Dark Energy is Expansion of Space Generated by Annihilation of Spin 0/Spin 1 Negative-Energy Bosonic Mass in Our Broken E8 Symmetry Epoch

George R. Briggs

Abstract: Annihilation of spin 0/spin 1 negative-energy mass produces expansion of space in our after-big bang broken-E8 symmetry epoch in which generation of new negative-energy matter is not possible and that presently is redundant. Expansion of space in this way minimizes big bang radiation energy loss external to the universe.

My letter\(^1\) outlining a cyclic universe of E8 symmetry makes use of 2 fermibosonic entities for bringing matter from the previous universe into the present universe. Unbroken E8 symmetry permits production of spin 0 and spin 1 negative-energy bosonic entities which shield ½ spin fermionic matter from the previous universe basically needed for the cyclic universe to grow. When the fermion growth is sufficient, further negative matter becomes redundant and can be removed\(^2\).

The fermibosonic entities made in our epoch of broken E8 symmetry cannot be made with negative mc\(^2\). Instead, the mc\(^2\) energy is positive (this is what is observed at the LHC): for negative mc\(^2\) production we need the unbroken E8 symmetry of the epoch before the big bang. However, negative mc\(^2\) matter for the bosonic component formed before the big bang may still be present in our epoch and can be usefully utilized to generate expansion of space and thus maintain big bang radiation at as low a frequency as possible to minimize energy loss from the growing universe.

How much annihilation of negative mc\(^2\) matter can we expect to get from this source? Assuming the fermibosonic entities were equally of spin 0 and spin 1 bosonic type \(ttH\) (spin 0) and \(ttZ\) (spin 1) processes\(^3\), but had \(H\) and \(Z\) of negative instead of positive mc\(^2\); for every \(Z+H = 91.19+125 = 216.19\) GEV amount of negative bosonic matter lost by 2 annihilating negative energy particles, \(4t = 173.34 \times 4 = 693.36\) GEV amount of fermionic matter is lost to dark energy. Note that a relatively large amount of positive mc\(^2\) energy must be shed. This
must ultimately be supplied from the previous universe. fermionic matter/dark matter = 3.21. This value of 3.21 agrees well with that observed\(^4\) (72.8 \%/22.7 \% = 3.21) and shows that only 2 negative energy entities, the H and Z are involved. Note that baryonic matter/fermionic matter is only 4.56 \%/22.7 \%. The antimatter annihilation takes place almost certainly in the bright galaxy bar region.

2. See Dan Hopper’s website, recent experimental findings (2015)
