Using formula for searching a prime number in the interval $\left[p_{m}, p_{m+1}^{2}\right]$ Nguyen Van Quang

Abstract

There is now a method for searching a prime number in the interval [p_{m}, p_{m+1}^{2}] by using formula, and there is no known useful formula that sets apart all prime numbers from composites. In this paper, we try to use a formula for searching a prime number in the interval $\left[p_{m}, p_{m+1}^{2}\right]$, if a complete list of prime numbers up to p_{m} is known.

1.Introduce

We have known the famous Euclid's proof by formula $N=2.3 .5 \ldots p_{m-1} \cdot p_{m}+1$, the primality test by using formula $N=n!\pm 1$. Assume $p_{m} \leqslant n<p_{m+1}$, then N is not divisible by all prime numbers $\leqslant p_{m}$, but they require more test, since $\sqrt{N}>p_{m+1}$ if $p_{m} \geq 7$ in these formulas, and they do not give a value which is belong to the interval [p_{m}, p_{m+1}^{2}].

The most basic method of checking the primality of a given integer N is call trial division, This routine consists of dividing n by each integer m that is greater than 1 and less than or equal to the square root of n. This routine can be implemented more efficiently if a complete list of prime numbers up to \sqrt{N} is known- then trial divisions need to be checked only for those m that are prime. An algorithm yielding all prime numbers up to a given limit, such as required in the prime numbers - only trial method, is called a prime number sieve. The oldest example, the sieve of Eratosthenes is still the most commonly used.

2.Using formula for searching a prime number in the interval [p_{m}, p_{m+1}^{2}]

Let be given prime numbers from 2 to p_{m}, we divide these prime numbers into two groups, the first group contains $p_{1}, p_{2}, \ldots, p_{k}$ prime numbers, we make the first product: $p_{1}^{\alpha_{1}} . p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, the second group contains remaining prime numbers $q_{1}, q_{2}, \ldots, q_{h}$, and we make the second product: $q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \ldots q_{h}^{\beta_{h}}$.

Here: α_{i}, β_{j} are powers, $\max \left\{p_{k}, q_{h}\right\}=p_{m}$
Then make absolute value of difference of two products:

$$
N=\left|p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}-q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \ldots q_{h}^{\beta_{h}}\right|
$$

N is not divisible by any prime numbers from 2 to p_{m}, and N can be following values:
a. $N=1$.
b. $p_{m}<N<p_{m+1}^{2}$, then N is a prime number, since N is not divisible by any prime number $\leq \sqrt{N}$.
c. $N \geq p_{m+1}^{2}$, then N is a prime number or a composite of two or more prime factors, each of them is equal or lager than P_{m+1}.

If p_{m+1} is unknown, since $p_{m+1} \geq p_{m}+2$, so if $N<\left(p_{m}+2\right)^{2}$, then N is certain a prime number.

Example: given prime numbers $2,3,5,7,11$.
Apply above formula, we obtain some prime numbers : $7<N<11^{2}$ as follows:

$$
\begin{gathered}
N_{1}=\left|3.5 .7-2^{7}\right|=23 \\
N_{2}=\left|3.5 .7-2^{6}\right|=41 \\
N_{3}=\left|3.5 .7-2^{5}\right|=73 \\
N_{4}=\left|3.5 .7-2^{4}\right|=89 \\
N_{5}=\left|3.5 .7-2^{3}\right|=97 \\
N_{6}=\left|3.5 .7-2^{2}\right|=101 \\
N_{7}=|3.5 .7-2|=103 \\
N_{8}=|3.7-2.5|=11 \\
N_{9}=\left|3^{2} .7-2.5^{2}\right|=13 \\
N_{10}=\left|3^{2} .7-2.5\right|=53 \\
N_{11}=\left|3^{2} .7-2^{2} .5^{2}\right|=37
\end{gathered}
$$

And can this formula give all prime numbers in the interval $\left[p_{m}, p_{m+1}^{2}\right]$.

Reference

- Prime number- Wikipedia

Emai: quangnhu67@yahoo.com.vn

