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Abstract As opposed to the classical logic of true and false, when Elementary Al-
gebra is treated as a formal axiomatised system, formulae in that algebra are either
provable, disprovable or otherwise, logically independent of axioms. This logical in-
dependence is well-known to Mathematical Logic. Here I show that the imaginary
unit, and by extension, all complex numbers, exist in that algebra, logically inde-
pendently of the algebra’s axioms. The intention is to cover the subject in a way
accessible to physicists. This work is part of a project researching logical independ-
ence in quantum mathematics, for the purpose of advancing a complete theory of
quantum randomness. Elementary Algebra is a theory that cannot be completed
and is therefore subject to Gödel’s Incompleteness Theorems.
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1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [7], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in Boolean propositions [8,9]. Logical independence refers to the null logical
connectivity that exists between mathematical propositions (in the same language)
that neither prove nor disprove one another. In experiments measuring photon
polarisation, Paterek et al demonstrate statistics correlating predictable outcomes
with logically dependent mathematical propositions, and random outcomes with
propositions that are logically independent.

Whilst Paterek et al do demonstrate that quantum randomness correlates with
Boolean propositions, in this Boolean context, any insight offered is obscure. To
gain proper insight, quantum randomness must be understood in context of logical
independence in standard textbook quantum theory. The natural place to begin
is Elementary Algebra treated as a formal axiomatised logical system. This is a
formal version of the very familiar algebra upon which applied mathematics and
mathematical physics rest. Logical independence, in this system, is well-known to
Mathematical Logic [10].

A formal system comprises: a precise language, rules for writing formulae (pro- A good reference for the physicists is Edward
Stabler’s book An introduction to mathemat-
ical thought [10].

positions) and further rules of deduction. Information is designated in two levels
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AXIOMS of INFINITE FIELDS

Additive Group
A0 ∀β∀γ∃α | α = β + γ Closure
A1 ∃0∀α | α+ 0 = α Identity 0
A2 ∀α∃β | α+ β = 0 Inverse
A3 ∀α∀β∀γ | (α+ β) + γ = α+ (β + γ) Associativity
A4 ∀α∀β | α+ β = β + α Commutativity

Multiplicative Group
M0 ∀β∀γ∃α | α = β × γ Closure
M1 ∃1∀α | α× 1 = α Identity 1
M2 ∀β∃α | α× β = 1 ∧ β 6= 0 Inverse
M3 ∀α∀β∀γ | (α× β)× γ = α× (β × γ) Associativity
M4 ∀α∀β | α× β = β × α Commutativity

AM ∀α∀β∀γ | α× (β + γ) = (α× β) + (α× γ) Distributivity
C0 0 6= 1; 0 6= p, p = any prime characteristic 0

Table 1 Axioms of infinite fields. These are written as sentences in first-order logic.
They comprise the standard field axioms with added axioms that exclude modulo arithmetic.
Variables: α, β, γ, 0, 1 represent objects the axiom-set acts upon. Semantic interpretations of
objects complying with axioms are known as scalars. The fact that algebra is intrinsically
existential is clearly seen in the general use of the ‘there exists’ quantifier: ∃.

of compulsion. Propositions assert information that is questionable. Axioms are
propositions presupposed to be ‘true’. These are postulates adopted a priori.

In such a formal system, any two propositions are either logically dependent —
in which case, one proves, or disproves the other — or otherwise they are logic-
ally independent, in which case, neither proves, nor disproves the other. A helpful
perspective on this is the viewpoint of Gregory Chaitin’s information-theoretic for-
mulation [6]. In that, logical independence is seen in terms of information content.
If a proposition contains information, not contained in some given set of axioms,
then those axioms can neither prove nor disprove the proposition.

A good (efficient) axiom-set is a selection of propositions, all logically independ-
ent of one another. An important point to note is that there is no contradiction
in a theory consisting of information whose source is some axiom-set, plus extra
information whose source is a logically independent proposition. These might typ-
ically be axioms asserting the theory’s set conditions, plus a proposition posing a
question.

Elementary algebra is the abstraction of the familiar arithmetic used to combine
numbers in the rational, real and complex number systems, through operations
of addition and multiplication. These number systems are infinite fields. I denote
this algebra — algebra of infinite fields1 (or just algebra) — as distinct
from any other algebra or arithmetic, such as Peano arithmetic or the arithmetic
of integers. At a fundamental level, in some form or other, quantum theory rests
on mathematical rules of algebra.

Now, algebra may be treated as a formal system, based on axioms listed in
Table 1. These, I denote – axioms of infinite fields (or just axioms). Essen-
tially, these are the conventional field axioms appended with additional axioms that
exclude the finite fields by denying modulo arithmetic. This ensures that algebra
covers only the infinite fields.

Collectively, axioms assert a definite set of information, deriving a definite set
of theorems. I denote these – theorems. Any proposition (in the language) is
either a theorem or is otherwise logically independent. And so, any given formula
can be regarded as a proposition in algebra, that may prove to be a theorem,
or may otherwise prove to be logically independent. Which of these is actually
the case is decided in a process that compares information in that formula against
information contained in the axioms. In practice, that means deriving the formula
from axioms, to discover: that either it is a theorem, or otherwise, to discover,
whatever extra information is needed to complete its derivation – that axioms
cannot provide.

1 Fields should not be confused with the field concept commonly used in physics.
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2 Language

The material of this paper spans formal number theory and formulae typically seen
inmathematical physics. These do not share the same language; indeed the language
of the former is far smaller. For example, there is no definition for the symbol: 4
and many statements are needed, typified by: 4 = 1 + 1 + 1 + 1. In the interest of
accessibility, these low-level definitions are left to intuition.

Logical connectives used are: not (¬), and (∧) , or (∨), implies (⇒) and if-and-
only-if (⇔). Turnstile symbols are used: derives (`) and models (|=). Also used are
the quantifiers: there-exists (∃) and for-all (∀).

Use of Quantified formulae is crucial in the conveyance of full information. For
instance, quantifiers eliminate ambiguities suffered by ordinary equations. To illus-
trate: the equation y = x2 doesn’t express whether ∀y∃x

(
y = x2)

or ∀x∃y
(
y = x2)

is intended. Yet, logically, these two are very different.

3 Examples of logic in the algebra of FIELDS

The propositions (1) – (5) are five examples illustrating the three distinct logical
values possible under fields axioms. Notice that these formulae do not assert
equality; they assert existence. Each is a proposition asserting existence for some
instance of a variable α, complying with an equality, specifying a particular numer-
ical value.

∃α | α = 3 (1)
∃α | α2 = 4 (2)
∃α | α2 = 2 (3)
∃α | α2 = −1 (4)
∃α | α−1 = 0 (5)

Of the five examples, axioms prove only (1) and (2). Proofs are given below in
this section. Also, axioms prove the negation of (5); in point of fact, (5) contradicts,
and is inconsistent with axiom M2. The remaining two, (3) and (4), are neither
proved nor negated, and are logically independent of axioms.

Accordingly, instances of α, in (1) and (2), are numbers consistent with axioms
and accepted as scalars, proved to necessarily exist; the instance of α in (5) is
inconsistent with axioms and rejected as necessarily non-existent; and instances
of α in (3) and (4) are numbers consistent with axioms and accepted as scalars
whose existences are not provable, and not necessary, but possible.

In the cases of propositions (1) and (2), logical dependence, on axioms, is es- Substitution involving quantifiers

∀β∀γ∃α | α = β + γ

∀β∃γ | γ = β + β

⇒ ∀β∃α | α = β + β + β

In the example above, an existential quantifier
of one proposition must be matched with a
universal quantifier of the other. These are
highlighted by underlining.

Notation
γ y β indicates swapping to different bound
variable. This is always allowed under the
quantifier, so long as all instances are swapped

tablished by the fact that these propositions (syntactically) derive, directly from
axioms. Likewise for the negation of (5). In contrast, however, logical independence
of (3) and (4) is not provable by direct derivation because axioms do not assert
such information. In essence, that is the whole point of the discussion. What does
confirm logical independence is a proposition’s truth-table, viewed from the context
of the Soundness Theorem and its converse, the Completeness Theorem. Briefly,
Soundness says: if a formula is provable, it will be true, irrespective of whether
variables are understood as rational, real or complex (or any other field). Com-
pleteness says: if a formula is true, irrespective of how variables are understood,
then it will be provable. Consequently, if there is disagreement in a truth-table,
jointly, Soundness and Completeness except an excluded middle whose formulae
are neither provable nor disprovable. This is the predicament of Propositions (3)
and (4). Sections 4 – 7 explain the detail.

Proof of (1): that ∃α | α = 3

∀β∀γ∃α | α = β + γ AXIOM A0 (6)
∀β∃α | α = β + β γ y β (6) (7)
∀γ∃α | γ = β + β αy γ (7) (8)
∀β∃α | α = β + β + β Subst. (8), (6) (9)
∃1∀α | α× 1 = α AXIOM M1 (10)
∃β | β = 1 by (10) (11)
∃α | α = 1 + 1 + 1 Subst. (11), (9)) (12)
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Proof of (2): that ∃α | α2 = 4

∀β∀γ∃α | α = β + γ AXIOM A0 (13)
∀β∃α | α = β + β γ y β (13) (14)
∀α | α× α = α× α identity rule (15)

∀β∃α | α× α = (β + β)× (β + β) Subst. (14), (15) (16)
∀α∀β∀γ | α× (β + γ) = (α× β) + (α× γ) AXIOM D (17)
∀β∃α | α× α = β × (β + β) + β × (β + β) by (17), (16) (18)
∀β∃α | α× α = (β × β) + (β × β) + (β × β) + (β × β) by (17), (18) (19)
∃1∀α | α× 1 = α AXIOM M1 (20)
∃β | β = 1 by (20) (21)
∃α | α× α = (1× 1) + (1× 1) + (1× 1) + (1× 1) Subst. (21), (19) (22)
∃α | α× α = 1 + 1 + 1 + 1 by (20), (22) (23)

4 Soundness and Completeness

Model theory is a branch of Mathematical Logic applying to all first-order the-
ories, and hence to algebra [4,5]. Our interest is in two standard theorems: the
Soundness Theorem and its converse, the Completeness Theorem, and theorems
that follow from them. These theorems formalise the link connecting the truth (se-
mantic information) of a formula and its provability (syntactic information). To-
gether, their combined action identifies an excluded middle, comprising the set of all
non-provable, non-negatable propositions — those that are logically independent
of axioms.

Briefly: any given (first-order) axiom-set is modelled by particular mathematical
structures. That is to say, there are certain structures, consistent with each indi-
vidual axiom of that axiom-set. In the case of algebra, these modelling structures
are the infinite fields. These are closed structures consisting of numbers known as
scalars. In practical terms, if a proposition is logically independent of axioms, this
independence may be diagnosed by demonstrating disagreement on whether the
proposition is true – between any two models. Of relevance to quantum theory is
Proposition (4); this is true in the complex plane, but false in the real line.

Theorem 1 The Soundness Theorem:

Σ ` S =⇒ ∀M (M |= Σ ⇒M |= S) . (24)

If structureM models axiom-set Σ and Σ derives sentence S, then every structureA sentence is a formula where there is no oc-
currence of any variable not bound by a quan-
tifier. For example: ∀α∀β (α+ β = β + α) .

M models S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then that
sentence is true for every model of that axiom-set.

Theorem 2 The Completeness Theorem:

Σ ` S ⇐= ∀M (M |= Σ ⇒M |= S) . (25)

If structureM models axiom-set Σ and every structureM models sentence S, then
Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then that
sentence is a theorem, provable under that axiom-set.

5 Logical Dependence

Jointly, Theorems 1 and 2 imply the 2-way implications, in Theorem 3:

Theorem 3 Soundness And Completeness:

Σ ` S ⇐⇒ ∀M (M |= Σ ⇒M |= S) (26)
Σ ` ¬S ⇐⇒ ∀M (M |= Σ ⇒M |= ¬S) . (27)

If structure M models axiom-set Σ, then axiom-set Σ derives sentence S (¬S),
if-and-only-if, all structures M model sentence S (¬S).
Alternatively: A sentence is provable (disprovable) under an axiom-set, if-and-only-
if, that sentence is true (false) for all models of that axiom-set.
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Remark For every provable sentence S there is a provable sentence ¬S. We might¬S ≡ NOT S
normally think of these as the disprovable or negatable sentences. Both types of sen-
tence are covered by Theorem 3 because the set {S} already includes all sentences
¬S.

6 Logical Independence

Of special interest are those sentences, not covered by Theorem 3. They are the
sentences to which the Soundness and Completeness Theorems do not apply. They
constitute an excluded middle, not included in (26) nor (27), comprising sentences,
neither provable nor disprovable.

Happily, whereas there is no suggestion of any excluded middle in the left hand
sides of (26) and (27), the right hand sides jointly define one. It is the set of sentences
S excluded by the right hand sides of both (26) and (27), thus:

{S | ¬∀M (M |= Σ ⇒M |= S) ∧ ¬∀M (M |= Σ ⇒M |= ¬S)} . (28)

By writing the negations of (26) and (27), thus:

¬ (Σ ` S) ⇐⇒ ¬∀M (M |= Σ ⇒M |= S) (29)
¬ (Σ ` ¬S) ⇐⇒ ¬∀M (M |= Σ ⇒M |= ¬S) (30)

we may match the set of sentences specified in (28) with its corresponding left side,
so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)
⇐⇒ ¬∀M (M |= Σ ⇒M |= S) ∧ ¬∀M (M |= Σ ⇒M |= ¬S) (31)

This includes all sentences excluded by (26) and (27). It limits sentences that are
neither provable nor negatable (on the left) to those that are neither true nor false,
across all structures that model the axiom-set (on the right).

For theories whose axiom-set is modelled by more than one single structure –
whereM1 andM2 are distinct, (31) implies:

Theorem 4 The logically independent, excluded middle:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)
⇐⇒ ∃M1 (M1 |= Σ ∧M1 |= S) ∧ ∃M2 (M2 |= Σ ∧M2 |= ¬S) (32)

Axiom-set Σ derives neither sentence S nor its negation, if-and-only-if, there exist
structures M1 and M2 which each model axiom-set Σ, such that M1 models S,
andM2 models the negation of S.
Alternatively: A sentence is true for some but not all models of an axiom-set,
if-and-only-if, that sentence is logically independent of that axiom-set.

7 Independence in Elementary Algebra

Here, the above Theorems are applied specifically to Elementary Algebra. The res-
ult is Theorem 5, a practical test, performed — by inspection — telling us when a
proposition is logically independent. The test is performed by examining a propos-
ition’s truth-table. To illustrate, Table 2 lists the five truth-tables for propositions
(1) to (5). The T and F entries are answers to the question: is the adjacent propos-
ition, True or False, for the different interpretations on the variable α?

Theorem 5 Logical Independence (of axioms) is demonstrated if a propos-
ition is True while its variables are interpreted as members of one infinite-field, but
False when interpreted as members of a different infinite-field.

Proof Sructures modelling axioms include the field of complex numbers C, the
field of real numbers R and the field of rational numbers Q. Hence, by Theorem 4,
disagreement between those fields implies logical independence.
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Proposition Interpretations
α ∈ C α ∈ R α ∈ Q

∃α | α = 3 T T T
∃α | α× α = 4 T T T
∃α | α× α = 2 T T F
∃α | α× α = −1 T F F
∃α | α−1 = 0 F F F

Table 2 Truth-tables for some existential propositions. T and F denote True and False. The
T and F entries are answers to the question: is the proposition to the left, True or False, for
the interpretation above? Disagreement along a row confirms the proposition’s independence.

Conclusion

The premise of this paper is that mathematical physics rests on a foundation of
Elementary Algebra, and in doing so, inherits the information it contains or con-
veys. The approach taken in this paper, treats Elementary Algebra as a formal
axiomatised system, in order to expose logical information that might be passed
into quantum mathematics.

Applying the Soundness and Completeness Theorems to this axiomatised sys-
tem, the paper shows that the imaginary unit within Elementary Algebra exists
logically independently of the algebra’s axioms. By extension, any imaginary or
complex scalar is also logically independent.

Elementary Algebra is a theory that cannot be completed and is therefore sub-
ject to Gödel’s Incompleteness Theorems.

Ongoing research

Standard quantum theory has a further axiom, on top of Elementary Algebra,
which imposes unitarity (or self-adjointness) – by Postulate. This postulate is syn-
tactical information that conflicts with semantical information, already allowed by
Elementary Algebra. It might be said to obliterate certain of semantical inform-
ation of significance. Importantly, it blocks and destroys logical independence of
imaginary scalars.

There is no suggestion that unitarity (or self-adjointness) is not needed. The
suggestion is that it should be semantical, rather than syntactical information. If
unitary information can be shown to emerge semantically out of quantum math-
ematics, without being imposed as a Physical Principle, without the need for it
being imposed by Postulate — rendering redundant, this unitarity by Postulate —
then logical independence from Elementary Algebra would freely enter quantum
mathematics.

Further, if that were to be possible, the prospect would open up of finding a
theoretical link, directly connecting logical independence in Elementary Algebra,
with logical independence in Boolean propositions, used by Tomasz Paterek et al
[8,9] and hence, a link with quantum randomness.
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