Using formula for searching a prime number in the interval $[p_m, p_{m+1}^2]$ Nguyen Van Quang

Abstract. There is now a method for searching a prime number in the interval $[p_m, p_{m+1}^2]$ by using formula, and there is no known useful formula that sets apart all prime numbers from composites. In this paper, we try to use a formula for searching a prime number in the interval $[p_m, p_{m+1}^2]$, if a complete list of prime numbers up to p_m is known.

1.Introduce

We have known the famous Euclid's proof by formula $N = 2.3.5...p_{m-1}.p_m + 1$, the primality test by using formula $N = n! \pm 1$. Assume $p_m \leq n < p_{m+1}$, then N is not divisible by all prime numbers $\leq p_m$, but they require more test, since $\sqrt{N} > p_{m+1}$ if $p_m \geq 7$ in these formulas, and they do not give a value which is belong to the interval $[p_m, p_{m+1}^2]$.

The most basic method of checking the primality of a given integer N is call *trial division*, This routine consists of dividing n by each integer m that is greater than 1 and less than or equal to the square root of n. This routine can be implemented more efficiently if a complete list of prime numbers up to \sqrt{N} is known- then trial divisions need to be checked only for those m that are prime. An algorithm yielding all prime numbers up to a given limit, such as required in the prime numbers - only trial method, is called a prime number sieve. The oldest example, the sieve of Eratosthenes is still the most commonly used.

2. Using formula for searching a prime number in the interval [p_m, p_{m+1}^2]

Let be given prime numbers from 2 to p_m , we divide these prime numbers into two groups, the first group contains $p_1, p_2, ..., p_k$ prime numbers, we make the first product: $p_1^{\alpha_1}.p_2^{\alpha_2}...p_k^{\alpha_k}$, the second group contains remaining prime numbers $q_1, q_2, ..., q_h$, and we make the second product: $q_1^{\beta_1}.q_2^{\beta_2}...q_h^{\beta_h}$.

Here: α_i, β_j are powers, max $\{p_k, q_h\} = p_m$

Then make absolute value of difference of two products:

$$N = |p_1^{\alpha_1}.p_2^{\alpha_2}...p_k^{\alpha_k} - q_1^{\beta_1}.q_2^{\beta_2}...q_h^{\beta_h}|$$

N is not divisible by any prime numbers from 2 to p_m , and N can be following values:

a. N = 1.

b. $p_m < N < p_{m+1}^2$, then N is a prime number, since N is not divisible by any prime number $\leq \sqrt{N}$.

c. $N \ge p_{m+1}^2$, then N is a prime number or a composite of two or more prime factors, each of them is equal or lager than P_{m+1} .

If p_{m+1} is unknown, since $p_{m+1} \ge p_m + 2$, so if $N < (p_m + 2)^2$, then N is certain a prime number.

Example: given prime numbers 2,3,5,7,11.

Apply above formula, we obtain some prime numbers : $7 < N < 11^2$ as follows:

$$N_{1} = |3.5.7 - 2^{7}| = 23$$

$$N_{2} = |3.5.7 - 2^{6}| = 41$$

$$N_{3} = |3.5.7 - 2^{5}| = 73$$

$$N_{4} = |3.5.7 - 2^{4}| = 89$$

$$N_{5} = |3.5.7 - 2^{3}| = 97$$

$$N_{6} = |3.5.7 - 2^{2}| = 101$$

$$N_{7} = |3.5.7 - 2| = 103$$

$$N_{8} = |3.7 - 2.5| = 11$$

$$N_{9} = |3^{2}.7 - 2.5^{2}| = 13$$

$$N_{10} = |3^{2}.7 - 2^{2}.5^{2}| = 37$$

And can this formula give all prime numbers in the interval $[p_m, p_{m+1}^2]$.

Reference

- Prime number- Wikipedia
- Emai: quangnhu67@yahoo.com.vn