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Abstract: 

Orbits are parameterized with the space−time dimensions of the gravitational constant (ℝ 3, t2). 
Novel solutions for the flyby anomaly, dark matter, and the gravitational lensing effect are 
deduced from first principles. Observable evidence is provided with several experimental 

predictions to test the modified Keplerian dynamics (MoKD) hypothesis.



Introduction 

It will be shown that the kinematics of a secondary's orbit can be parameterized with the space−time 
dimensions of the gravitational constant (ℝ 3, t2):

The parametric equation [1a] will be referred to as a halo. The halo assumes an isolated 2−body system 
(n−bodies will be discussed in a subsequent paper). A 2−D graph of a halo is shown in [1b] (the foci of 
the ellipse are overlapped due to the exaggerated eccentricity of the orbit and the line of apsides is 
inclined relative to the equatorial plane of the primary body.) The definitions of the halo space−time 
parameters are given in [1d], where ◔  is the ratio between the areas of a unit circle (○) and a square (□) 
formed by the hypotenuses of the [x, y] plane of the circle as seen in [1c]. The symbol ● = 4◔ = 2π, and 
● will be referred to as a clock. The radius of a positive clock sweeps out sectors in a counterclockwise 
direction while the radius of a negative clock sweeps out sectors in a clockwise direction. A (−) sign 
does not indicate a reversal in time. Analogous to a linearly polarized electromagnetic field, the [t1, t2] 
clocks are orthogonal to each other. The radius of the t2 clock (●2) alternates its direction relative to an 
inertial frame of reference due to the mirror symmetry of a halo (i.e the radius of ●2  is a pseudovector):



I refer to this as the transparent clock effect; if you spin a transparent clock over by 2◔ = 6:00 = 180º it 
appears as if the clock is ticking counterclockwise relative to your frame of reference but it continues to 
tick clockwise. The t2 clock in the above image is over exaggerated; the compactified temporal 
dimension t2  is miniscule relative to t1  for planetary orbits since ●1r1 >> ●2r2. The temporal dimension 
t1 is taken at periapsis while t2 is taken at the secondary's ascending node (t1 and t2 are phase shifted as 
we will see in the next section). Further information regarding compactified temporal dimensions can 
be found in thermal quantum field theory.[1, 2, 3]

For an elliptical orbit, the variables rA and rB  are the secondary's mean eccentric anomaly distance (the 
semi-major axis of the ellipse) and mean true anomaly distance (the semi-minor axis) respectively, r1  is 
the mean distance between rA and rB, and r2 is the difference between rA and r1. The variables |T1| and   
|T2| are the orthogonal toroidal and poloidal periods (anomalistic and tropical respectively) and |TS| is 
the secondary's sidereal period. Apsidal precession is modeled with a halo due to the circumferential 
difference between ●rA and ●r1 relative to the secondary's toroidal mean motion vT. The quantities ●r1 
and ●r2 are the circumferences of the halo's toroidal and poloidal axes respectively, and vP is the 
secondary's poloidal mean motion (vT >> vP for the planets in our solar system.) Keeping with 
convention, the temporal dimensions are measured in sidereal years and the spatial dimensions are 
measured in astronomical units AU (the length of r1, however, is slightly less than 1 AU for the earth's 
orbit ≈ 0.9998252 AU and the length of r2 ≈ 0.0001748 AU ≈ 2.05⌀E in the J2000.0 epoch, where ⌀E is 
the earth's diameter.) The secondary's position can be graphed with the vector value function:

A secondary's halo orbit can be intuitively modeled as an inertial point upon the surface area of an 
infinitesimally viscous smoke ring (a toroidal Higgs condensate.) A smoke ring is naturally 5−D since 
two temporal dimensions are required in order to parameterize its motion relative to its toroidal and 
poloidal degrees of freedom (i.e abstract dimensions are not required in order to model the secondary's 
motion). A similar framework was discovered independently by Ken Barker from observing the 
kinematics of gas and dust in the Centaurus A galaxy. In Barker's Harvard publication entitled “Nested 
elliptical orbits and their resemblance to a rolling torus structure”[4] he gave the following 
equivalencies for ellipses and tori:



The primary difference between Barker's findings and the halo model (excluding the extra temporal 
dimension) is that the Keplerian semi-major axis a and semi-minor axis b are equivalent to a = rA and  
b = rB. The radii r1 and r2 form the toroidal and poloidal axes of rotation for a halo. 

Observable evidence

FIG. 1: An equation of time graph.

The red curve in the equation of time graph above represents the cumulative time discrepancy between 
apparent and mean solar time on earth (the (+) sign indicates an accurate watch ticking faster than time 
read from a sundial and the (−) sign indicates the opposite). The blue dash & dot toroidal temporal 
wave has a nodal period (marked with the blue dots) which is slightly greater than a sidereal year and 
an amplitude of ≈ 7.66 minutes. The mauve dashed poloidal (obliquity) temporal wave has a nodal 
period of approximately half a sidereal year (marked with the mauve dots) and an amplitude of ≈ 9.87 
minutes. Due to the phase shift δ ≈ ◔ between the temporal waves (precession), the earth's poloidal 
period |T2| is taken at its ascending node (vernal equinox) while |T1| is taken at perihelion, each period 
being relative to the earth's sidereal period |TS| (determined from the Barycentric celestial reference 
system (BCRS) created in 2000 by the International Astronomical Union.) 



If the earth's temporal waves are separated into two channels on an oscilloscope in the X−Y mode the 
result resembles a Lissajous curve:

(the oscilloscope diagrams are not to scale with FIG. 1) where A and B are the amplitudes of T1 and T2 
respectively relative to the equatorial plane of the primary body. The oscilloscope reading on the right 
is produced when T1:T2 = 2:1, which is observed in the earth's solar analemma (T1:T2 ≈ 2:1 due to the 
phase shift δ ≈  and◔  the [x, y] planes are rotated by ):◔

The oscilloscope reading to the left in equation [3] results when T1:T2 = 1:1, which is observed in the 



solar analemmas of Mars, Jupiter, and Saturn (T1:T2 ≈ 1:1):

Dark matter & gravitational lensing

Variations in a star's distance from the nucleus of a galaxy is difficult to determine with high precision. 
We do know, however, that the mass interior to our solar system's orbit can be estimated by assuming a 
circular orbit with the formula:

where m1 is the estimated interior mass, r and v are our system's estimated radius and velocity 
respectively, and G is the gravitational constant. When Kepler and Newton developed their laws nearly 
350 years ago it was not possible for them to observe the motion of stars as they orbit a galaxy. Their 
laws are based upon the assumption that all celestial orbits are limited to conic sections, but modern 
geological evidence[5]  indicates this may not be accurate. According to the evidence, our sun oscillates 
relative to the galactic plane in ≈ 33 ± 1 Myr cycles during its estimated 225−250 Myr revolution. The 
sinusoidal periodicity of the sun's orbit cannot be modeled strictly with conic sections. An elliptical 
conic section, however, can be shown to be sinusoidal relative to a planar frame of reference:

     
FIG 2: An elliptical conic section cut and flattened upon a 2−D surface geometrically produces a periodic wave. 

Since the evidence[5] suggests a solar system's orbit may be sinusoidal, a quantized wavenumber 
parameter for galactic systems will be assumed:

where NT is the system's toroidal wavenumber and nT is its total number of ascending and descending 



nodes relative to the galactic plane (the initial node is subtracted since the system's orbit is recursive.) 
Using the geological evidence[5] we can then approximate our sun's toroidal wavenumber. The rounded 
average between 225 and 250 is 238, and 238 / 34 = 7 (assuming an integer value.) From equation [5] 
we obtain NT ≈ (7−1) / 2 ≈ 3. Combining equation [4] with [5], the estimated mass within our solar 
system's radius is hypothesized to be:

FIG. 3: The observed wave characteristics of our Milky Way galaxy.

where m0 is the rest mass of the bodies interior to our system's orbit and m0S is the sun's rest mass. 
Since m and G are constants (excluding special relativistic effects) a system's toroidal wave quantity 
increases as the radius of its halo orbit increases and vice versa. The consistency in a star's orbital 
speed, independent upon its radial distance from the galactic nucleus, is hypothetically due to the 
conservation of the secondary's poloidal angular momentum. This can be tested experimentally by 
observing the aggregated poloidal arc of a system's halo orbit. Systems with a distance from the 
nucleus ≤  the sun's distance should be observed to have NT ≤ 3 and systems with a distance > the sun's 
distance should be observed to have NT > 3 (being dependent upon their rest mass). It is recommended 
that systems with a relatively greater radius be studied initially since their poloidal mean motion is 
greater according to the halo hypothesis, preferably in the region spanning from the North Near 
Structure and TriAndromeda Ring illustrated in FIG. 3 above. 

What about the gravitational lensing effect? We know from Newton's laws of motion that a secondary 
does not orbit a primary, both bodies orbit a common center of mass point. From Kepler and Newton's 
temporal equation:



it is hypothesized that the “virtual mass point” mV  of a secondary's poloidal orbit is: 

A relatively recent (2008) paper published by Stephen Adler[6] suggests the flyby anomaly can be 
attributed to dark matter in the earth's vicinity and several other papers[7, 8, 9] listed in the references 
support this hypothesis. According to the halo model, the approximate distance of the earth's virtual 
mass point is ≈ 2.05⌀E from its center, and it would have a polar orbit relative to the earth's position 
instead of the conventional equatorial orbit. Possible video evidence for the earth's virtual mass point 
transiting the moon can be found in the references,[10] although it is NOT a credible source and the 
author unwittingly assumes it is a U.F.O. Further investigation is required in order to rule out the likely 
possibility that the transiting dark spot is a satellite, but a similar transit can be predicted with the halo 
hypothesis.

Fundamentally, the missing “matter” in a galaxy is missing “mass”, but it is assumed that the missing 
mass must be materialistic. It is well known that there are certain points in space-time, such as 
Lagrangian points, which influence the motion of celestial bodies. It is hypothesized that the virtual 
mass points in the intergalactic arena have the required Higgs field density to influence the motion of 
matter and energy. Images of the gravitational lensing effect suggest this may be true since dark 
“matter” is confined to certain point−like regions of space-time and not widely distributed:

 
There is another interesting gravitational lensing effect that can be deduced from the halo model. Due 
to the space-time geometry of a halo, a galaxy's luminosity may appear to be blueshifted despite the 
observed expansion of space:

FIG. 4: A pictorial analogy of light rays passing through a concave and convex lens relative to the z−axis of a halo. As 
space-time diverges from 2   to ● the light rays diverge as if they have passed through a concave lens. As space−time◔  
converges from ● to 2  the light rays converge towards a focal point as if they have passed through a convex lens.  ◔



Several unexplained blueshifted galaxies are observed in the direction of the Virgo cluster,[11, 12, 13] such 
as M90, M86, M98, IC 3258, NGC 4419, and RMB 56, indicated by the blue arrows in the 
MEGASTAR diagram below:

FIG. 5: Galaxies in the region of the Virgo Cluster seem to contradict the spatial expansion model.

It is hypothesized that each of the anomalous blueshifted galaxies 
share a common rotational direction relative to our frame of 
reference, and what we perceive as a blueshift is the contraction of 
the galaxy's wavelengths. It should also be considered that the 
observed accelerated expansion of space may be due to our relative 
position within the Milky Way. For instance, we may be located in 
a “red zone” region where the geometry of space-time is divergent. 

There are several other predictions that can be made with the halo 
model, such as spin−orbit coupling, an aphelion precession > 
perihelion precession for Venus, longitudinal gravity waves, a T1:T2 

≈ 2:1 Polaris analemma, virtual mass gravity assists, and a minute 
elongation of the semi-minor axis of the planets that have T1:T2 ≈ 
1:1, all of which will be subjects of a subsequent paper.

Conclusion

The space-time dimensions of the gravitational constant were used as first principles to deduce the 
origin of dark “matter” and the gravitational lensing effect. Several intriguing predictions can be made 
with the halo model and it is supported by observable evidence. If stellar systems have wave 
characteristics as they orbit galactic nuclei, the kinematics of the  macrocosm may be homogenous to 
the kinematics of quantum systems. Also, by mapping out the relative positions of virtual mass points, 
it may be possible in the future to more efficiently travel through space-time. 



Dedication

This paper is dedicated to Cynthia Cashman Lett, without whom it would not have been published.
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