Theory Of Evolution (Version IV OR 4)

December 28th 2015 Anno Domini

Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal
Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America.
Email: rameshcbagadi@netscape.net

White Paper One {TRL67}

of

Ramesh Bagadi Consulting LLC, Advanced Concepts & Think-Tank,
Technology Assistance & Innovation Center, Madison, Wisconsin-53715,
United States Of America
Abstract

In this research manuscript, the author has Holistically Detailed Some Important Pointers on the Theory Of\{Un-Biased Complete\} Evolution.

Theory

As mentioned previously in author’s Research Literature \{Universal Wave Function Of The Universe (Verbose Form)\}, the Universe can be Modeled using a Top-Down Approach with regards its Evolution Aspect.

Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern[8]

References in this Section Refer to those in [8] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

In this research investigation, the authors have advented ‘Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern’.

Theory

One can note that since all the manifestations of the Universe are based on the Sequence Of Primes and Prime Sequences In Higher Order Spaces [1],[2], we should use Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern to find its evolved \{along the Prime Metric (and also the Prime Metric Constructed using Prime Sequences In Higher Order Spaces)} Image at any instant. We detail how one can achieve this in the
following lines.
We first make note of the following:
For base 1:
0 = 1^{(1-1)} - 1^{(1-1)}
1 = 1
2 = 1+1
3 = 1+1+1+1
4 = 1+1+1+1+1+1
5 = 1+1+1+1+1+1+1+1
6 = 1+1+1+1+1+1+1+1+1
7 = 1+1+1+1+1+1+1+1+1+1+1+1
8 = 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
9 = 1+1
For base 2:
0 = 2^0
1 = 2^0 \text{ where } 0 \text{ is given in terms of } 2 \text{ by the previous equation}
2 = 2^1 \text{ where } 1 \text{ is given in terms of } 2 \text{ by the previous equation}
3 = 2^2 - 2^0 \text{ where } 0 \text{ is given in terms of } 2 \text{ as already shown}
4 = 2^2
5 = 2^2 + 2^0 \text{ where } 0 \text{ is given in terms of } 2 \text{ as already shown}
6 = 2^2 + 2^1 \text{ where } 1 \text{ is given in terms of } 2 \text{ as already shown}
7 = 2^2 + 2^2 - 2^0 \text{ where } 0 \text{ is given in terms of } 2 \text{ as already shown}
8 = 2^2 + 2^2
9 = 2^2 + 2^2 + 2^1 \text{ where } 1 \text{ is given in terms of } 2 \text{ as already shown}
Similarly, we find such expressions for all the numbers from 3 through 9 as well.
Therefore, when we wish to slate the Image Of Any Set with respect to the Prime Sequence of concern, say we consider the Prime Sequence \{1, 2, 3, 5, 7, \ldots\}, we can note that the 1st image of the considered Set is the Set
itself, as \(1+1=2\) (the second number of the prime sequence). The 2nd image is gotten by noting that 2 becomes 3, i.e., therefore we slate the above (considered set and its image set) and slate the Primality \{see for author’s research papers on ‘Primality’ at \url{www.vixra.org}\} of this set in terms of the Number 2 and then replace wherever this number 2 occurs by 3 \{the third number of the prime sequence\}. The image thusly gotten is the 2nd cumulative image of the considered set. Similarly, if we wish to find the 3rd cumulative image of the considered set, we slate the above \{considered set and its image set and the cumulative image of these two (considered set and its image set) Sets\} and slate the Primality of this set in terms of the Number 3 and then replace wherever this number 3 occurs by 5 \{the fourth number of the prime sequence\}. In this fashion, one can find the \(Nth\) Cumulative Image Of any set of concern. One can also note that this is also the grand ‘Evolution Scheme’ along the Prime Metric. One can note that one can similarly implement and compute the desired aspects using Primes In Any Higher Order Space by using the appropriate Prime Metric Constructed using Primes In the corresponding Higher Order Space.

Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth [4]

References in this Section Refer to those in [4] at \url{www.vixra.org/author/ramesh_chandra_bagadi}

Abstract

In this research investigation the author has advented a novel ‘Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth’.
Theory

One can note that given a set, we can slate it as a union of many distinct Sub-Sets wherein each such Sub-Set has elements that all belong to the Sequence Of Primes of some distinct Order Space(s) \([1],[2]\) while also the elements of each of these Sub-Sets (considered separately) occupy appropriate positions in accordance with the Prime Metric Basis elements corresponding to the Sequence Of Primes of some distinct Order Space(s) \{while leaving the necessary blanks whenever the elements corresponding to the Prime Metric Basis elements corresponding to the Sequence Of Primes of some distinct Order Space(s) are not present in the considered Sub-Set of concern\}, we consider one step \textit{Evolution} and/ or \textit{Growth} of each of the given set in the following fashion. For evaluating this, we first slate all possible one step \textit{Evolution} and/ or \textit{Growth} options, especially because such Sub-Sets may be discontinuous in the interior. We now consider one step \textit{Evolution} and/ or \textit{Growth} of that particular Sub-Set as option, the one among many possible as afore-discussed, that which leads to the \textit{Maximum Differential Loss of Potential Energy} of the set considered in the beginning, i.e., that which leads to the set considered in the beginning to acquire \textit{Maximum Stability}, i.e., that which leads to the set considered in the beginning to gain \textit{Maximum Entropy}. This particular option is the one step \textit{Evolution} and/ or \textit{Growth} Scheme for the given set of concern.

From, this we can naturally note that this scheme also outlines the one step Evolution and/ or Growth Scheme when many steps of one step \textit{Evolution} and/ or \textit{Growth} Scheme are considered which can be simply constructed by considering the aforementioned \textit{Minimum Possible Potential Energy State, Maximum Possible Stability State, Maximum Possible Entropy State} of the Set considered in the beginning, in a graded (decreasing order) fashion for all the one step Evolution and/ or Growth options available for the given set of concern at every step of \textit{Evolution} and/ or \textit{Growth} considered. From this chart of \textit{Evolution} for a given set, we can even find a ‘\textit{Universal Natural Recursion Scheme For The Evolution Scheme Of The Given Set Of Concern}’ \([3]\). Furthermore, when we inspect may such \textit{Universal Natural Recursion Schemes, Each Representing The Evolution Schemes Of The Given Many Sets Of Concern}’, we can even find the \textit{Universal Natural Recursion Schemes of any hidden Evolution Quantization concepts involved in the Evolution Scheme}.
Quantized Evolution (Version II) [29]

References in this Section Refer to those in [29] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

In this research investigation the authors shed light on a novel aspect called ‘Quantized Evolution’.

Theory

One can consider the Sequence of Primes In Higher Spaces (of say order N) [1], [2], arranged in an ascending order and can find the bounds along this sequence such that, on the left of this bound there exists a completely perfect Integrally de-magnified (contracted, i.e., multiples of 1/n, where n=2 or 3 or 4 or etc.,) Universe In Parallel (Sub-Set) of this considered sequence Set. This can be called as ‘Evolution Quantization’. By ‘Universe In Parallel’, we mean a sub-set of a set such that the set is gotten by considering magnification of the sub-set by some integral number.

As we have just noted that since Prime Sequences of any (Higher) Order Space have bounds in them, we should note that if we consider any aspect’s Universal Natural Recursion Scheme [3] of concern and slate it in the Prime Metric (of appropriate Higher Order Space), we cannot that such bounds are imposed on the Hyper-Primality Set (see authors research papers on ‘Hyper-Primality Set Of Any Set’ at www.vixra.org in the General Mathematics category) of the Universal Natural Recursion Scheme of concern in accordance with the bounds in the PrimeSequences of the concerned (Higher) Order Space. And hence the evolution scheme is quantized in this fashion.

For example, if we consider any set ‘S’, we can note that, we can categorize this set as the union of many sub-sets of ‘S’ such that each such sub-set has all its elements belonging to a Sequence of Primes of certain distinct
order space. Furthermore, we can arrange the elements of each such sub-set in an increasing order. Also, one can note that such sub-sets may be discontinuous when compared with their parent Prime Metric Bases of the concerned (Higher) Order Space. For each of the aforementioned discontinuous sub-sets {when they are compared with their parent Prime Metric Bases (Sequence Of Primes) of the concerned (Higher) Order Space}, we can find a non-discontinuous {when they are compared with their parent Prime Metric Bases (Sequence Of Primes) of the concerned (Higher) Order Space} Universe In Parallel Sub-Set of these discontinuous sub-set in some lower (and/ or higher) Sequence Of Primes Of Some Higher Order Space. The advantage of doing this is in this continuous state we can simply add its next element characteristic of the sub-set sequence (belonging to a Sequence of Primes of certain appropriate distinct order space) to this thusly formed sub-set when we consider one step evolution. We now again re-transform this sub-set back to its original Sequence Of Primes Of Certain Order Space basis in which it was discontinuous. Now, using the aforementioned ‘Evolution Quantization’ constraint we categorically mark bounds in such sub-sets such that on the left of this bound there exists a completely perfect Integrally de-magnified (contracted, i.e., multiples of 1/n, where n=2 or 3 or 4 or etc.,) Universe In Parallel(Sub-Set) of suchSub-Sets. Now, when we consider one step evolution of each of such sub-sets, we basically add the next element characteristic of the sub-set sequence (belonging to a Sequence of Primes of certain appropriate distinct order space) to the sub-set.

Evolution Through Quantization [13]

References in this Section Refer to those in [13] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

In this research investigation the authors shed light on a novel aspect called ‘QuantizedEvolution’.
Theory I

One can consider the Sequence of Primes In Higher Spaces (of say order N) [1], [2], arranged in an ascending order and can find the bounds along this sequence of a given specific order such that, on the left of this bound there exists a completely perfect Integrally de-magnified (contracted, i.e., multiples of 1/n, where n=2 or 3 or 4 or etc.,) *Universe In Parallel*(Sub-Set) of this considered sequence Set. This can be called as ‘Evolution Quantization’. By ‘Universe In Parallel’, we mean a sub-set belonging to a Sequence Of Primes Of Order less than (N) that of a set belonging to a Sequence Of Primes Of Order, say , N such that the set is gotten by considering magnification of the sub-set by some integral number. Simply put, it is \(\{ p_i \} \) for the given set \(\{ p_{i+1} \} \) or rather in a generic form, it is any \(\{ p_s \} \) for the given set \(\{ p_r \} \) where \(s < r \). For example one can do so using the following equation [3]:

Formula For Sequence Of Primes Of any RthOrder Sequence Of Primes

One can also note that the Sequence Of Primes Of any RthOrder Sequence Of Primes can be gotten using the following formula which was constructed using observation.

\[
\{ p_{i+1} \} = \bigcup_{k=j+1}^{\infty} \left\{ \{ p_i(k) \} \{ p_i \} - \bigcup_j p_i(j) \right\} (1)
\]

where \(p_i(j) \) represents the \(j \)th element of the \(i \)th Order Dimension (Space) Sequence Of Primes.

As we have just noted that since Prime Sequences of any Order Space have bounds in them, we should notethat if we consider any aspect’s Universal Natural Recursion Scheme [3] of concern and slate it in the Prime Metric (of appropriate Higher Order Space), we cannot that such bounds are imposed on the Hyper-Primality Set (see authors research papers on ‘Hyper-Primality Set Of Any Set’ at www.vixra.org in the General Mathematics category at www.vixra.org/author/ramesh_chandra_bagadi) of the Universal Natural Recursion Scheme of concern in accordance with the bounds in the Prime Sequences of the concerned (Higher) Order Space. And hence the evolution [4] scheme is quantized in this fashion.
Theory II

For example, if we consider any set ‘S’, we can note that, we can categorize this set as the union of many sub-sets of ‘S’ such that each such sub-set has all its elements belonging to a Sequence of Primes of certain distinct order space. Furthermore, we can arrange the elements of each such sub-set in an increasing order. Also, one can note that such sub-sets may be discontinuous when compared with their parent Prime Metric Bases of the concerned (Higher) Order Space. For each of the aforementioned discontinuous sub-sets {when they are compared with their parent Prime Metric Bases (Sequence Of Primes) of the concerned (Higher) Order Space}, we can find a non-discontinuous {when they are compared with their parent Prime Metric Bases (Sequence Of Primes) of the concerned (Higher) Order Space} Universe In Parallel Sub-Set of these discontinuous sub-set in some lower (and/ or higher) Sequence Of Primes Of Some Higher Order Space. The advantage of doing this is in this continuous state we can simply add its next element characteristic of the sub-set sequence (belonging to a Sequence of Primes of certain appropriate distinct order space) to this thusly formed sub-set when we consider one step evolution. We now again re-transform this sub-set back to its original Sequence Of Primes Of Certain Order Space basis in which it was discontinuous. Now, using the aforementioned ‘Evolution Quantization’ constraint we categorically mark bounds in such sub-sets such that on the left of this bound there exists a completely perfect Integrally de-magnified (contracted, i.e., multiples of 1/n, where n=2 or 3 or 4 or etc.,) Universe In Parallel(Sub-Set) of suchSub-Set. Now, when we consider one step evolution of each of such sub-sets, we basically add the next element characteristic of the sub-set sequence (belonging to a Sequence of Primes of certain appropriate distinct order space) to the sub-set.

Theory III

One can note that ‘Evolution’ can also be considered in the following fashion for a system that is weakly interacting. By weak interaction, we mean the gradient function of the ‘Recursional Field Intensity Strength Function’ (that is a unique characteristic value for any distinct space-time co-ordinate of concern within the
bounds of the space-time co-ordinates of the system of concern) of the system that drives the self-evolution of the system. By ‘Recursional Field Intensity Strength Function’ we mean the distribution function of the Recursion Schemes {central asymmetric wave (with prime [of specific order of concern of Sequence of Primes] magnitudes for the crest and trough) property} of the spread span of the system of concern considered along the Prime Metric averaged with respect to space and time (and also we can consider the observers Local Human Collective Consciousness as well observed at any point of concern).

Now, for example, considering any set \(\mathcal{S} \) of concern such that
\[
\mathcal{S} = \{^i p_i \gamma_j, ^i p_i \gamma_2, ^i p_i \gamma_3, ^i p_i \gamma_4, ^i p_i \gamma_5, ^i p_i \gamma_6, ^i p_i \gamma_7\}
\]
where \(^i p_i \gamma_j\) denotes that it is \(j^{th} \) element of the set \(\mathcal{S} \) which also belongs as the \(k^{th} \) element of the \(i^{th} \) Order Sequence Of Primes when the elements of this \(i^{th} \) Order Sequence Of Primes are slated in an increasing order along the Prime Metric Bases, characteristic of the \(i^{th} \) Order Sequence Of Primes.

We can also write the set \(\mathcal{S} \) as
\[
\mathcal{S} = \left(\{^i p_i \gamma_1\} \cup \{^i p_i \gamma_2\} \cup \{^i p_i \gamma_3\} \cup \{^i p_i \gamma_4\} \cup \{^i p_i \gamma_5\} \cup \{^i p_i \gamma_6\}\right)
\]
Now, one can note that the Set \(\mathcal{S} \) permeates in the Recursion Field Intensity Strength Function given by say, \(\alpha \leftrightarrow 1 \leftrightarrow \beta \) and therefore the Quantized Incremental Energy (Least Count) of this Recursion Scheme, say \(L_R \) imposes a constraint on the evolutionary growth of the set \(\mathcal{S} \) for the next instant. That is, only one among the sub-set sequences listed above, each belonging to a specific distinct order of Sequence Of Primes whose (the sub-set’s) Energy Quantization Scheme along the corresponding respective Prime Metric (characteristic of the specific distinct order of Sequence Of Primes of concern) during Evolutionary Growth Scheme will grow whose such necessary needed energy to grow is less than or equal to \(L_R \). However, one should note that constraints imposed by [4] must be taken care of here. Also, [5] can also be used for simplifying the afore-detailed analysis to a great extent.
Universal Recursive Tessellation Based Scheme To Derive The Evolution Scheme Of Any Aspect Set Of Concern
{Evolution Through Quantization (Version Three)} [29, 31]

References in this Section Refer to those in [29, 31] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

The author has detailed some important notions regarding Evolution (Of the type of our Universe) here, in this research manuscript.

Theory

Evolution Pointer 0

One can note that the geometric representation of ‘Tessellations Of Numbers’ can be used to understand the concept of Evolution. To this end, we first consider a ‘Scalene Triangle’ as the basis element for generating the Tree of such Tessellations Of Numbers. For example, Number ‘1’ can be represented by One such aforementioned Scalene Triangle graphically, Number ‘2’ can be shown by Two such aforementioned Scalene Triangle’s graphically, wherein the Second Triangle is added to the First Triangle along a side such that it allows Tessellations, i.e., the Tessellation Co-ordinate’s of the Added Triangle’s third vertex forms One Recursive Tessellations Set, i.e., which satisfies the Definition Of Tessellation, i.e., enables Tessellation to Eternity. Such A Co-ordinate can be simply found by just Generically Checking all the Possible Co-ordinates to see if they ‘Satisfy’ the Recursive Tessellation Equations representing the Tessellation Type of concern used. By all ‘Possible Co-ordinates’, we mean the Set of Group of Co-ordinates gotten as the possibilities as Third Vertex of the Second Triangle (to be added onto the
First One using one of its sides as the Common Side to the to be added Second Triangle while considering Tessellational Growth wherein the aforementioned Vertex is opposite to the side which was used as the common side for Tessellational Growth, i.e., the afore-discussed Addition. Furthermore, such aforementioned Generic Check for Tessellational Compatibility involves checking such Compatibility consecutively for Three (3) Generations of Tessellational Growth. In the same fashion, the same analogy holds for representation of any number’s Tessellational Representation’s Growth Scheme Of Any ‘Number’ Of Concern. One can note that one can use this Scheme to Evolve any aspect Universe of concern.

Evolution Pointer 1

Now, as far as Evolution of any aspect is concerned, once it’s Primality is slated in terms of Numbers, one can use the author’s [[8] ‘Recursive Consecutive Element Differential Of Prime Sequence (And/ Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern’ available at http://www.vixra.org/abs/1510.0091 as viXra:1510.0091] and [4] ‘Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth’ available at http://www.vixra.org/abs/1510.0030 as viXra:1510.0030] to consider it’s One Step Evolution.

Evolution Pointer 2

However, one should note that Evolution is Quantized {see author’s [22], ‘Theory Of ‘Complementable Bounds’ And ‘Universe(s) In Parallel’ Of Any Sequence Of Primes Of Rth Order Space’ at http://www.vixra.org/abs/1510.0428 as viXra:1510.0428 and [13] ‘Evolution Through Quantization’ at http://www.vixra.org/abs/1510.0144 as viXra:1510.0144}. Therefore, one needs to update the Evolution incorporating in commensuration, the concepts in [22].
Also, one can note that one can consider the Constraint of Restriction Of Time on Evolution, i.e., as the Universe is ever Evolving and such Evolution is due to the Local Recursional Field Intensity Gradient characteristic of the location at which the Evolution of any aspect of concern is considered. Furthermore, one should note that such aforementioned Recursional Field Intensity Strength Function itself is a Function whose Range Conforms along the Prime Metric (constructed using Sequence Of Primes Of 2nd Order Space and/or Sequence Of Primes Of Higher Order Space) and therefore, if a certain Aspect Of Concern’s Primality (considered at a Certain Order Of Recursion Intelligence) is unable to reach a state of Evolution commensurate with Time Restriction, the Evolution Recursion Intelligence switches to the Next Higher Order Of Recursion Intelligence. By Time Restriction, we mean a function, i.e., a Map between the Consecutive Differences Of Recursional Field Intensity Strength and the Pair Of Consecutive Prime Metric Bases (constructed using Sequence Of Primes Of 2nd Order Space and/or Sequence Of Primes Of Higher Order Space, whichever is appropriate, as the author assumes that a seasoned reader of the author’s works can easily infer the same). That is, if a certain Aspect’s Primality, which is characteristic of a Certain Position in some Prime Metric constructed using some Sequence Of Primes Of (Higher) Order Space does not reach there, when it is intended to as is ordered by the aforementioned Restriction, then the Evolution Scheme switches to the next available Order Of Recursion Intelligence Of Evolution.

One can also say that Continual Evolution to exhaustion of a given Set bestows a given set with its Complete Recursive Sub- Sets (and also the Complete Recursive Orthogonal Sub- Sets) Of The Given Set Of Concern Found Continually To Exhaustion Such That The Primality Sets Of The Additional Elements In Addition To The {Original Given Set With Its Complete Recursive Sub- Sets (and also the Complete Recursive Orthogonal Sub- Sets) Of The Given Set Of Concern Found Continually To Exhaustion} Generated By Way Of Such Aforementioned Evolution, Also Form One Complete Recursive Set.
One can find the *Recursion Scheme* of any *Aspect Of Concern* and can find the components of it along the ‘Universal Basis Vector Formed By Pi Value And/ Or Its Higher Order Equivalents Up To A Certain Order Of Concern Necessitated By Our Investigation Of Concern’ and can evolve {along the *Optimal (Primality) Path* wherein the *Pi Value And/ Or Its Higher Order Equivalents* of the aspect of concern is along an ever increasing *Precision Of Pi Value And/ Or Its Higher Order Equivalents, Path*. Furthermore, one should note that the *Increments Design* of the aforementioned *Precision Increase in Pi Value And/ Or Its Higher Order Equivalents* must themselves *Conform* to the an *Ever Increasing Precision Of Pi Value And/ Or Its Higher Order Equivalents, Path* and so on, so forth, continually, we repeat such implementation as many times as is necessitated by our investigation of concern.

Evolution Pointer 5

Direction Of Evolution

Evolution happens because of ever existing* {*such never ceasing existence is due to the ever asymmetric presence of Perception Gravity Fields driving *Recursional Evolution* on both arms of the *Infinity Geodesic of The Aspect Of Concern*} the *Algebraic Difference* between the *Entropy of the Redundancy in Primality of an Aspect Of Concern* and the *Entropy of the Redundancy In Primality Of it’s Complementary Aspect Of Concern* (that exists beyond the *Inflexion Point Of The Infinity Geodesic Of The Aspect Of Concern*). The net algebraic sign of such aforementioned difference governs the *Direction of the Evolution* of any *Aspect Of Concern*. Therefore, one can compute *Instantaneous Infinitesimal Change In The Direction of Evolution* using the aforementioned fact. In the *Ancient Culture of Great China*, The *Yin* and *Yang* are supposed to represent *Any Aspect Of Concern* and it’s *Complementary Aspect Of Concern*. The *Redundancy In The Yin* Is what creates *Yang* and the *Redundancy In Yang* is what creates the *Yin*. And together they form the *Universe* and also drive the *Universe*.
Evolution Pointer 6

Given a set S with some number, say n_S number of elements, we can firstly distill its elements as belonging to the Sequence(s) Of Primes Of Higher (greater than and/or equal to 2) Order Space(s) i.e., we can label each element of S as $\{ PS(R) \}_{S(i) \{ PS(R)(j) \} n_{PS(R)}}$ where $PS(R)$ denotes the Order Space Number Of The Sequence Of Primes to which this element belongs, $n_{PS(R)}$ is the subscript denoting The Total Number Of Elements of $S(i)$ that belong to the Sequence Of Primes Of R^{th}Order Space and $\{ PS(R)(j) \}$ denotes the The Position Number of this element in the Set $PS(R)$. Also $S(i)$ is The Position Number of this element in the Set S. We also note (Find) the Recursion Scheme Of the Set S and the Sequence(s) $n_{PS(R)}$.

For each of the Sequence $n_{PS(R)}$, we decompose its elements as detailed in the aforementioned symbol $\{ PS(R) \}_{S(i) \{ PS(R)(j) \} n_{PS(R)}}$ and find the resulting Sequence(s) equivalent to $n_{PS(R)}$ at this stage. We also Find the Recursion Scheme(s) Of The Sequence(s) equivalent to $n_{PS(R)}$ at this stage. We keep repeating this procedure till we can no longer perform such operations. We now now use the Recursion Schemes as shown below
Recursion Scheme Of the Set S

{Recursion Scheme Level 1}

\[\downarrow \downarrow \downarrow \cdots \cdots \downarrow \]

Recursion Scheme Of The Sequence(s) $n_{PS(R)}$

{Recursion Scheme Level 2}

\[\downarrow \downarrow \downarrow \cdots \cdots \cdots \cdots \cdots \cdots \cdots \downarrow \]

For each of the Sequence $n_{PS(R)}$, we decompose its elements as detailed in the aforementioned symbol $\gamma_{S(j)^{PS(R)}(j)^{n_{PS(R)}}}$ and find the resulting Sequence(s) equivalent to $n_{PS(R)}$ at this stage. We also Find the Recursion Scheme(s) Of The Sequence(s) equivalent to $n_{PS(R)}$ at this stage.

{Recursion Scheme Level 3}

\[\downarrow \downarrow \downarrow \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \downarrow \]

Evolution Pointer 7

In this research section, the author has presented some basic definitions using which one can form the basis for algebraic operations in the Prime Metric Of Any R^{th} Order Space.
Prime Metric Algebra

Firstly, we consider a set $$S_{PS_n}$$ representing a Sequence Of Prime Numbers Of Rth Order Space (considered in an increasing order). Representing the nth element of this set by $$S_{PS_n}(n)$$, we consider Normalization of the Distance(s) and/or Value(s) $$S_{PS_n}(n) - S_{PS_n}(n-1)$$ according to the assignment $$S_{PS_n}(n) - S_{PS_n}(n-1) = 1$$. We can then write any Non-Prime (i.e., a Composite) Number $$S_{PS_n}(j)$$ of Rth Order Space conforming to the condition

$$S_{PS_n}(n-1) < S_{PS_n}(j) < S_{PS_n}(n)$$

Definition 1:

$$S_{PS_n}(j) = \left\{ n + \left[\frac{S_{PS_n}(j) - S_{PS_n}(n-1)}{S_{PS_n}(n) - S_{PS_n}(n-1)} \right] \right\}$$ \hspace{1cm} \text{Equation (1)}

Definition 2:

$$\overline{S}_{PS_n}(j) = \left\{ n + \left[\frac{S_{PS_n}(n-1)}{S_{PS_n}(j)} \right] \right\}$$ \hspace{1cm} \text{Equation (2)}

Definition 3:

$$\overline{dS}_{PM_{PS_n}} = \sum_{n=1}^{N} \left[1 + \left(S_{PS_n}(n) - S_{PS_n}(n-1) \right) \right]^{\frac{1}{2}}$$ \hspace{1cm} \text{Equation (3)}

where $$\overline{S}_{PS_n}(j)$$ denotes the Normalized Value Of $$S_{PS_n}(j)$$ in the Prime Metric Of Rth Order Space and $$\overline{dS}_{PM_{PS_n}}$$ indicates distance along the Prime Metric Of Rth Order Space from $$S_{PS_n}(1)$$ through $$S_{PS_n}(N)$$. The above Equation (3) can be further refined by noting the Euclidean-Pythagorean Relation

$$ds^2 = dx^2 + dy^2$$

And noting that we can write the Sequence $$\{dx, dy\}$$ along the Prime Metric Of Some Certain Order Space.
is, if dx represents the **Distance** between **Two Consecutive Primes** (belonging to some **Sequence Of Primes**) along the **Prime Metric Of Some Certain Order Space**, i.e., $dx = S_{PSr}(m) - S_{PSr}(m-1)$, then if $dy < dx$ then,

we can write dy as

$$dy = dx + |S_{PSr}(l) - S_{PSr}(m-1)| = |S_{PSr}(m) - S_{PSr}(m-1)| + |S_{PSr}(l) - S_{PSr}(m-1)|$$

where $S_{PSr}(l) = S_{PSr}(m-1) + |dy|$.

Therefore, it remains to find two **Prime Numbers Of Some Certain Order Space** $S_{PSr}(m)$ and $S_{PSr}(m-1)$ such that

$$dx = S_{PSr}(m) - S_{PSr}(m-1) \text{ Equation (4.1)}$$

or

$$dx = \alpha |S_{PSr}(m) - S_{PSr}(m-1)| \text{ Equation (4.2)}$$

where $0 < \alpha < 1$ is some **Scalar**. If $dy > dx$, we simply have to implement the same procedure by only noting that dy and dx have to be interchanged to produce the effect of the aforementioned Scheme.

Also, one can note that dy can represent the **Distance** between **Two Consecutive Primes** (belonging to some **Sequence Of Primes**) along the **Prime Metric Of Some Certain Order Space**, i.e., $dy = S_{PSr}(h) - S_{PSr}(h-1)$. Usually, we consider the case wherein $B = (T-1)$ or $(T+1)$ or totally some other **Positive Integer** U.

Now, that we have slated how to find the value of any number in the **Prime Metric Constructed Of Sequence Of Primes Of Certain Order Space**, all the **Algebraic Operations** can be performed as **Usual** on these thusly computed **Values** rendered in the **Prime Metric Constructed Of Sequence Of Primes Of Certain Order Space**, only after we Transform (see author’s work for this **Transformation**) all the **Operands** (i.e., the values to be acted upon by **Mathematical Operators of Concern**) of the **Mathematical Expression(s)** in the **Same Prime Metric Constructed Of Sequence Of Primes Of Certain Order Space Of Concern**.

PRIME METRIC ALGEBRA (Advanced)

{see author’s work on this}

One can note that **Since** dy is **Orthogonal** to dx, we write the quantity $dx + dy$ as $dr = dx + dy$

And considering
\[dr^2 = (dx + dy) \cdot (dx + dy) \] i.e.,
\[dr^2 = dx^2 + 2(dx)(dy) + dy^2 \] i.e.,
The **Square Of Direct Bearing (Distance)** is a **Map** that extends the **Euclidean Inner Product Of** \((dx + dy)\) by a **Value** of \(2(dx)(dy)\).

One should know that the **Direct Bearing** for the above case is that of the case wherein we are removing the terms that can be factored in 2 dimensions wherein \(dy\) and \(dx\) are **Orthogonal** to each other at a **Consecutive Order(s) Level** or **Orthogonal** to each other at a **Non-Consecutive Level**.

Therefore, basically, if \(dx\) is a **Possible Difference Of Two Consecutive Primes** Of **Sequence Of Primes Of Certain Order Space**, say, \(T\) and \(dy\) is a **Possible Difference Of Two Consecutive Primes** Of **Sequence Of Primes Of Certain Order Space**, say, \((T-1)\) or \((T+1)\), all \((T-1)\) or \((T+1)\) being some **Positive Integers**, then the distance between them is given by
\[ds^X = dx^T + dy^{(T-1)\text{or}(T+1)\text{or}U} \] wherein we have to find \(X\) using the **Right Hand Side Value** of the given **Equation** as a **Possible Difference Of Two Consecutive Primes Of Certain Order Space**, such that the equation is satisfied for \(X\) being a **Positive Integer**.

We can then write the **Direct Bearing** (i.e., **The Distance**) between the **(Possibly) Orthogonal** to each other at a **Consecutive Order(s) Level** or **Orthogonal** to each other at a **Non-Consecutive Level**, \(dy\) and \(dx\) as
\[ds = \left\{dx^T + dy^{(T-1)\text{or}(T+1)\text{or}U} \right\}^{\frac{1}{X}} \] **Equation (5)**

Universal Law Of Quantization Of Differences

Basically, the important point to note, is that, in Reality,

‘**All Differences Are Quantized**’.

(i.e., exist and manifest in these values only) and the **Quantization Scheme** is given as

‘**Any Real (Perceptionally only, not the Real as in the Real Numbers Line sense) Difference Exists And/ Or Manifests Itself In The Universe Only As A Difference Between Some Two Consecutive Elements Of A Sequence Of Primes Of Some Order**'
Conversely speaking

‘Any Difference Between Some Two Consecutive Elements Of A Sequence Of Primes Of Some Order Space Exists And/Or Manifests Itself In The Universe Only As Any Real (Perceptionally only, not the Real as in the Real Numbers Line sense) Difference’.

And hence

‘All Algebraic Operations Have To Be Founded Upon This Universal Restriction Of Universal Law Of Quantization Of Differences’.

Therefore,

The Universal Set Of Differences {USD}

can be written as

\[\text{USD} = \bigcup_{R=1}^{\infty} \bigcup_{n=1}^{\infty} \{ S_{PS_R} (n+1) - S_{PS_R} (n) \} \]

where \(S_{PS_R} (n) \) is the \(n^{\text{th}} \) element of the Sequence Of Primes Of \(R^{\text{th}} \) Order Space.

Using the above **Universal Set Of Differences**, one can **Linearize** (see author’s work on this) any **Aspect Of Concern** (built of the Sub-Sets of the Universal Set Of Differences) and can arrange them in **Increasing Order of the Fundamental Nature Aspect of the Aspect(s) Of Concern**.

One can also use this ‘**Universal Law Of Quantization Of Differences**’ usefully as an aid to slate **Evolution Scheme**.
Theory Of Evolution Through Consecutive Asymmetric Imaging Technique[40]

References in this Section Refer to those in [40] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

In this research investigation, the author has presented a ‘Theory Of Evolution Through Imaging Technique’.

Theory

For all purposes, in this research manuscript, we consider this whole scheme in *Prime Metric* of 2nd *Order Space* whose bases are the *Set of Sequence Of Primes of (2nd Order Space)*. We consider a Set S with its elements given as $S = \{1\}$. We now consider *Asymmetric Mirror Imaging* of this *Element* in a *Cumulative Sense* and in an *Anti-Clock-WiseDirection* (following an *Evolute Profile* within each newly derived *Asymmetric Mirror Image Domain*) according to which we have *Labelled* the *Images* in a *Sequential Order* \{of Natural Positive Integer Metric and Prime Metric of (2nd Order Space)by an Ordered Pair respectively\}. By *Asymmetric Mirror Imaging*, we mean any *Element* \{in *Prime Metric* of (2nd Order Space) which will be a *Prime Number* of (2nd Order Space)\}, i.e., any *Prime Number* of (2nd Order Space) say p_k *Evolves* i.e., *Asymmetrically Mirror Images* itself as $p_{(k+1)}$ as shown in the *Table* below.

Notation

NV(i) implies i^{th} *North Vertical Image*
SV(j) implies j^{th} *South Vertical Image*
WH(l) implies l^{th} *West Horizontal Image*
EH(m) implies m^{th} *East Horizontal Image*
We denote each of the **Element of the Set under Evolution by a Vector** shown below

$$
\text{ImageValue} \quad \text{TypeOf Image} \quad \text{FrequencyOf TypeOf Image} \quad \text{PositionInNaturalPositiveIntegerMetric} \quad \text{(alsoSynonymouswithTimeCo-ordinate)} \quad \text{PrimeMetric} \quad \text{(2nd OrderSpace)} \quad \text{FrequencyOf ImageValue}
$$

Considering the Set S with its elements given as $S = \{1\}$ and it's **Evolution** as shown in the Table above we detail the **Graph Tree (shown upto 4 Imagings only for Demonstration purposes)**

Graph Tree Of Evolution of Set S with its elements given as $S = \{1\}$

(Considered In **Prime Metric Basis of 2nd Order Space**) upto 4 Imagings only for Demonstration purposes

<table>
<thead>
<tr>
<th>ImageValue</th>
<th>TypeOf Image</th>
<th>FrequencyOf TypeOf Image</th>
<th>PositionInNaturalPositiveIntegerMetric</th>
<th>PrimeMetric(2nd OrderSpace)</th>
<th>FrequencyOf ImageValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>WH(2)</td>
<td>1</td>
<td>1</td>
<td>45,197</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>WH(2)</td>
<td>2</td>
<td>2</td>
<td>46,199</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>WH(2)</td>
<td>3</td>
<td>3</td>
<td>47,211</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>WH(2)</td>
<td>4</td>
<td>4</td>
<td>48,223</td>
<td>3</td>
</tr>
</tbody>
</table>

We detail the **Graph Tree (shown upto 4 Imagings only for Demonstration purposes)**

Graph Tree Of Evolution of Set S with its elements given as $S = \{1\}$

(Considered In **Prime Metric Basis of 2nd Order Space**) upto 4 Imagings only for Demonstration purposes
<table>
<thead>
<tr>
<th></th>
<th>Original (1)</th>
<th>NV(1)</th>
<th>WH(1)</th>
<th>SV(1)</th>
<th>EH(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>12</td>
<td>31</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>11</td>
<td>29</td>
<td>37</td>
<td>43</td>
</tr>
</tbody>
</table>

Now, noting the 3^{rd} Co-ordinate (out of 5 Co-ordinates) of every element in the above Graph Tree we write the above in an Ascending Order of Time Increment as
\[
S_{Evolved \ Upto \ 4 \ Imagings \ Only} = \begin{bmatrix}
1 & Original (1) & 1 & 1 & 1 \\
2 & NV(1) & 2 & 2 & 1 \\
3 & WH(1) & 3 & 3 & 1 \\
2 & WH(1) & 4 & 5 & 2 \\
3 & SV(1) & 5 & 7 & 2 \\
5 & SV(1) & 6 & 11 & 1 \\
3 & SV(1) & 7 & 13 & 3 \\
2 & SV(1) & 8 & 17 & 3 \\
5 & EH(1) & 9 & 19 & 2 \\
7 & EH(1) & 10 & 23 & 1 \\
5 & EH(1) & 11 & 29 & 3 \\
3 & EH(1) & 12 & 31 & 4 \\
5 & EH(1) & 13 & 37 & 4 \\
3 & EH(1) & 14 & 41 & 5 \\
2 & EH(1) & 15 & 43 & 4 \\
3 & EH(1) & 16 & 43 & 6
\end{bmatrix}
\]

Note:

\[[2 \ WH(1) \ 4 \ 5 \ 2] \text{ can be arrived at by Asymmetric West Horizontal Image of } [1 \ \ Original \ (1) \ 1 \ 1 \ 1]. \]

\[[2 \ SV(1) \ 8 \ 17 \ 3] \text{ can be arrived at by Asymmetric South Vertical Image of } [1 \ \ Original \ (1) \ 1 \ 1 \ 1]. \]

\[[2 \ EH(1) \ 15 \ 43 \ 4] \text{ can be arrived at by Asymmetric East Horizontal Image of } [1 \ \ Original \ (1) \ 1 \ 1 \ 1]. \]

\[[3 \ SV(1) \ 5 \ 7 \ 2] \text{ can be arrived at by Asymmetric South Vertical Image of } [2 \ \ NV(1) \ 2 \ 2 \ 1] \text{ or } [2 \ WH(1) \ 4 \ 5 \ 2], \text{ however, one can note that the } 3^{rd} \text{ Co-ordinate and } 4^{th} \text{ Co-ordinate of } [2 \ WH(1) \ 4 \ 5 \ 2] \text{ Naturally Evolve to } 3^{rd} \text{ Co-ordinate and } 4^{th} \text{ Co-ordinate of } [3 \ \ SV(1) \ 5 \ 7 \ 2]. \text{ Therefore, we ascribing of Birth and/} \]
or Arising of \([3 \ SV(1) \ 7 \ 13 \ 3]\) to that as Evolvedfrom \([2 \ WH(1) \ 4 \ 5 \ 2]\). Therefore, we also consider such Birth\text{Transition} \text{(of Intermediate Nature)} as a General Rule, i.e.,

When, along the Time \text{(Instants) Metric}, we have many options of (Just Previous States) reaching a Particular Next State of Evolution from its Just Previous State, we consider The Option wherein 3\text{rd Co-ordinate} and 4\text{th Co-ordinate} of the Considered Best Option Naturally Evolve In \text{‘r’ Number of Steps} of Consecutive Asymmetric Individual Mirror Image Type Evolution\textsto the aforementioned Particular Next State considered in Natural Positive Integer Metric and/or Prime Metric of 2\text{nd Order Space Sequence Of Primes}.

Therefore,

\[
\begin{bmatrix}
3 \\
SV(1) \\
7 \\
13 \\
3
\end{bmatrix}
\]
can be arrived at by Asymmetric South Vertical Image of

\[
\begin{bmatrix}
2 \\
NV(1) \\
2 \\
2 \\
1
\end{bmatrix}
\]
or

\[
\begin{bmatrix}
2 \\
WH(1) \\
4 \\
5 \\
2
\end{bmatrix}
\] wherein we can note that \(4 \rightarrow 5 \rightarrow 6 \rightarrow 7\) corresponding to \(5 \rightarrow 7 \rightarrow 11 \rightarrow 13\), i.e., can be arrived at in 3 Steps of Consecutive Asymmetric Individual Mirror Image Type Evolutions. Furthermore, one can note that the 5\text{th Co-ordinate} also should be consistent, i.e., with every Repetition of the Value of concern, the Frequency of the Same Must Increase by +1.

Alternately speaking, since our Asymmetric Mirror Imaging of any Element of concern a Cumulative Sense is considered in an Anti-Clock-Wise Direction (following an Evolute Profile within each newly derived Asymmetric Mirror Image Domain), one can note that after North Vertical Imaging, the Only Possibility is West Horizontal Imaging according to the aforementioned Rule of Evolute Direction of Asymmetric Mirror Imaging.

Birth\text{Transition} \text{(of Intermediate Nature)} as a General Rule (Aliter)

When, along the Time \text{(Instants) Metric}, we have many options of (Just Previous States) reaching a Particular Next State of Evolution from its Just Previous State, we consider The Option wherein the Rule of Evolute Direction of Asymmetric Mirror Imaging is given by any of the following:

\[
\begin{align*}
&NV \rightarrow WH \rightarrow SV \rightarrow EH \rightarrow NV \\
&WH \rightarrow SV \rightarrow EH \rightarrow NV \rightarrow WH \\
&SV \rightarrow EH \rightarrow NV \rightarrow WH \rightarrow SV
\end{align*}
\]
EH→NV→WH→SV→EH
where,
NV indicates *Consecutive Asymmetric North Vertical Image*
WH indicates *Consecutive Asymmetric West Horizontal Image*
SV indicates *Consecutive Asymmetric South Vertical Image*
EH indicates *Consecutive Asymmetric East Horizontal Image*

Also,
(Considered In Pure Prime Metric Basis of 2nd Order Space wherein the 5th Co-ordinate is also expressed in Prime Metric of 2nd Order Space) shown upto 4 Imagings only for Demonstration purposes

<table>
<thead>
<tr>
<th>1</th>
<th>Original (1)</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NV (1)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>WH (1)</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>SV (1)</td>
<td>6</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EH (1)</td>
<td>10</td>
<td>23</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>WH (1)</th>
<th>4</th>
<th>5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SV (1)</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>EH (1)</td>
<td>9</td>
<td>19</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>SV (1)</th>
<th>8</th>
<th>17</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SV (1)</td>
<td>7</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EH (1)</td>
<td>11</td>
<td>29</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>EH (1)</th>
<th>15</th>
<th>43</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>EH (1)</td>
<td>12</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>EH (1)</td>
<td>13</td>
<td>37</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>EH (1)</th>
<th>14</th>
<th>41</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>EH (1)</td>
<td>16</td>
<td>43</td>
<td>11</td>
</tr>
</tbody>
</table>

Now, noting the 3rd Co-ordinate (out of 5 Co-ordinates) of every element in the above Graph Tree we write the above in an Ascending Order of Time Increment as
\[
S_{\text{Evolved Upto 4 Imagings Only}} = \left\{ \begin{array}{c}
1 \quad \text{Original (1)} \quad 1 \quad 1 \quad 1 \\
2 \quad \text{NV(l)} \quad 2 \quad 2 \quad 1 \\
3 \quad \text{WH(l)} \quad 3 \quad 3 \quad 1 \\
2 \quad \text{WH(l)} \quad 4 \quad 5 \quad 2 \\
3 \quad \text{SV(l)} \quad 5 \quad 7 \quad 2 \\
5 \quad \text{SV(l)} \quad 6 \quad 11 \quad 1 \\
3 \quad \text{SV(l)} \quad 7 \quad 13 \quad 3 \\
2 \quad \text{SV(l)} \quad 8 \quad 17 \quad 3 \\
5 \quad \text{EH(l)} \quad 9 \quad 19 \quad 2 \\
7 \quad \text{EH(l)} \quad 10 \quad 23 \quad 1 \\
5 \quad \text{EH(l)} \quad 11 \quad 29 \quad 3 \\
3 \quad \text{EH(l)} \quad 12 \quad 31 \quad 7 \\
5 \quad \text{EH(l)} \quad 13 \quad 37 \quad 5 \\
3 \quad \text{EH(l)} \quad 14 \quad 41 \quad 5 \\
2 \quad \text{EH(l)} \quad 15 \quad 43 \quad 5 \\
3 \quad \text{EH(l)} \quad 16 \quad 43 \quad 11 \\
\end{array} \right\}
\]

Note:

[2 WH(l) 4 5 2] can be arrived at by *Asymmetric West Horizontal Image of* [1 Original (1) 1 1 1].

[2 SV(l) 8 17 3] can be arrived at by *Asymmetric South Vertical Image of* [1 Original (1) 1 1 1].

[2 EH(l) 15 43 5] can be arrived at by *Asymmetric East Horizontal Image of* [1 Original (1) 1 1 1].

[3 SV(l) 5 7 2] can be arrived at by *Asymmetric South Vertical Image of* [2 NV(l) 2 2 1] or [2 WH(l) 4 5 2], however, one can note that the 3rd Co-ordinate and 4th Co-ordinate of [2 WH(l) 4 5 2] naturally *Evolve* to 3rd Co-ordinate and 4th Co-ordinate of [3 SV(l) 5 7 2]. Therefore, we ascribing of Birth and/
or Arising of $[3 \ SV(1) \ 7 \ 13 \ 3]$ to that as Evolved from $[2 \ WH(1) \ 4 \ 5 \ 2]$. Therefore, we also consider such BirthTransition (of Intermediate Nature) as a General Rule, (Pure Prime Metric of 2nd Order Space Sequence Of Primes)

i.e.,

When, along the Time (Instants) Metric in Pure Prime Metric of 2nd Order Space Sequence Of Primes, we have many options of (Just Previous States) reaching a Particular Next State of Evolution from its Just Previous State, we consider The Option wherein 3rd Co-ordinate and 4th Co-ordinate of the Considered Best Option Naturally Evolve In ‘r’ Number of Steps of Consecutive Asymmetric Individual Mirror Image Type Evolutions to the aforementioned Particular Next State considered in Natural Positive Integer Metric and/or Prime Metric of 2nd Order Space Sequence Of Primes.

Therefore, $[3 \ SV(1) \ 7 \ 13 \ 3]$ can be arrived at by Asymmetric South Vertical Image of $[2 \ NV(1) \ 2 \ 2 \ 1]$ or $[2 \ WH(1) \ 4 \ 5 \ 2]$, wherein we can note that $4 \rightarrow 5 \rightarrow 6 \rightarrow 7$ corresponding to $5 \rightarrow 7 \rightarrow 11 \rightarrow 13$, i.e., can be arrived at in 3 Steps of Consecutive Asymmetric Individual Mirror Image Type Evolutions. Furthermore, one can note that the 5th Co-ordinate also should be consistent, i.e., with every Repetition of the Value of concern, the Frequency of the Same Must Increase by +1.

Alternately speaking, since our Asymmetric Mirror Imaging of any Element of concern a Cumulative Sense is considered in an Anti-Clock-Wise Direction (following an Evolute Profile within each newly derived Asymmetric Mirror Image Domain), one can note that after North Vertical Imaging, the Only Possibility is West Horizontal Imaging according to the aforementioned Rule of Evolute Direction of Asymmetric Mirror Imaging.

BirthTransition (of Intermediate Nature) as a General Rule (Aliter)

When, along the Time (Instants) Metric, we have many options of (Just Previous States) reaching a Particular Next State of Evolution from its Just Previous State, we consider The Option wherein the Rule of Evolute Direction of Asymmetric Mirror Imaging is given by any of the following:

$NV \rightarrow WH \rightarrow SV \rightarrow EH \rightarrow NV$
where,
NV indicates Consecutive Asymmetric North Vertical Image
WH indicates Consecutive Asymmetric West Horizontal Image
SV indicates Consecutive Asymmetric South Vertical Image
EH indicates Consecutive Asymmetric East Horizontal Image

Universal Objective Of The Universe
Universal Beauty Primality
Universal Optimal Life Primality
The Aforementioned Three Aspects As Restrictions For Evolution
{Version II of All The Aforementioned}[60]

References in this Section Refer to those in [60] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract
In this research manuscript, the author has detailed ‘Universal Objective Of The Universe’, ‘Universal Beauty Primality’, ‘Universal Optimal Life Primality’, ‘The Aforementioned Three Aspects As Restrictions For Evolution’.
Theory
In this research manuscript, the author has detailed ‘Universal Objective Of The Universe’, ‘Universal Beauty Primality’, ‘Universal Optimal Life Primality’, ‘The Aforementioned Three Aspects As Restrictions For Evolution’.

Definitions
Universal Beauty Primality
Any Primality is considered a Beautiful Primality when it, in totality can be Expressed as the Union Of Complete Recursive Sub-Set Of Some Set of Concern, {inclusive of the Complete Recursive Sub-Set in the Orthogonal (Lateral) Spaces, Found to Exhaustion} including the Some Set of Concern. Furthermore, such Primality should have Maximum possible Precision of ‘Pi’ Value and/ or its Higher Order Equivalent Value.

{see author’s ‘Universal Truth Of Recursive Kind {Version II}’ [55], ‘Pi’, i.e., π, i.e., $\pi(2)$ Value And/ Or Its Higher Order Equivalents i.e., $\pi(N)$ Precision Increase Based Refinement Of Any Primality And/ Or Any Recursion Scheme Of Any Aspect Of Concern’, [37], ‘Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness (Version II)’, [7]}

Universal Objective Of The Universe
The Universal Objective of the Universe is to Constantly Keep Increasing Its Universal Beauty Primality, That Is, The Holistic Symmetry Primality of the Universe, Inclusive Of In The Orthogonal (Lateral) Spaces {Universes In Parallel Of The Universe Found To Exhaustion In The Orthogonal (Lateral) Spaces}, in such a fashion that the Precision of ‘Pi’ Value and/ or its Higher Order Equivalent Value of the Universe of concern is Maximum.

Universal Optimal Life Primality
When a Given Complete and/ or Rectified Set Grows to a Universal Beautiful Primality Set, it can be Called as a Universal Optimal Life Primality. As to the aspect of where the thusly found Complete Recursive Sub-Set {inclusive of the Complete Recursive Sub-Set in the Orthogonal (Lateral) Spaces, Found to Exhaustion} have to be connected
to the original given Set of concern, one can note that the Graph Set of Such Branching Connections Co-ordinates must also Form One Beautiful Primality Set. An Iterative Process starting from around the Median Element and/ Or Centroid Element of the Given Set of concern can help us Characterize such a Graph Set of Such Branching Connections Co-ordinates.

Complete Set and/ or Rectified Set

A Complete Set and/ or a Rectified Set is a Set which conforms to the following aspects:

1. All it’s Elements are Distinct and/ or the Set is Already in a State of Universal Beauty Primality, inclusive of Graph Set of Branching Connections Co-ordinates for the Repeating Elements.
2. The Set has All its Elements Belonging to a Particular Sequence Of Primes of Higher Order (≥2) Space. For the Set that is already in a State of Universal Beauty Primality, inclusive of Graph Set of Branching Connections Co-ordinates for the Repeating Elements, each Element of Any given such Branch {inclusive of the Main Given Set Stem} Belong to a Particular Sequence Of Primes of Higher Order (≥2) Space.
3. Each Element of the Complete Set and/ or each Element of Any given such Branch Belong {inclusive of the Main Given Set Stem} to their Particular Prime Metric Base Position Characteristic of the Sequence Of Primes of Higher Order (≥2) Space, that they belong to.
4. There are No Breaks with regards the Filling Aspect of Prime Metric Base Position Characteristic of the Sequence Of Primes of Higher Order (≥2) Space, that Each Element of the Complete Set and/ or each Element of Any given such Branch Belong {inclusive of the Main Given Set Stem}. That is, All {starting* from Some Prime Number of concern and Consecutively considering Prime Numbers upwards until another Prime Number of concern, with all these Prime Numbers Belonging to a Particular Sequence Of Primes of Higher Order (≥2) Space} the Elements of Any Given Sequence Of Primes are Present Along The Prime Metric Bases Positions Characteristic of the Sequence Of Primes of Higher Order (≥2) Space, that Each Element of the Complete Set and/ or each Element of Any given such Branch Belong {inclusive of the Main Given Set Stem}.
5. For the Case of Definition of Universal Optimal Life Primality, {* The Starting Point is the First Prime Number of the considered {in 4} Particular Sequence Of Primes of Higher Order (≥2) Space}.
{see author’s ‘Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order {Say, Rth} Space’, [53], ‘The Prime Sequence Generating Algorithm’, [1], ‘The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm’, [2], ‘Universal Natural Recursion Schemes Of Rth Order Space’, [3], ‘Universal Aspect Recursion Scheme {Version 2}’, [35], ‘Universal Recursive Algorithmic Scheme To Generate The Sequence Of Primes {Of Second (2nd) Order Space}’, [24]}

The Aforementioned Three Aspects As Restrictions For Evolution

One can know that the above three Laws, namely, Universal Beauty Primality, Universal Objective Of The Universe and Universal Optimal Life Primality can be used as Constraints and/or Restriction for Hyper-Refining author’s Theory Of Evolution

{see author’s “Theory Of Evolution Based On Consecutive Asymmetric Imaging Technique’ [39], ‘Evolution Through Quantization (Version III)’, [30], ‘Universal Recursive Tessellation Based Scheme To Derive The Evolution Scheme Of Any Aspect Set Of Concern {Evolution Through Quantization (Version Two)}’, [28], ‘Evolution Through Quantization’, [13], ‘Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth’, [4]}.

Conclusion

One can note that these presented Definition will Play a Profound Role as Axioms of Importance, in the Theory Of Evolution, Life Engineering and/or Redundancy Minimization Of Any Primality Set Of Any Aspect of concern.
Universal Un-Biased Complete Evolution [63]

References in this Section Refer to those in [63] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract
In this research manuscript the author has detailed the Definition of ‘Un-Biased Universal Complete Evolution’.

Theory
Definition

Universal Un-Biased Complete Evolution
By Universal Un-Biased Complete Evolution, we mean Evolving Any Aspect Set in such a Fashion such that we Reach a State of it’s Universal Optimal Life Primality Set {Found to Exhaustion} and/ or its Universal Beauty Primality Set {Found to Exhaustion}.

Evolution And Holistic Growth

We first Slate the following Law:

Holistic Growth is Usually a Pre-Cursor For Evolution.
Holistic Growth

In a Top-Down Approach Model for Growth, Firstly, considering an Incomplete Set and/or Un-Rectified Set, Growth, implies

1. **Addition of One More Element on the Immediate Penultimate Lower Side Consecutive Prime** corresponding to the **Lowest Prime of Every Branch Set** (inclusive of the Main Stem Set) of the Given Set. Again, for Every Branch, by Primes, we are referring to Primes Belonging to the Sequence of Primes of Some Higher Order (≥ 2) Space.

2. **Addition of One More Element on the Immediate Higher Side Consecutive Prime** corresponding to the **Highest Prime of Every Branch Set** (inclusive of the Main Stem Set) of the Given Set. Again, for Every Branch, by Primes, we are referring to Primes Belonging to the Sequence of Primes of Some Higher Order (≥ 2) Space.

Evolution

1. In our **Evolution** Procedure, we have **Firstly Segregated** every Prime as belonging to some **Sequence of Primes of Some Higher Order (≥ 2) Space**. That is, we segregate them into Various Sets with respect to the aforementioned condition.

2. Now, we consider an **Un-Rectified and/or In-Complete Set** and Tag-Fill it with the Incomplete Elements (this can be done with Respect to its Universal Beauty Primality Set and/or Universal Optimal Life Primality Set Found to Exhaustion, inclusive of in the {Orthogonal} Lateral Spaces).

3. We consider **One Step Evolution**, using our Evolution Concepts detailed above.

4. We can **Clearly Know** how the Tag-Filled Elements Evolve and how the Incomplete Set Evolves.

5. From this we can **Construct a Recursion Scheme** for Evolution of Incomplete Sets using Author’s Universal Aspect Recursion Scheme detailed below.
Universal Aspect Recursion Scheme {Version 2}[36]

References in this Section Refer to those in [36] at www.vixra.org/author/ramesh_chandra_bagadi

Abstract

In this research manuscript, the author has presented a Universal Aspect Recursion Scheme which can be considered as the Recursion Scheme that is Synonymous with the ‘Theory Of Everything’.

Theory

Firstly, we consider a special kind of Recursion Scheme(s) denoted by

\[R_{k,j}^{(k,n,l)} \leftrightarrow R_{k,j}^{(k,n,l)}(j-1)_{RS_{j-1}} \leftrightarrow R_{k,j}^{(k,n,l)}(j+1)_{RS_{j+1}} \]

where \(k \), \(j \) denotes the \(k^{th} \) Number Value \{among the three number values \(k = 1, 2, 3 \) representing any Recursion Scheme of concern, considered as we go along from Left to Right\}

We now consider all the cases of the Recursion Scheme of the kind

\[R_{k,j}^{(k,n,l)} \leftrightarrow R_{k,j}^{(k,n,l)}(j-1)_{RS_{j-1}} \leftrightarrow R_{k,j}^{(k,n,l)}(j+1)_{RS_{j+1}} \]

where, the Evolution (the values taken by \(j \) for each case of \(k \)) of \(j \) is given by the Recursion Scheme \(j \leftrightarrow (j+1) \leftrightarrow (j-1) \) and

where, the Evolution (the values taken by \(l \) for each case of \(k \)) of \(l \) is given by the Recursion Scheme \(l \leftrightarrow (l+1) \leftrightarrow (l-1) \) and

where, the Evolution (the values taken by \(n \) for each case of \(k \)) of \(n \) is given by the Recursion Scheme \(n \leftrightarrow (n+1) \leftrightarrow (n-1) \) for Each of the

the GroupingScheme(s) of \(j, l, n \) Restricted as
<table>
<thead>
<tr>
<th>(j)</th>
<th>(l)</th>
<th>(n)</th>
<th>Grouping Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>((j) \equiv (l+1) \equiv (n-1))</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td>((j) \equiv (l-1) \equiv (n+1))</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>0</td>
<td>((j+1) \equiv (l-1) \equiv (n))</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>((j+1) \equiv (l) \equiv (n-1))</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>((j-1) \equiv (l) \equiv (n+1))</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>((j-1) \equiv (l+1) \equiv (n))</td>
</tr>
</tbody>
</table>

(where \(j \) is simply an Index that represents any Recursion Scheme uniquely, once numbered along the many such Recursion Schemes, possibly, at our disposal)

for the thusly considered Recursion Scheme

\[
R_{(i+1)(k+1)} j_{RS_{k}} \leftrightarrow R_{(i)(k+1)} (j-1)_{RS_{k}} \leftrightarrow R_{(i)(k+1)} (j+1)_{RS_{k}}
\]

as can be Observed in the North West Indices of the \(k^{th} \) Number Values of the above considered Recursion Scheme.

Notation:
In \(R_{(i)(k+1)} j_{RS_{k}} \), \((l+1)\) denotes the Order Number Of the \{Higher Order Sequence Of Primes\} to which \(R_{(i)(k+1)} j_{RS_{k}} \) belongs and \((n-1)\) denotes the Position Number of \(\alpha_{RS_{k}} \) along the Prime Metric (Bases) Of the \{Higher OrderSequence Of Primes\} to which \(R_{(i)(k+1)} j_{RS_{k}} \) belongs.

In \(R_{(i+1)(k)(1)} j_{RS_{k}} \), \((l)\) denotes the Order Number Of the \{Higher Order Sequence Of Primes\} to which \(R_{(i+1)(k)(1)} j_{RS_{k}} \) belongs and \((n)\) denotes the Position Number of \(\alpha_{RS_{k}} \) along the Prime Metric (Bases) Of the \{Higher OrderSequence Of Primes\} to which \(R_{(i+1)(k)(1)} j_{RS_{k}} \) belongs.

In \(R_{(i+1)(k)(n-1)} j_{RS_{k}} \), \((l-1)\) denotes the Order Number Of the \{Higher Order Sequence Of Primes\} to which \(R_{(i+1)(k)(n-1)} j_{RS_{k}} \) belongs and \((n)\) denotes the Position Number of \(\alpha_{RS_{k}} \) along the Prime Metric (Bases) Of the \{Higher OrderSequence Of Primes\} to which \(R_{(i+1)(k)(n-1)} j_{RS_{k}} \) belongs.
Universal Aspect Recursion Scheme

Also, we consider another kind of Recursion Scheme given by

\[R_{(i)}^{(l)} (j) \leftrightarrow R_{(i+l)}^{(l)} (j-1) \leftrightarrow R_{(i+l+1)}^{(l)} (j) \]

where, in each of the following Grouping Scheme stated below

<table>
<thead>
<tr>
<th>j</th>
<th>l</th>
<th>n</th>
<th>Grouping Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>$(j) \equiv (l+1) \equiv (n-1)$</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td>$(j) \equiv (l-1) \equiv (n+1)$</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>$(j+1) \equiv (l-1) \equiv (n)$</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>$(j+1) \equiv (l) \equiv (n-1)$</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>$(j-1) \equiv (l) \equiv (n+1)$</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>$(j-1) \equiv (l+1) \equiv (n)$</td>
</tr>
</tbody>
</table>

is Re-Assigned to Each of the 504^* Recursion Scheme(s)

\[R_{(0)}^{(0)} \leftrightarrow R_{(1)}^{(0)} \leftrightarrow R_{(0)}^{(1)} \]

can be used as Re-Assignment to \(j \leftrightarrow (j+1) \leftrightarrow (j-1) \) with regards the Variable \(j \) where \(R_{(0)}^{(0)} \) indicates the 1st First Value Index of thusly computed \(U^{th} \) Recursion Scheme among the computed 504 Recursion Schemes, \(R_{(1)}^{(0)} \) indicates the 2nd First Value Index of thusly computed \(U^{th} \) Recursion Scheme among the computed 504 Recursion Schemes and \(R_{(0)}^{(1)} \) indicates the 3rd First Value Index of thusly computed \(U^{th} \) Recursion Scheme among the computed 504 Recursion Schemes,
This also motivates us to consider this issue holistically. Therefore, One can construct \textit{All Possible Recursion Schemes} using the following \{\textit{Shaded 9 Elements}\} in the Table shown below which will give us $9 \times 8 \times 7 = 504$ number of \textit{Recursion Schemes} that can be built using the \{\textit{Shaded 9 Elements}\} because among the three number values $(k = 1, 2, 3)$ representing any \textit{Recursion Scheme} of concern, considered as we go along from \textit{Left to Right} of the \textit{Recursion Scheme} considered, we can choose the \textit{First Value} in 9 ways (for our case) and having done that we can choose the \textit{Second Value} in 8 ways and having done that we can choose the \textit{Third Value} in 7 ways, and by the

\textit{Law Of Number Of Ways Of Conductance Of Any Experiment}

The \textit{Law Of Conductance Of Any Experiment} states that if an Experiment is conducted in N stages wherein each stage can be conducted in m_i ways (for $i = 1$ to N), then, the entire Experiment can be conducted in $m_1 \times m_2 \times m_3 \times \ldots \times m_{(M-1)} \times m_M$ number of ways.

<table>
<thead>
<tr>
<th></th>
<th>$R_{(1)}(n)$</th>
<th>$R_{(1)}(n-1)$</th>
<th>$R_{(1)}(n+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{(l)}(n)$</td>
<td>$R_{(l)}(n)$</td>
<td>$R_{(l)}(n-1)$</td>
<td>$R_{(l)}(n+1)$</td>
</tr>
<tr>
<td>$R_{(l-1)}(n)$</td>
<td>$R_{(l-1)}(n)$</td>
<td>$R_{(l-1)}(n-1)$</td>
<td>$R_{(l-1)}(n+1)$</td>
</tr>
<tr>
<td>$R_{(l+1)}(n)$</td>
<td>$R_{(l+1)}(n)$</td>
<td>$R_{(l+1)}(n-1)$</td>
<td>$R_{(l+1)}(n+1)$</td>
</tr>
</tbody>
</table>

and each of the Recursion Scheme constructed (there are taking distinct three elements from the \{\textit{Shaded 9 Elements}\}) them can be used as \textit{Re-Assignment} to $j \leftrightarrow (j+1) \leftrightarrow (j-1)$ with regards the \textit{Variable} j. One among them gives the \textit{Best Case} of our \textit{Universal Aspect Recursion Scheme}.

Let us represent this as

$R_{1}\text{Best} \leftrightarrow R_{2}\text{Best} \leftrightarrow R_{3}\text{Best}$
For more on this see authors ‘Universal Recursive Algorithmic Scheme To Generate Sequence Of Primes Of Rth Order Space’

Conclusion

One can note that the above slated Universal Aspect Recursion Scheme be used to Express Any Aspect of concern, inclusive of the ‘Theory Of Everything’.

References

Schema Of Construction Of Infinity Geodesic Of Any Aspect Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[62] viXra:1512.0426 submitted on 2015-12-26 01:50:19, (0 unique-IP downloads)

Universal Un-Biased Complete Evolution

Authors: Ramesh Chandra Bagadi
Category: General Mathematics
[61] **viXra:1512.0419** submitted on 2015-12-25 05:54:12, (0 unique-IP downloads)

NP Versus P Problem. Schroedinger's Cat In A Box Problem

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Objective Of The Universe. Universal Beauty Primality. Universal Optimal Life Primality. The Aforementioned Three Aspects As Restrictions For Evolution {Version II of All The Aforementioned}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[59] **viXra:1512.0410** submitted on 2015-12-24 05:48:20, (0 unique-IP downloads)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[58] **viXra:1512.0407** submitted on 2015-12-23 09:21:29, (1 unique-IP downloads)

Representation Of Alphabets By Set Of Prime Numbers – Primality Engineering I {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Theory Of Quantum Coupling. Theory Of Quantum Lensing. Theory Of Quantum Lens Invasion.

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[56] *viXra:1512.0396* submitted on 2015-12-22 01:04:57, (1 unique-IP downloads)

Universal Truth Of Recursive Kind {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[55] *viXra:1512.0389* submitted on 2015-12-21 05:26:05, (1 unique-IP downloads)

Universal Recursive Scheme To Generate The Sequence Of Primes Of Any Order {Say, Rth} Space

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[54] *viXra:1512.0387* submitted on 2015-12-21 05:35:54, (1 unique-IP downloads)

Universal Truth Of Recursive Kind

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[53] *viXra:1512.0377* submitted on 2015-12-20 05:30:29, (4 unique-IP downloads)
Karma-Falam. Why-To.

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

{1} Universal Recursive Scale Shifting Technique {2} Universal Recursion Scheme That Is Vertically Evolving {Maximally} Evolving {10-3-105}-{6-2-15}-{14-5-385}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/ Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern {Version II}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Removing And/ Or Minimizing The Redundancies In The Primality Of Any Aspect Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[49] viXra:1512.0345 submitted on 2015-12-17 00:49:27, (3 unique-IP downloads)
Universal Daily Wage Labour Work Order(s) Placed Instantaneous Quantification And Exigent Work Order(s) Realization Facilitation System

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

First Meaning(s) Of All The English Alphabet(s)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[47] viXra:1512.0323 submitted on 2015-12-15 00:08:54, (4 unique-IP downloads)

Recommended Human Conduct

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning - An Example Of Natural Memory Embedding

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Knowing The Infinitely Deeper Meaning. The Universal Infinite Logic Distiller

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[44] viXra:1512.0312 submitted on 2015-12-14 00:00:25, (4 unique-IP downloads)

On The Governmental Policy Of Acquiring And/ Or Purchase Of Individual Citizen Property For Governmental Reforms {Version I}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[43] viXra:1512.0305 submitted on 2015-12-13 00:19:58, (7 unique-IP downloads)

Universal Light Type Holistic Reference Frames For Characterizing Universal Electro-Magnetic Phenomena

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[42] viXra:1512.0299 submitted on 2015-12-12 09:01:29, (7 unique-IP downloads)

Maximizing Relativistic Electro-Magnetic Fringe Displacement Effect Width

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

ReprsentationOf Alphabets By Prime Numbers - Primality Engineering - I

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[40] viXra:1512.0268 submitted on 2015-12-09 03:30:14, (7 unique-IP downloads)

Theory Of Evolution Through Consecutive Asymmetric Imaging Technique

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[39] viXra:1512.0235 submitted on 2015-12-06 02:38:01, (10 unique-IP downloads)

Truth Assessment Of Any Consciousness Information

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[38] viXra:1512.0218 submitted on 2015-12-05 00:41:24, (10 unique-IP downloads)

‘Pi’ Value And/ Or Its Higher Order Equivalents Value Precision Quantized Increase Based Refinement Of Any Primality And/ Or Any Recursion Scheme Of Any Aspect Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[37] viXra:1512.0117 submitted on 2015-12-04 02:24:10, (7 unique-IP downloads)
Holistic Flood Proof City Design. Instantaneous Flood Water Draining System Theory

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[36] viXra:1512.0021 submitted on 2015-12-03 00:53:45, (4 unique-IP downloads)

Universal Aspect Recursion Scheme {Version 2}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[35] viXra:1512.0008 submitted on 2015-12-02 00:45:31, (8 unique-IP downloads)

Universal Aspect Recursion Scheme {Version 1}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[34] viXra:1511.0238 submitted on 2015-11-25 02:01:26, (28 unique-IP downloads)

Your Good Nature Is Your Real Wealth

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Relativistic Transformations In Standard Prime Metric And/ Or Corresponding Reverse Direction Prime Metric
Within Some Selected Domains Of Complementable Bounds

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life (Version 4)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization (Version III)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[30] viXra:1511.0190 submitted on 2015-11-20 09:00:08, (10 unique-IP downloads)

Rth Order Space Sequence Of Primes Based Prime Metric Algebra

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Tessellation Based Scheme To Derive The Evolution Scheme Of Any Aspect Set Of Concern
{Evolution Through Quantization (Version Two)}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version II)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life (Version III)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Living A Happy Life

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Algoritmic Scheme For The Generation Of Sequence Of Prime Numbers (Of 2nd Order Space)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life {Version 3}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursion Scheme Of The Sequence Of Primes {Of Second (2nd) Order Space}

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Theory Of ‘Complementable Bounds’ And ‘Universe(s) In Parallel’ Of Any Sequence Of Primes Of RthOrder Space

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Synonymity Between The Five Elements Of (At) Planet Earth And The Five Digits Of Human Palm

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Genuinity Validation Of Any 'Original Work Consciousness Of Concern' And Decorrupting 'Corrupted Original Work Consciousness'

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

[19] viXra:1510.0391 submitted on 2015-10-26 02:45:01, (8 unique-IP downloads)

Musical Life (Version II)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Musical Life

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Universal Wave Function Of The Universe (Verbose Form)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life (Version 2)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Fulfill Your Life

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Quantized Variable Dimensional Equivalents Of Any Technology Of Concern : An Example Of The (William F. Baker)’s Buttressed Core Design Concept

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Evolution Through Quantization

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Time Evolution Juxtaposition Of The Observables Based Dirac Type Commutator And The Consequential Wave Equation Of Photon

Authors: Ramesh Chandra Bagadi
Category: Mathematical Physics

A Condition For The Suspension Of Gravitational Field

Authors: Ramesh Chandra Bagadi
Category: Classical Physics

Some Basic Definitions Of Fractional Calculus

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Recursive Crossing Science Of Genetic Kind

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Recursive Consecutive Element Differential Of Prime Sequence (And/Or Prime Sequences In Higher Order Spaces) Based Instantaneous Cumulative Imaging Of Any Set Of Concern

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness (Version II)

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

All You Need to Know About Euclidean and Euclidean Type Inner Product Scheme

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Complete Recursive Subsets Of Any Set Of Concern And/ Or Orthogonal Universes In Parallel Of Any Set Of Concern In Completeness

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal One Step Natural Evolution And/ Or Growth Scheme Of Any Set Of Concern And Consequential Evolution Quantization Based Recursion Scheme Characteristically Representing Such Aforementioned Evolution And/ Or Growth

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Universal Natural Recursion Schemes OfRth Order Space

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

The Prime Sequence’s (Of Higher Order Space’s) Generating Algorithm

Authors: Ramesh Chandra Bagadi
Category: General Mathematics
The Prime Sequence Generating Algorithm

Authors: Ramesh Chandra Bagadi
Category: General Mathematics

Acknowledgements

The author would like to express his deepest gratitude to all the members of his loving family, respectable teachers, endearable friends, inspiring Social Figures, highly esteemed Professors, reverence deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the conception, preparation and authoring of this research manuscript document.

Tribute

The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural phenomenon and forms new premises and scientifically surmises plausible laws. The author strongly reiterates his sense of gratitude
and infinite indebtedness to all such ‘Philosophical Statesmen’ that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.