\[
\text{of the Form } 2 \times 3 \times 5 \times 7 \times \ldots \times \left\{P_{(R-3)}\right\} \times \left\{P_{(R-2)}\right\} \times \left\{P_{(R-1)}\right\}
\]

which becomes the Second Prime of any \(R^n\) Order Space Sequence Of Primes as it cannot be factored in terms of \(R\) Number of Unique Factors. We label this Number as \(P_1^{(R)}\).
Classification Of Prime Numbers

Abstract
In this research manuscript, the author has presented a System of 'Classification Of Prime Numbers'.

Theory

Definition
A Number is considered as a Prime Number if it has Only One Pair of Factors, i.e., 1 and Number, and is Only Factorizable into a Product of (R-1) Distinct Non-Reducible Numbers (Primes).

Example: The general Primes that we usually refer to are Primes of 2nd Order Space.

Prime Numbers can be categorized mainly into the following three types:

1. Multi Same Dimensional Primes.
 For Example: 4 = 2 x 2 is Multi Same Dimensional Prime of Third Order Space.

 For Example: 30 = 2 x 3 x 5 is Multi Same Dimensional Prime of Fourth Order Space.

Example: See author’s ‘Universal Recursive Scheme To Generate The Sequence Of (Multi Distinct Dimensional Primes) Primes Of Any Order (Say, Rth) Space’, shown in the Blue-Box below:

Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order (Say, Rth) Space

Abstract
In this research manuscript, the author has detailed a ‘Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order (Say, Rth) Space’.

Theory

Firstly, we present the Definition:

Definition
The First Prime of any Rth Order Space Sequence Of Primes can be Computed by simply considering Consecutively (R-1) Number of Primes of 2nd Order Space Sequence Of Primes, starting from the First Prime of 2nd Order Space Sequence Of Primes, i.e., 2 and Forming a Product Term of (R-1) Number Of Product Forming g Factors

\[2 \times 3 \times 5 \times 7 \times \ldots \times \left\{ P_{(R-3)} \right\} \times \left\{ P_{(R-2)} \right\} \times \left\{ P_{(R-1)} \right\} \]

which becomes the First Prime of any Rth Order Space Sequence Of Primes as it cannot be factored in terms of R Number of Unique Factors. We Label this Number as \(R \cdot P_1 \).

The Second Prime of any Rth Order Space Sequence Of Primes can be Computed by simply considering Consecutively (R-1) Number of Primes of 2nd Order Space Sequence Of Primes, starting from the First Prime of 2nd Order Space Sequence Of Primes, i.e., 2 and Forming a Product Term of (R-1) Number Of Product Forming g Factors

\[2 \times 3 \times 5 \times 7 \times \ldots \times \left\{ P_{(R-3)} \right\} \times \left\{ P_{(R-2)} \right\} \times \left\{ P_{(R-1)} \right\} \]

which becomes the Second Prime of any Rth Order Space Sequence Of Primes as it cannot be factored in terms of R Number of Unique Factors. We Label this Number as \(R \cdot P_2 \).

We also note that the above denoted \(P_{(R-i)} \) is an \((R-i)^{th} \) Prime of Sequence Of Primes of 2nd Order Space.
becomes the Second Prime of any R^{th} Order Space Sequence Of Primes as it cannot be factored in terms of R Number of Unique Factors. We Label this Number as $2p_R$. The Third Prime of any R^{th} Order Space Sequence Of Primes can be Computed by simply considering Consecutively $(R-1)$ Number of Primes of 2nd Order Space Sequence Of Primes, starting from the First Prime of 2nd Order Space Sequence Of Primes, i.e., 2 and Forming a Product Term of the Form $\left\{ \prod_{i=1}^{(R-1)} P_{(R-1)} \right\} \times \left\{ \prod_{i=R}^{(R-2)} P_{(R-2)} \right\} \times \left\{ P_{(R+1)} \right\}$ which becomes the Second Prime of any R^{th} Order Space Sequence Of Primes as it cannot be factored in terms of R Number of Unique Factors. We Label this Number as $3p_R$.

We also note that the above denoted $P_{(R-i)}$ is an $(R-i)th$ Prime of Sequence Of Primes of 2nd Order Space.

We now consider the thusly computed First Three Consecutive Primes of R^{th} Order Space, i.e., $P_1, P_2, and P_3$ and Follow Author’s ‘Universal Recursive Algorithmic Scheme To Generate The Sequence Of Primes (Of Second (2nd) Order Space)’ to Generate the Complete Sequence Of Primes Of R^{th}Order Space, Up To Any Desired Limit.

Example:

<table>
<thead>
<tr>
<th>First Few Elements Of Sequence’s Of (Multi Distinct Dimensional Primes) Primes</th>
<th>Of R^{th}Order Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>${2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, \ldots}$</td>
<td>$R=2$</td>
</tr>
<tr>
<td>${6 (3x2), 10 (5x2), 14 (7x2), 15 (5x3), 21 (7x3), 22 (11x2), 26 (13x2), 33 (11x3), 34 (17x2), 35 (7x5), 38 (19x2), 39, (13x3), 43 (9x5), \ldots}$</td>
<td>$R=3$</td>
</tr>
<tr>
<td>${30 (5x3x2), 42 (7x3x2), 70 (7x5x2), 84 (7x4x3), 102 (17x3x2), 105 (17x3x2), 110 (11x5x2), 114 (19x3x2), 130 (13x5x2), \ldots}$</td>
<td>$R=4$</td>
</tr>
<tr>
<td>${210 (7x5x3x2), 275 (11x5x3x2), 402 (11x7x3x2), 770 (11x7x5x2), 1155 (11x7x5x3), \ldots}$</td>
<td>$R=5$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Conclusion
As detailed above, one can classify Primes in the aforementioned fashion.
Moral
There Is Beauty In Optimal Diversity.

In this research manuscript, the author has elucidated the ‘Universal Cross Product’ of two Sets not necessarily equal in Size.

Firstly, we consider two sets $\{S_1\}$ and $\{S_2\}$ such that their elements are given by

$$ \{S_1\} = \{ 3S_1, 5S_1, 2S_1, 4S_1, 6S_1, 5S_1, 3S_1, 4S_1 \} $$

and

$$ \{S_2\} = \{ 3S_2, 5S_2, 3S_2, 11S_2, 8S_2, 7S_2, 5S_2, 4S_2 \} $$

where, the notation $\alpha_{\beta}S_i$ implies that it is β^{th} Position Prime Metric Base Element...
of Sequence Of Primes of Order Space α

and that this element belongs to the i^{th} Set, namely S_i.

Therefore, $\{S_1\} = \begin{pmatrix} 3_{4S_1}, 3_{5S_1} \\ 2_{3S_1} \\ 3_{8S_1} \\ 4_{4S_1} \end{pmatrix}$ which can be represented by

$$\{S_1\} = \begin{bmatrix} \Phi & \Phi & \Phi & 4_{4S_1} & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & 3_{3S_1} & \Phi & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & 3_{4S_1} & 3_{5S_1} & \Phi & \Phi & 3_{8S_1} \\ \Phi & \Phi & \Phi & 4_{4S_1} & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & 5_{6S_1} & 5_{7S_1} & \Phi \end{bmatrix}$$

where Φ indicates a Null Set, i.e., no Element.

And $\{S_2\} = \begin{pmatrix} 4_{5S_2}, 7_{6S_2}, 3_{7S_2} \\ 5_{7S_2} \\ 4_{4S_2} \end{pmatrix}$ which can be represented by

$$\{S_2\} = \begin{bmatrix} \Phi & \Phi \\ \Phi & \Phi \\ \Phi & \Phi & \Phi & 3_{4S_2} & 3_{5S_2} & 3_{7S_2} \\ \Phi & \Phi & \Phi & 4_{4S_2} & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & 5_{7S_2} \end{bmatrix}$$

Where Φ indicates a Null Set, i.e., no Element.

We note that the two sets $\{S_1\}$ and $\{S_2\}$ are of different Size after the rendering in the afore-detailed rectangular array, therefore, we upgrade the Lower Sized
Set to the Higher Sized Set by simply inserting a \(\Phi \), i.e., a Null Set, i.e., no Element at the Blank Spaces.

We now consider the *Universal Cross Product* of the two sets \(\{S_1\} \) and \(\{S_2\} \) in the following fashion

\[
\{S_1\} \times \{S_2\} = \begin{cases}
\Phi & \Phi \\
\Phi & \Phi \\
\Phi & \Phi \\
\Phi & \Phi
\end{cases}
\]

i.e.,

\[
\{S_1\} \times \{S_2\} = \left\{ \left(i_1 \times i_2 \times i_3 \times i_4 \times i_5 S_1 \times S_2 \right), \left(i_3 \times i_4 \times i_5 S_1 \times S_2 \right), \left(i_5 S_1 \times S_2 \right) \right\}
\]

where, the *Operation* \(\times \) can be anything, for example, *An Ordered Pair*, *Addition*, *Multiplication*, *Subtraction*, etc.

Conclusion

One can note that this concept of *Universal Cross Product* finds use in many facets of Mathematics, Science and Engineering.

Moral

Marriages Are Made In Heaven.

References

Ramesh Chandra Bagadi

Vixra Publications

Large Sized Determinants Computing Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Classification Of Prime Numbers
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of Elements Forming A Complete Recursive Set On The Higher And Lower Side {From And Up To Specified Limits} Of A Three Distinct Element Set {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of Elements Forming A Complete Recursive Set On The Higher Side {Up To A Specified Limit} Of A Three Distinct Element Set {Not Containing Zero} Arranged In Ascending Order
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Natural Memory Embedding
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[91] viXra:1601.0188 submitted on 2016-01-18 03:36:03, (2 unique-IP downloads)
Generation Of Elements Forming A Complete Recursive Set On The Higher And Lower Side {From And Up To Specified Limits} Of A Three Distinct Element Set
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Scheme To Find The Recursion Scheme Of Any Set Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Primality Tree Analysis
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Any Sequence Of Concern’s Evolution Function With Respect To The Evolution Function Of Sequence Of Primes
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Cross Product
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Scheme To Find The Next Term Of A Triplet Sequence Not Containing Zero And Arranged In Ascending Order
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Hyper-Causality Invokement Of Verbose Sounds Through Electromagnetic Wave-Guide Effect
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life {Version 5}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Quantizing Ability And/ Or Hyper-Causality Invoking Ability Of Truth Statements In Samskrutam Language
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Preventing Cancerous Growth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[81] viXra:1601.0087 submitted on 2016-01-10 06:05:04, (2 unique-IP downloads)
One Step Evolutionary Growth Of Any Primality Set Of Concern {Evolution - Version 5}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[80] viXra:1601.0084 submitted on 2016-01-09 08:41:16, (1 unique-IP downloads)

Primality Engineering II
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Solving Any Puzzle
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[78] viXra:1601.0071 submitted on 2016-01-08 05:19:14, (3 unique-IP downloads)

Street Vendor Business(es) Quantification And Optimization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[77] viXra:1601.0049 submitted on 2016-01-06 05:19:42, (3 unique-IP downloads)

Universal Recursion Scheme That Is Vertically {Maximally} Evolving
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Vision Tunneler. Universal Infinite Frequency Tunneler
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Universal Space Folding Recursion Scheme
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Comparator
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of The Recursion Scheme Of Any Complete Primality Tree Of Concern {Version III}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Optimal Business Varietization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Generation Of The Recursion Scheme Of Any Complete Primality Tree Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Lateral Load Increment Scheme Quantization For Use In Push Over Analysis
Scheme Generally Used In Multi-Storeyed Structural Analysis
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursion Scheme Of Any Complete Primality Tree Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

On the Theory Of Complete Recursive Sub-Sets Of A Given Set Of Concern. Definition Of A Galaxy
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind {Version IV}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind {Version III}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Complementary Lower End Prime Pair And Complementary Higher End Prime Pair
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

THeory Of Evolution {Version Iv OR 4}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Schema Of Construction Of Infinity Geodesic Of Any Aspect Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Un-Biased Complete Evolution
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

NP Versus P Problem. Schroedinger's Cat In A Box Problem
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Objective Of The Universe. Universal Beauty Primality. Universal Optimal Life Primality. The Aforementioned Three Aspects As Restrictions For Evolution {Version II of All The Aforementioned}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Representation Of Alphabets By Set Of Prime Numbers – Primality Engineering I {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[56] viXra:1512.0396 submitted on 2015-12-22 01:04:57, (7 unique-IP downloads)

Universal Truth Of Recursive Kind {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order {Say, Rth} Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Truth Of Recursive Kind
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Karma-Falam. Why-To.
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

{1} Universal Recursive Scale Shifting Technique {2} Universal Recursion Scheme That Is Vertically {Maximally} Evolving {10-3-105}-{6-2-15}-{14-5-385}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/ Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern {Version II}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[49] viXra:1512.0345 submitted on 2015-12-17 00:49:27, (8 unique-IP downloads)

Universal Daily Wage Labour Work Order(s) Placed Instantaneous Quantification And Exigent Work Order(s) Realization Facilitation System
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

First Meaning(s) Of All The English Alphabet(s)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[47] viXra:1512.0323 submitted on 2015-12-15 00:08:54, (8 unique-IP downloads)

Recommended Human Conduct
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning - An Example Of Natural Memory Embedding
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning. The Universal Infinite Logic Distiller
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[44] viXra:1512.0312 submitted on 2015-12-14 00:00:25, (6 unique-IP downloads)

On The Governmental Policy Of Acquiring And/ Or Purchase Of Individual Citizen Property For Governmental Reforms {Version I}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Light Type Holistic Reference Frames For Characterizing Universal Electro-Magnetic Phenomena
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Maximizing Relativistic Electro-Magnetic Fringe Displacement Effect Width
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

REprersentation Of Alphabets By Prime Numbers - Primality Engineering - I
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[40] viXra:1512.0268 submitted on 2015-12-09 03:30:14, (12 unique-IP downloads)
Theory Of Evolution Through Consecutive Asymmetric Imaging Technique
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Truth Assessment Of Any Consciousness Information
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[38] viXra:1512.0218 submitted on 2015-12-05 00:41:24, (16 unique-IP downloads)

‘Pi’ Value And/ Or Its Higher Order Equivalents Value Precision Quantized Increase Based Refinement Of Any Primality And/ Or Any Recursion Scheme Of Any Aspect Of Concern
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[37] viXra:1512.0117 submitted on 2015-12-04 02:24:10, (12 unique-IP downloads)

Holistic Flood Proof City Design. Instantaneous Flood Water Draining System Theory
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[36] viXra:1512.0021 submitted on 2015-12-03 00:53:45, (9 unique-IP downloads)

Universal Aspect Recursion Scheme {Version 2}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[35] viXra:1512.0008 submitted on 2015-12-02 00:45:31, (9 unique-IP downloads)
Universal Aspect Recursion Scheme {Version 1}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[34] viXra:1511.0238 submitted on 2015-11-25 02:01:26, (29 unique-IP downloads)

Your Good Nature Is Your Real Wealth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Relativistic Transformations In Standard Prime Metric And/ Or Corresponding Reverse Direction Prime Metric Within Some Selected Domains Of Complementable Bounds
Authors: Ramesh Chandra bagadi
Category: General Mathematics

Fulfill Your Life (Version 4)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization (Version III)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[30] viXra:1511.0190 submitted on 2015-11-20 09:00:08, (13 unique-IP downloads)
Rth Order Space Sequence Of Primes Based Prime Metric Algebra
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Tessellation Based Scheme To Derive The Evolution Scheme Of Any Aspect Set Of Concern {Evolution Through Quantization (Version Two)}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version III)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Algoritmic Scheme For The Generation Of Sequence Of Prime Numbers (Of 2nd Order Space)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life {Version 3}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursion Scheme Of The Sequence Of Primes {Of Second (2nd) Order Space}
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Theory Of ‘Complementable Bounds’ And ‘Universe(s) In Parallel’ Of Any Sequence Of Primes Of RthOrder Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Synonymity Between The Five Elements Of (At) Planet Earth And The Five Digits Of Human Palm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Genuinity Validation Of Any 'Original Work Consciousness Of Concern' And Decorrupting 'Corrupted Original Work Consciousness'
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[19] viXra:1510.0391 submitted on 2015-10-26 02:45:01, (9 unique-IP downloads)

Musical Life (Version II)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Musical Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Universal Wave Function Of The Universe (Verbose Form)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life (Version 2)
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Quantized Variable Dimensional Equivalents Of Any Technology Of Concern : An Example Of The (William F. Baker)’s Buttressed Core Design Concept
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Time Evolution Juxtaposition Of The Observables Based Dirac Type Commutator And The Consequential Wave Equation Of Photon
Authors: Ramesh Chandra Bagadi
Category: Mathematical Physics

A Condition For The Suspension Of Gravitational Field
Authors: Ramesh Chandra Bagadi
Category: Classical Physics

Some Basic Definitions Of Fractional Calculus
Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Universal Recursive Crossing Science Of Genetic Kind

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness (Version II)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

All You Need to Know About Euclidean and Euclidean Type Inner Product Scheme

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness

Authors: Ramesh Chandra Bagadi
Category: General Mathematics
Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Natural Recursion Schemes Of Rth Order Space
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm
Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Ramesh Chandra Bagadi
OTHER PUBLICATIONS

Ramesh Chandra Bagadi

Cornell University LibraryarXiv.org>cs> arXiv:1009.3809v1
Computer Science > Data Structures and Algorithms
1. One, Two, Three and N Dimensional String Search Algorithms
Ramesh C. Bagadi
(Submitted on 20 Sep 2010 (this version))

Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving family, respectable teachers, en-dear-able friends, inspiring Social Figures, highly esteemed Professors, reverence deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the conception, preparation and authoring of this research manuscript document.

Tribute

The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural phenomenon and forms new premises and scientifically surmises plausible laws.
The author strongly reiterates his sense of gratitude and infinite indebtedness to all such ‘Philosophical Statesmen’ that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.

Dedication

All of the aforementioned Research Works, inclusive of this One are Dedicated to Lord Shiva.