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Abstract 

In this article we present the basic investigation of the law of selfvariations. We arrive 

at the central conclusion that the interaction of material particles, the corpuscular structure of 

matter, and the quantum phenomena can be justified by the law of selfvariations. We predict a 

unified interaction between material particles with a unified mechanism (USVI). Every 

interaction is the result of three clearly distinct terms with clearly distinct consequences in the 

USVI. We predict a wave equation, whose special cases are the Maxwell equations, the 

Schrödinger equation, and the related wave equations. We determine a mathematical 

expression for the total of the conservable physical quantities, and we calculate the curent 

density 4-vector. The corpuscular structure and wave behaviour of matter and their relation 

emerge clearly, and we give a calculation method for the rest masses of material particles. We 

prove the «internal symmetry» theorem which justifies the cosmological data, without a 

presentation of the corresponding analytical calculations. From the investigation we present, 

the method for the further investigation of the selfvariations and their consequences also 

emerges. 

 

1. Introduction 

The law of Selfvariations describes quantitatively a slight increase of the rest masses 

of material particles and of the electric charge of particles of matter. It is consistent with the 

principles of conservation of energy, momentum, angular momentum and electric charge. It is 

also invariant under the Lorentz-Einstein transformations. 

With its formulation, the law of Selfvariations imposes further constraints on the 

physical laws than those imposed by Special Relativity. If by L we denote the set of equations 

that remain invariant under the Lorentz-Einstein transformations, and by S the set of 

equations compatible with the law of Selfvariations, it is S L  with .S L   

The most immediate consequence of the law of Selfvariations is that the energy, the 

momentum, the angular momentum, and the electric charge of material particles are 

distributed in the surrounding spacetime. This energy distribution in the surrounding 

spacetime of the material particle is expressed by the “generalized photon” [1]. Generally, a 

generalized photon has zero rest energy. But the study of Selfvariations showed that the sum 

of the generalized photons emitted spontaneously by a material particle due to the 

Selfvariations has rest energy 
0 0.E   This also holds for the case where each of the 

individual generalized photons has zero rest energy. 

The material particle and the generalized photons with which it interacts, comprise a 

dynamic system which we called “generalized particle”. We study this continuous interaction 

in the present article. For the formulation of the equations the following notation is used:  

W   the energy of the material particle 

J  the momentum of the material particle 
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0m   the rest mass of the material particle 

sE   the energy of the totality of the generalized photons interacting with the material 

particle 

s P  the momentum of the totality of the generalized photons interacting with the material 

particle  

0E   the rest energy of the totality of the generalized photons interacting with the material 

particle  

With the above symbolism, the law of Selfvariations for the rest mass is given by equations 

(1) 

0
0

0 0

s

s

m b
E m

t

b
m m


 



  P

 (1) 

in every system of reference 0(t, , , ).x y z   is Planck’s constant h divided by 2π, 

, , 0
2

h
b b


    and , , .

x y z

   
   

   
  

In the study we present, it is proven that the interaction of material particles, the 

corpuscular structure of matter, and the quantum phenomena can be justified as a 

consequence of the law of selfvariations. It is easily proven that the cosmological data are 

predicted and justified by the internal symmetry theorem. We have not included in the present 

article the analytical mathematical calculations about the consequences of the internal 

symmetry theorem. 

The TSV predicts a unified interaction of material particles (USVI) as given by 

equation (86). The USVI predicts a common mechanism for all interactions. Every interaction 

is resolved into three individual terms, clearly distinct from each other, as they appear in the 

right part of equation (86), and with clearly distinct consequences in the USVI. Equation (86) 

gives the rate of change of energy and momentum, as well as the orbits of material particles. 

We prove the wave equation (160) of the TSV, special cases of which are the 

Maxwell equations, the Schrödinger equation, and the related wave equations. We determine 

a single mathematical expression for the conservable physical quantities, and calculate the 4-

vector j  of the current density. The energy and momentum of a material particle are 

calculated by solving the wave equation (160) of the TSV. 

From the study of the law of selfvariations, equation (128) emerges as central for the 

theoretical prediction of the corpuscular structure of matter. The combination of equation 

(128) with the wave equation (160) clearly showcases the corpuscular structure and the wave 

behaviour of matter, as well as the relation between them. From this combination, a method 

for the calculation of the rest masses of material particles emerges. 

The TSV has two degrees of freedom, since there are two parameters ,  , 

( , ) (0,0)    in equation (146), which can have arbitrary values within the web of 

equations and theorems of the TSV. The investigation of physical reality is reduced to the 

determination of the parameters   and   in every application of the TSV. The only 
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exception is the case of the «generalized photon», where the system of differential equations 

of the TSV does not require the determination of parameters   and   for its solution. 

 

2. The law of Selfvariations in the macrocosm 

In the macrocosm, the energy W  and momentum J  of the material particle, the 

energy 
sE  and the momentum 

sP  of the totality of the generalized photons emitted 

simultaneously by the material particle are given [1] by equations (2) 
2
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 (2) 

where u  is the velocity of the material particle.  

For the Selfvariation of the rest mass 0

2

E

c
 we accept the symmetric equations of (1), as 

expressed by equations (3) 

0
0

0 0

E b
WE

t

b
E E






   J

 (3) 

As we will see in the next paragraphs, equations (3) stem from the law of 

Selfvariations, that is from equations (1). Also, we note that the energy 
sE  and the 

momentum 
sP  in equations (2) emerge from the sum of the generalized photons emitted 

simultaneously by the material particle in all directions. Equations (1) and (3) describe the 

interaction of the material particle with all of the generalized photons. 

Combining equations (1) and (3) with equations (2) we obtain 
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 (4) 

Symbolizing dr the displacement of the material particle during a time interval ,dt  we get 

for the change 
0dm  of the rest mass 

0m   

0
0 0 ,

m
dm dt m d

t


  


r  

and with equations (4; a, b) we obtain 

0 0 0 0
0 22 2

2 2

,

1 1

E m E mb b
dm dt d

cu u

c c

   

 

u
r  

and since 

,d dt r u  

we get 

2

0 0 0 0
0 22 2

2 2

2

0 0 0 2

1 1

1 ,

E m E mb b u
dm dt dt

cu u

c c

b u
dm E m dt

c

   

 

  

 

and symbolizing with dS  the four-dimensional arc length  

2

2
1 ,

u
dS c dt

c
   

we obtain  

0 0 0 .
b

dm E m dS
c

   (5) 

Similarly, starting from equations (4; c, d) we obtain equation (6) 

0 0 0 .
cb

dE E m dS  (6) 
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From equations (5) and (6) we get 

 2

0 0 0,d m c E   

and we finally get  

2

0 0 constant.m c E   (7) 

The above equations, together with the corresponding ones for the electric charge, justify the 

totality of the cosmological data [2,3,4].   

In the law of Selfvariations, apart from the rest mass, the physical quantities of 

energy and momentum are introduced. In the macroscopic consideration of the law we have 

introduced in equations (1) the velocity of the material particle. We have done the same for 

the generalized particle. In the following study we will not use of notion of velocity, with few 

exceptions in order to derive conclusions about the macroscopic consequences of the law. 

 

3. The basic study of the internal structure of the generalized particle 

Equations (1) describe the continuous interaction between the material particles and 

the generalized photons. We study the basic characteristics of this interaction in this 

paragraph. 

We consider a material particle with rest mass 
0 0m   and we denote 

0E  the rest 

energy of the whole of the generalized photons interacting with the particle. That is, we 

consider a generalized particle.  

The rest mass 
0m  and the rest energy 

0E  are given [5,6] by equations (8) and (9) 

respectively according to special relativity 
4 2 2

0 ,m c W c  J  (8) 

2 2 2 2

0 .s sE E c  P  (9) 

We now denote the four-vectors  

0
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3
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x x
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   
   
   
   
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  

 (10) 

0

1

2

3

x

y

z

J iw

c
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   
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     

 (11) 
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P iE

c

PP P

PP

PP

   
   
   
    
   
   
     

 (12) 

where i  is the imaginary unit, 
2 1.i     
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Using this notation, equations (1), (8) and (9) are writen in the form of equations (13), 

(14) and (15), respectively 

0
0 , 0,1,2,3k

k

m b
P m k

x


 


 (13) 

2 2 2 2 2 2

0 1 2 3 0 0J J J J m c      (14) 

2
2 2 2 2 0

0 1 2 3 2
0.

E
P P P P

c
      (15) 

After differentiating equation (14) with respect to , 0,1,2,3kx k   we obtain 

20 3 01 2
0 1 2 3 0 0,

k k k k k

J J mJ J
J J J J m c

x x x x x

   
    

    
 

and with equation (13) we obtain 

2 20 31 2
0 1 2 3 0 0,k

k k k k

J JJ J b
J J J J P m c

x x x x

  
    

   
 

and with equation (14) we obtain  

 2 2 2 20 31 2
0 1 2 3 0 1 2 3 0,k

k k k k

J JJ J b
J J J J P J J J J

x x x x

  
       

   
 

and we finally arrive at  

0 1
0 0 1 1

32
2 2 3 3 0, 0,1,2,3.

k k

k k

k k

k k

J Jb b
J P J J P J

x x

JJ b b
J P J J P J k

x x

    
     

    

   
        

    

 (16) 

We now symbolize 

, , 0,1,2,3.i
k i ki

k

J b
P J k i

x



  


 (17) 

With this notation, equation (16) can be written in the form  

0 0 1 1 2 2 3 3 0, 0,1,2,3.k k k kJ J J J k         (18) 

Also, from equation (17) we see that the physical quantities , ,i 0,1,2,3ki k   have units of 

.
kgr

s
  

We now need the 4 4  matrix ,T  as given by equation (19) 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

.T

   

   

   

   

 
 
 
 
 
 

 (19) 

With this notation, equation (17) can be written in the form  

0TJ   (20) 

We now prove the following theorem: 

 

“ For 
0 0m  , and for every , i 0,1,2,3k   equation (21) holds  

.i k

k i

P P

x x

 


 
 (21)” 

Indeed, by differentiating equation (13) with respect to , 0,1,2,3ix i  , we get  
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 0
0k

i k i

m b
P m

x x x

  
 

   
 

and using the identity  

0 0

i k k i

m m

x x x x

     
   

      
 

we get 

 0
0k

k i i

m b
P m

x x x

  
 

   
 

and with equation (13) we have 

 0 0

0 0
0 0

i k

k i

i k
i k

k k i i

b b
Pm P m

x x

m P m P
P m P m

x x x x

  
 

  

   
  

   

 

and with equation (13) we also have 

0 0 0 0

0 0

i k
i k k i

k i

i k

k i

P Pb b
P P m m P Pm m

x x

P P
m

x x

 
  

 

  
  

  

 

and since 
0 0m  , we obtain equation (21). 

 

We now prove the following theorem:  

“For 
0 0m  , and for every , , 0,1,2,3k i v  , the following equation holds 

.ki vi
v ki k vi

v k

b b
P P

x x

 
 

 
  

 
 (22)” 

Indeed, by differentiating equation (17) 

, , 0,1,2,3i
ki k i

k

J b
P J k i

x



  


 

with respect to , 0,1,2,3vx v   we get 

 ki i
k i

v v k v

J b
P J

x x x x

    
  

    
 

and with identity 

i i

v k k v

J J

x x x x

     
   

      
 

we get 

 ki i
k i

v k v v

J b
P J

x x x x

    
  

    
 

and with equation (17) we have 
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 

   

ki
v i vi k i

v k v

ki vi
v i k i

v k k v

ki vi i v i k
v i k i

v k k k v v

ki vi i i v k
v k i

v k k v k v

b b
P J P J

x x x

b b
P J P J

x x x x

J P J Pb b b b
P J P J

x x x x x x

J J P Pb b b
P P J

x x x x x x




 

 

 

   
   

   

   
  

   

     
    

     

      
     

      

 

and with equation (21) we get 

ki vi i i
v k

v k k v

J Jb b
P P

x x x x

    
  

   
 

and with equation (17) we get 

ki vi
v k i ki k v i vi

v k

b b b b
P P J P P J

x x

 
 

     
       

     
 

and we finally have 

,ki vi
v ki k vi

v k

b b
P P

x x

 
 

 
  

 
 

which is equation (22). 

 

In the following paragraphs the physical meaning of the quantities 

, , 0,1,2,3.ki k i  will emerge. 

 

 

4. The Lorentz-Einstein-Selfvariations Symmetry 
 

In this paragraph we calculate the Lorentz-Einstein transformations [5,6] of the 

physical quantities 
ki  , , 0,1,2,3.k i   A result that emerges is that the elements of matrix T  

of equation (19) are not independent of each other. Matrix T  has internal symmetries that 

emerge from the Lorentz-Einstein transformations. These symmetries have to do with the 

interchange of indices k  and i  in the physical quantities , , 0,1,2,3.ki k i   

We consider an inertial frame of reference  , x , y ,zO t      moving with velocity 

 ,0,0u  with respect to another inertial frame of reference  , x, y, zO t , with their origins 

O  and O  coinciding at 0.t t    We will calculate the Lorentz-Einstein transformations 

for the physical quantities , , 0,1,2,3.ki k i   We begin with transformations (23) and (24) 

                                   
2

u
t t x

u

x x c t

y y

z z





   
  
   

   
  
   

 

 

 

 

                                     (23) 
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 

2

x

x x

y y

z z

W W uJ

u
J J W

c

J J

J J





  

    
 

 

 

 

 

2

s s sx

x x s

y sy

z sz

E E uP

u
P P E

c

P P

P P





  

    
 

 

 

 (24) 

where 

1
2 2

2
1 .

u

c




 
  
 

 

 We then use the notation (10), (11), (12) and obtain the transformations (25) and (26) 

0 10

1 01

22

33

u
i

x c xx

u
i

x c xx

xx

xx





   
  

   

   
  

   

 



 



                          (25) 

 

0 0 1

1 1 0

2 2

3 3

u
J J i J

c

u
J J i J

c

J J

J J





    
 

    
 

 

 

 

0 0 1

1 1 0

2 2

3 3

u
P P i P

c

u
P P i P

c

P P

P P





    
 

    
 

 

 

 (26) 

 

We now derive the transformation of the physical quantity 
00.  From equation (17) 

for 0k i   we get for the inertial reference frame  , x , y ,zO t      

0
00 0 0

0

,
J b

P J
x


   


 

and with transformations (25) and (26) we obtain 

2 2

00 0 1 0 1 0 1

0 1

2 2
2 0 01 1

00 0 0 0 1 1 0 1 12 2

0 0 1 1

,

u u b u u
i J i J P i P J i J

x c x c c c

J JJ Ju u u b u b u b u b
i i P J i P J i PJ PJ

x c x c x c x c c c

  

 

                  
       

            
    
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and replacing physical quantities 0 01 1

0 0 1 1

, , ,
J JJ J

x x x x

  

   
 from equation (17) we get  

2
2

00 0 0 00 0 1 01 1 0 10 1 12

2 2

11 0 0 0 1 1 0 1 12 2

(

),

b u b u u b u u b
P J i P J i i PJ i PJ

c c c c c

u b u b u b u b
P J i P J i PJ PJ

c c c c

    



       

    

 

 

and we finally obtain equation 
2

2

00 00 01 10 112
.

u u u
i i
c c c

     
 

     
 

 

 

Following the same procedure for , i 0,1,2,3k   we obtain the following 16 

equations (27) for the Lorentz-Einstein transformations of the physical quantities :ki  

2
2

00 00 01 10 112

2
2

01 01 00 11 102

02 02 12

03 03 13

u u u
i i
c c c

u u u
i i
c c c

u
i
c

u
i
c

     

     

   

   

 
     

 

 
     

 

    
 

    
 

 

2
2

10 10 11 00 012

2
2

11 11 10 01 002

12 12 02

13 13 03

u u u
i i
c c c

u u u
i i
c c c

u
i
c

u
i
c

     

     

   

   

 
     

 

 
     

 

    
 

    
 

 (27) 

20 20 21

21 21 20

22 22

23 23

u
i
c

u
i
c

   

   

 

 

    
 

    
 

 

 
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30 30 31

31 31 30

32 32

33 33

u
i
c

u
i
c

   

   

 

 

    
 

    
 

 

 

 

 

Inspecting equations (27) we see that they are divided into five individual groups of 

transformations, independent of each other. We rearrange the order of equations (27) to 

highlight these groups, which we numbered from I to V in equations (28). 

2
2

00 00 01 10 112

2
2

01 01 00 11 102

2
2

10 10 11 00 012

2
2

11 11 10 01 002

22 22

33 33

02 02

u u u
i i
c c c

u u u
i i
c c c

I
u u u

i i
c c c

u u u
i i
c c c

II

i

     

     

     

     

 

 

  

 
      

 
 

     
 


      
 

 
      

 

  


  

   12

12 12 02

20 20 21

21 21 20

u

c

u
i
c

III
u

i
c

u
i
c



   

   

   

 
 
 

     
 


     


     

 (28) 
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03 03 13

13 13 03

30 30 31

31 31 30

23 23

32 32

u
i
c

u
i
c

IV
u

i
c

u
i
c

V

   

   

   

   

 

 

    
 

     
 


     


     

  


  

 

 

Group I  of equations (28) is self-consistent when equations (29) and (30) hold 

00 11   (29) 

10 01    (30) 

With equations (29) and (30) the transformations (28; I, II) can be written in the form of 

equations (31) and (32) 
'

00 00

'

11 11

'

22 22

'

33 33

 

 

 

 









 (31) 

 
'

01 01   (32) 

Transformations (27) allow for a wide spectrum of relations between the physical 

quantities , 0,1,2,3.ii i   The correlation of physical quantities 
ii  can vary all the way 

from their being non-correlated to being equal, that is 

00 11 22 33       

according to the Lorentz-Einstein transformations. 

Group III  of equations (28) has the following characteristic property: if we assume 

that 
20 02   , then 

21 12   , and vice versa. Indeed, assuming that 
20 02   , from the 

third of equations  28, III  we get 

02 02 21

02 02 21

u
i
c

u
i
c

   

   

     
 

    
 

 

and comparing with the first of equations  28, III  we see that  

21 12.    

 

If we now consider that 
20 02,   we similarly obtain 

21 12  , and vice versa. 

Indeed, from the third of equations  28, III  for 
20 02  , we get  
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02 20 21

u
i
c

   
    
 

 

and comparing with the third of equations  28, III  we obtain  

21 12.   

Similar conclusions are derived for group IV of equations (28). Following the same 

procedure it can be proved that for 
30 03    it is also 

31 13,    and vice versa. Also, for 

30 03   it is 
31 13,  and the other way around.  

In group V of equations (28) we can have either 
32 23,    or 

32 23,   or the 

physical quantities 
32  and 

23  can be independent during the interchange of the indices 2 

and 3. That is, they behave like the physical quantities , 0,1,2,3,ii i   at least according to 

the Lorentz-Einstein transformations. Thus, we end up with the following four sets of 

equations (33), (34), (35) and (36) 

10 01

20 02

30 03

21 12

31 13

 

 

 

 

 

 

 

 

 

 

 (33) 

 

10 01

20 02

30 03

21 12

31 13

 

 

 

 

 

 









 (34) 

 

10 01

20 02

30 03

21 12

31 13

 

 

 

 

 

 

 



 



 (35) 

 

10 01

20 02

30 03

21 12

31 13

 

 

 

 

 

 



 



 

 (36) 

 

In every case, transformations (27) obtain the form  



 14 

'

' '

01 01 10 10

' '

02 02 12 20 20 21

' '

12 12 02 21 21 20

' '

03 03 13 30 30 31

' '

13 13 03 31 31

, i 0,1,2,3ii ii

u u
i i
c c

u u
i i
c c

u u
i i
c c

u u
i i
c

 

   

       

       

       

      

 

 

   
      

   

   
      

   

   
      

   

 
    

 
30

' '

23 23 32 32

c


   

 
 
 

 

 (37) 

Transformations (37) apply only at flat spacetime. 

 

5. Physical quantities , k,i 0,1,2,3ki   and the conservation principles of 

energy and momentum 

  

In the case of the spontaneous emission of generalized photons by the material 

particles due to the Selfvariations, we have proven that the conservation of momentum, 

energy and electric charge holds [1] (paragraphs 4.4 and 4.5 by direct calculation of the total 

energetic content of a finite part of spacetime, in the same paragraphs through the continuity 

equation, and in paragraphs 4.7 and 4.8 through the energy-momentum tensor). In this 

paragraph we correlate the conservation of energy and momentum of the generalized particle 

with the physical quantities , k,i 0,1,2,3.ki    

Firstly, we prove the following theorem: 

“ For 
0 0m   the following propositions are equivalent: 

A. The generalized particle conserves its momentum 
i iJ P  along the axis 

, 0,1,2,3,ix i   i.e. 

 constant.i i iJ P c    (38) 

 

B. i k
k i ki

k i

P Pb
P J

x x


 
   

 
 (39) 

for every 0,1,2,3.k   ” 

Indeed, if equation (38) holds, then we differentiate with respect to , 0,1,2,3kx k   

obtaining  

0i i

k k

i i

k k

J P

x x

P J

x x

 
 

 

 
 

 

 

and with equation (17) we obtain  

i
k i ki

k

P b
P J

x



  


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and with equation (21) we obtain  

,k i
k i ki

i k

P P b
P J

x x


 
   

 
 

which is equation (39). 

Conversely, if equation (39) holds for every 0,1,2,3k  , we obtain 

i
k i ki

k

P b
P J

x



  


 

and with equation (17) we get  

i i

k k

P J

x x

 
 

 
 

  0i iJ P
x


 


 

and since this equation holds for every 0,1,2,3k  , we obtain equation (38). 

From the previous theorem we conclude that equation (39) gives the rates of change 

, , k 0,1,2,3i k

k i

P P

x x

 


 
 when the generalized particle conserves its momentum along the 

axis , 0,1,2,3.ix i   When the generalized particle conserves its momentum for every axis 

,ix  then equation (39) holds for every , 0,1,2,3.k i   

We now prove the following theorem:  

“If the generalized particle conserves its momentum along the axes 
ix  and 

kx  with ,k i  

then: 

     
2 2 2

ki ik k i i k i k k i k i i k

b b b
J P J P c J c J c P c P         (40) 

, 0,1,2,3, .k i k i  ” 

Indeed, since the generalized photon conserves its momentum along the axes 
ix  and 

,kx  equations (41) hold: 

i i i

k k k

P c J

P c J

 

 
 (41) 

Combining equations (21) and (41) we obtain 

   i i k k

k i

i k

k i

c J c J
x x

J J

x x

 
  

 

 


 

 

and with equation (17) we get 
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 

k i ki i k ik

ki ik k i i k

b b
P J PJ

b
J P J P

 

 

  

  

 

which is equation (40). The remaining equalities in equation (40) are derived by considering 

equations (41). Equation (40) holds for , , i 0,1,2,3,k i k   since equation (21), from which 

equation (41) results, is an identity for k i  and gives no information in this case.  

An immediate consequence of the preceding theorem is that if the generalized particle 

conserves its momentum in every axis, then equation (40) holds for every , i 0,1,2,3.k   

From equation (40) we obtain the following theorem: 

TSV theorem for the symmetry of indices 

“For 
0 0m   and if the generalized particle conserves its momentum along the axes 

ix and 

kx  with ,k i  the following equivalences hold: 

A. 
ik ki k i i k i k k i k i i kJ P J P c J c J c P c P          (42) 

 

B. 
ik ki     

     
2 2 2

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c P                     (43) 

, 0,1,2,3, .k i k i  ” 

The theorem is an immediate consequence of equation (40). Furthermore, if the 

generalized particle conserves its momentum along every axis , 0,1,2,3ix i  , then the 

equalities (42) and (43) hold for every , , 0,1,2,3.k i k i   

We now consider the four-vector ,C  as given by equation 

                  

0

1

2

3

.

c

c
C J P

c

c

 
 
   
 
 
 

                                  (44) 

When the generalized particle conserves its momentum along every axis, then the four-vector 

C  is constant. Also, we denote 
0M  the total rest mass of the generalized particle, as given by 

equation (45) 

2 2 2 2 2 2

0 1 2 3 0 c .TC C c c c c M                          (45) 

where 
TC  is the adjoint of the column vector C . 

For reasons that will become apparent later in our study, we give the following 

definitions: We name the symmetry , , , 0,1,2,3ik ki k i k i     internal symmetry, and 

the symmetry , , , 0,1,2,3ik ki k i k i      external symmetry.  

We now prove the following theorem: 

First Theorem of the TSV (Internal Symmetry Theorem)  
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“If the generalized particle conserves its momentum in every axis, the following hold:  

A. 
ik ki   for every , 0,1,2,3k i    

the four-vectors J , P  and C are parallel   P J                              (46) 

where , 0.    

B. For 1  the following equation holds: 

                                  
2

0 0E m c                                     (47) 

C. For 1  the following equations hold: 

 0 0 1 1 2 2 3 3exp
b

K c X c X c X c X
 

      
 

             (48) 

  

 

2
2 0

0

0 0 1 1 2 2 3 31 exp

M c
m c

b
K c X c X c X c X

 
 

     
 

 (49) 

 

 

 

2

0 0 0 1 1 2 2 3 3

0

0 0 1 1 2 2 3 3

exp

1 exp

b
M c c X c X c X c X

E
b

K c X c X c X c X

 
     

 
 

 
     

 

             (50) 

where K  is a dimensionless constant physical quantity. 

D.                            
ik ki   for every , i 0,1,2,3k    

0ki   for every , i 0,1,2,3.k                                 (51)” 

Equivalence (46) results immediately from equivalence (42). For 0 , from 

equation (46) we have that 0,P   which is impossible, since in this case the Selfvariations of 

the rest mass 
0 0,m   do not exist, as seen from equation (13). Therefore, 0.   

For 1 , from equation (46) we get P J  , and from equations (14) and (15) 

we see that 
2 2 4

0 0E m c , which is equation (47). 

From equation (46) we have 
i iP J  for every 0,1,2,3i   and in combination with 

equation 
i i iJ P c   we get for 1  equations (52) and (53) 

, 0,1,2,3
1

i
i

c
J i 


 (52) 

, 0,1,2,3
1

i
i

c
P i


 


 (53) 

Combining equations (14) and (52) we get 

 
 2 2 2 2 2 2

0 0 1 2 32

1
0

1
m c c c c c    

 
  

and with equation (45) we obtain equation (54) 

 

2 2
2 2 0
0 2

0
1

M c
m c  


 (54) 
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Differentiating equation (54) with respect to , 0,1,2,3vX v   and considering 

equation (13) we obtain  

 

2 2
2 2 0
0 3

22
0

1
v

v

M cb
Pm c

x


 


 

and with equation (54) we have  

   

 

2 2 2 2

0 0

2 3
0

1 1

1

v

v

v

v

M c M cb
P

x

b
P

x


 

   


   



 

and with equation (53) for i v  we arrive at equation 

, 0,1,2,3.v

v

b
c v

x


   


 (55) 

By integration of equation (55) we obtain 

 0 0 1 1 2 2 3 3exp
b

K c X c X c X c X
 

      
 

 

where K  is the integration constant, which is equation (48). 

Combining equations (54) and (48) we obtain 

 

2
2 0

0

0 0 1 1 2 2 3 31 exp

M c
m c

b
K c X c X c X c X

 
 

     
 

 

which is equation (49). Combining equations (15), (53) and (45) we obtain  

 

2 2 2 2

0 0

22

2

0
0

0
1

1

E M c

c

M c
E


 

 


 

 

 

and with equation (48) we get equation (50). 

Equations (49) and (50) are equivalent with the equations of TSV [2,3,4] which 

justify the cosmological data. Indeed, after combining them we obtain equation 

2 2

0 0 0m c E M c    

which is equation (7). Furthermore, we observe from equations (4), which refer to the case of 

generalized photons spontaneously emitted by the material particle, that the four-vectors J  

and P  are parallel. Thus, in the case of equations (4) the above fundamental theorem holds.  

In order to prove equation (7) in paragraph 2 we used equations (3), which we can 

now prove. Differentiating equation (50) with respect to , 0,1,2,3kx k   we arrive at 

equation  

0
0 , 0,1,2,3k

k

E b
J E k

x


  


 (56) 
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Considering equation (11), equation (56) is equivalent to equations (3). Of course, we 

now know that equations (3) hold when the four-vectors J  and P  are parallel to each other, 

for the case of the internal symmetry.  

We studied the case of a material particle with rest mass 
0 0.m   Therefore, from 

equation (54) we see that 0 0.M   Furthermore, as we already observed during the proof of 

equivalence (46), it is also 0,  hence from equation (48) we obtain 0.K   So from 

equations (49) and (50) we obtain 
0 0m  and 

0 0E   in the case of the symmetry 

, ,i 0,1,2,3.ik ki k     

Combining equations (52) and (53) with equation (48) we get respectively equations 

(57) and (58) for the case of the internal symmetry 

 0 0 1 1 2 2 3 31 exp

0,1,2,3

i
i

c
J

b
K c X c X c X c X

i


 

     
 



 (57) 

 

 

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

exp

1 exp

0,1,2,3

i

i

b
c K c X c X c X c X

P
b

K c X c X c X c X

i

 
    
 
 

     
 



 (58) 

We now prove equivalence (51). For 0ki   for every , i 0,1,2,3k   it obviously is 

.ik ki   In order to prove the inverse of equivalence (51), we differentiate equation (57) 

with respect to , 0,1,2,3kx k   and get 

 

 

0 0 1 1 2 2 3 3

2

0 0 1 1 2 2 3 3

exp

1 exp

i k

i

k

b b
c c K c x c x c x c x

J

x b
K c x c x c x c x

 
      

   
      

  

 

and with equation (57), as well as equation (58) for i k  we get 

i
k i

k

J b
P J

x





 

and with equation (17) we get 0,ki   which completes equivalence (51). 

With the proof of equivalence (51) we can see that equation (43), initially proven for 

the symmetry , 0,1,2,3ik ki k    , is of general validity. That is, equation (59) generally 

holds: 

     
2 2 2

, , 0,1,2,3.

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c P

k i k i

      

 

 (59) 

We begin the study of the external symmetry by proving the following theorem: 
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“In the external symmetry, the 4-vector C  of the total energy content of the generalized 

particle cannot vanish: 

0C  .                      (60)” 

Indeed, for 0C   we obtain J P   from equation (44). Therefore, the four-vectors 

J  and P   are parallel. According to equivalence (46) the parallelism of the four-vectors J   

and P is equivalent to the internal symmetry. Therefore, in the external symmetry it is 

0.C   

We now prove the following theorem: 

Second Theorem of the TSV 

“ If the generalized particle conserves its momentum along every axis, and the symmetry 

ik ki    holds for every k i, , 0,1,2,3,k i   then:  

A. 0i vk k iv v kic c c                       (61) 

for every , , , , , 0,1,2,3.i v v k k i k i v     

B. 
2 2

ki v v
v ki ki v ki ki

v

bc bcb b
P J

x


   


    


                 (62) 

for every , , 0,1,2,3.k i k i   

C.  0TJ                                    (63) 

0 0 1 1 2 2 3 3 0,k 0,1,2,3.k k k kJ J J J         

D.  .TP TC                       (64)” 

If the generalized particle conserves its momentum along every axis and the index 

symmetry 
ik ki    holds for , , 0,1,2,3,k i k i   from equivalence (40) we obtain       

      , k i, k,i 0,1,2,3.
2

ki i k k i

b
c J c J                          (65) 

Considering equation (65) we get 

      0.
2

i vk k iv v ki i k v v k k v i i v v i k k i

b
c c c c c J c J c c J c J c c J c J              

Thus, we get equation (61).  

Differentiating equation (65) with respect to , 0,1,2,3vx v   we obtain 

2

ki k i
i k

v v v

J Jb
c c

x x x

    
  

   
 

and with equation (17) we get 
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 

   

2

2

2 2

ki
i v k vk k v i vi

v

ki
v i k k i i vk k vi

v

ki
v i k k i i vk k vi

v

b b b
c P J c P J

x

b b
P c J c J c c

x

b b b
P c J c J c c

x


 


 


 

     
       

     

  
      


   



 

and with equation (65) we obtain 

 
2

ki
v ki i vk k vi

v

b b
P c c

x


  


  


 

and with equation (61) in the form 

i vk k vi v kic c c      

we get 

2

ki v
v ki ki

v

bcb
P

x


 


 


 

which is equation (62). The second equality in equation (62) emerges from the substitution  

, 0,1,2,3v v vP c J v    

according to equation (44). 

Equation (63) is equation (18). Equation (64) results by combining equations (63) and (44) 

  .TP T C J TC TJ TC      

In the case when, for the external symmetry, besides equation 
ik ki    it is also 

ik ki   for some indices k  and i , with , , 0,1,2,3k i k i  , we get for these indices k  and 

i  that it is 0.ik   Therefore, in equations (33)-(36), it either holds that 0,ik ki     or 

0ik ki    for , , 0,1,2,3.k i k i   Thus, equations (33)-(36) can be stated in the form of 

equations (66)-(69): 

10 01 10 01

20 02

30 03

21 12

31 13

23 32

0 0

0

0

0

0

0

   

 

 

 

 

 

     

  

  

  

  

  

 (66) 
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10 01 10 01

20 02

30 03

21 12

31 13

32 23 32 23

0 0

0

0

0

0

0 0

   

 

 

 

 

   

     

 

 

 

 

     

 (67) 

 

10 01 10 01

20 02 20 02

30 03

21 12 21 12

31 13

32 23 32 23

0 0

0 0

0

0 0

0

0 0

   

   

 

   

 

   

     

     

 

     

 

     

 (68) 

 

10 01 10 01

20 02

30 03 30 03

21 12

31 13 31 13

32 23 32 23

0 0

0

0 0

0

0 0

0 0

   

 

   

 

   

   

     

 

     

 

     

     

 (69) 

In the following paragraphs, the physical content of the physical quantities 

, , , 0,1,2,3,ki k i k i    as well as of the theorems we proved in this paragraph, emerge. 

 

6. The Unified Selfvariations Interaction (USVI) 

According to the law of selfvariations every material particle interacts both with the 

generalized photons emitted by itself due to the selfvariations, and with the generalized 

photons originating from other material particles. In the second case, an indirect interaction 

emerges between material particles through the generalized photons. Generalized photons 

emitted by one material particle interact with another material particle. Through this 

mechanism the TSV predicts a unified interaction between material particles. The individual 

interactions only emerge from the different, for each particular case, physical quantity Q 

which selfvariates, resulting in the emission of the corresponding generalized photons. 

In this paragraph we study the basic characteristics of the USVI. We suppose that for 

the generalized particle the conservation of energy-momentum holds, hence the equations of 

the preceding paragraph also hold. 

For the rate of change of the four-vector 

0

1
J

m
 we get  

0

2

0 0 0

1i i i

k k k

J J m J

x m m x m x

   
   

   
 

and with equations (13) and (17) we get 
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02

0 0 0

1i i
k k i ki

k

J J b b
P m P J

x m m m


   
      

   
 

and we finally obtain  

0 0

, , 0,1,2,3.i ki

k

J
k i

x m m

 
  

  
 (70) 

According to equation (70), when 0ki   for at least two indices 

, , , 0,1,2,3,k i k i   the kinetic state of the material particle is disturbed. According to 

equivalence (51) in the internal symmetry it is 0ki   for every , 0,1,2,3.k i   Therefore, in 

the internal symmetry the material particle maintains its kinetic state. In an isotropic space we 

expect that the spontaneous emission of generalized photons by the material particle cannot 

disturb its kinetic state. Consequently, the internal symmetry concerns the spontaneous 

emission of generalized photons by the material particle in an isotropic space. 

In contrast, in the case of the external symmetry it can be 0ki   for some indices 

, , , 0,1,2,3.k i k i   Therefore, the external symmetry must be due to generalized photons 

with which the material particle interacts, and which originate from other material particles. 

The distribution of generalized photons depends on the position in space of the material 

particle relative to other material particles. This leads to the destruction of the isotropy of 

space for the material particle. The external symmetry factor will emerge in the study that 

follows. 

The initial study [1] of the Selfvariations concerned the rest mass and the electric 

charge. The study we have presented up to this point allows us to study the Selfvariations in 

their most general expression. 

We consider a physical quantity Q  which we shall call selfvariating “charge Q  ”, or 

simply charge Q , unaffected by every change of reference frame, therefore Lorentz-Einstein 

invariant, and obeys the law of Selfvariations, that is equation 

, 0,1,2,3.k

k

Q b
P Q k

x


 


 (71) 

In equation (71) the momentum ,k 0,1,2,3,kP   i.e. the four-vector P , depends on 

the selfvariating charge .Q  Two material particles carrying a selfvariating charge of the same 

nature interact with each other when generalized photons emitted by the charge 
1Q  of one of 

them, interact with the charge Q  of the other. In this particular case, we denote Q  the charge 

of the material particle we are studying. 

The rest mass 
0m  is defined as a quantity of mass or energy divided by 

2c , which is 

invariant according to the Lorentz-Einstein transformations. The 4-vector of the momentum 

J  of the material particle is related to the rest mass 
0m  through equation (14). The charge Q  

contributes to the energy content of the material particle and, therefore, also contributes to its 

rest mass. Furthermore, the charge Q  modifies the 4-vector of momentum J  of the material 

particle and, therefore, contributes to the variation of the rest mass 
0m  of the material 

particle. Consequently, for the change of the four-vector J  of the material particle due to the 

charge ,Q  the four-vector P  of equation (71) enters into equation (17). The rest mass 
0m  is 

due to the energy content given to the material particle by the charge Q , and constitutes part, 

or even the whole, depending on the situation, of the total rest mass of the material particle. 
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The consequences of this conclusion become evident when we calculate the rate of change of 

the four-vector 
1

.J
Q

 

 

Third Theorem of the TSV 

“The rate of change of the four-vector 
1

J
Q

 due to the Selfvariations of the charge Q  is 

given by equation  

, , 0,1,2,3i ki

k

J
k i

x Q Q

 
  

  
.      (72) 

For k i  the physical quantities ki

Q


 are given by  

, k i,k,i 0,1,2,3,ki
kiza

Q


         (73) 

where z is the function 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
     

 
   (74) 

For the constants 
kia  the following equations hold 

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c a c a c a

J a J a J a

Pa P a P a

  

  

  

                      (75) 

for every , , , , , v 0,1,2,3.i v v k k i i k     ” 

In order to prove the theorem, we take 

2

1i i i

k k k

J J JQ

x Q Q x Q x

   
   

   
 

and with equations (71) and (17) we get  

,i ki

k

J

x Q Q

 
 

  
 

which is equation (72).  

Equations (17) and (71) hold for every , i 0,1,2,3.k   Therefore, equation (72) also 

holds for every , 0,1,2,3.k i   For , , 0,1,2,3k i k i   and 0,1,2,3v   equation (62) holds 

and, since 0Q  , we obtain  

2

ki v
v ki ki

v

bcb
Q PQ Q

x


 


 


 

and with equation (71) we get  

2

2

ki v
ki ki

v v

ki v ki

v

bcQ
Q Q

x x

bc

x Q Q


 

 

 
 

 

 
  

  

 

and integrating we obtain  
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 0 0 1 1 2 2 3 3exp ,
2

ki
ki

b
a c x c x c x c x

Q

  
     

 
 

where , , , 0,1,2,3kia k i k i   are the integration constants, and with (74) we get equation 

(73). 

The relation 
ik kia a   for , , 0,1,2,3,k i k i   as well as the first of equations (75), 

result from the combination of equations (61) and (73). To prove the second and third of 

equations (75) we consider equation (59).  

In the following proofs we presuppose the relations 
ik kia a   and 

, , , 0,1,2,3.ik ki k i k i      We will also use equation 

, 0,1,2,3
2

k

k

bcZ
z k

x


  


 (76) 

which results immediately from equation (74).  

For , , 0,1,2,3k i k i   equation (73) does not hold. So we define the physical 

quantities 
k  as given by equation 

, 0,1,2,3.kk
k k

Q


     (77) 

Furthermore, we define the 4x4 diagonal matrix   given by 

 

0

1

2

3

0 0 0

0 0 0
.

0 0 0

0 0 0

 
 


  
 
 

 

 (78) 

The physical quantities , 0,1,2,3k k   are calculated in the following paragraphs, where we 

will also see their physical content. 

We now define the three-vectors α  and β , as given by equations (79) and (80) 

respectively 

011

2 02

3 03

1
x

y

z

ic

ic
Q

ic

 
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 

    
    

      
        

α   (79) 

321

2 13

3 21

1
x

y

z

Q

 

  

 

    
    

      
        

β .  (80) 

Vectors α  and β  contain all of the physical quantities 
ki  for , , 0,1,2,3,k i k i   

since .ik ki    Furthermore, from transformations (37), and given that the charge Q  
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remains invariant under Lorentz-Einstein transformations, it emerges that the vectors α  and 

β  are transformed like the intensities of the electric field ε  and of the magnetic field Β , 

respectively. 

Combining equations (79) and (80) with equation (73), the vectors α  and β  are 

written in the form of equations (81) and (82), respectively 

011

2 02

3 03

x

y

z
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 

  

 
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α      (81) 
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 

  
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    
    

      
        

β       (82) 

We write equation (17) in the form  

, k,i 0,1,2,3.i
k i ki

k

J b
P J

x



  


      (83) 

The rate of change of the momentum of the material particle equals the sum of the two terms 

in the right part of equation (83). For 0k  , and since 
0x ict , equation (83) gives the rate 

of change of the particle momentum with respect to time ,t  i.e. the physical quantity we call 

“force”. By using the concept of force we also have to use the concept of velocity. For this 

reason we symbolize u  the velocity of the material particle, as given by equation 

1

2

3

.

x

y

z

uu

u u

u u

  
  

    
     

u  (84) 

Also, we define the 4-vector of the velocity u , as given by equation 

0

1

2

3

.
x

y

z

icu

uu
u

uu

u u

  
  
   
  
  
    

 (85) 

We now prove the following theorem: 

 

Fourth Theorem of the TSV  

 

“The rates of change with respect to time  0t x ict  of the four-vectors J  and P  of the 

momentum of the generalized particle carrying charge Q  are given by equations 

0 0

,

i
dJ dQ i i

J Q u Q c
dx Qdx c c

 
    

 
  

u α

α u β

 (86) 
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0 0

.

i
dP dQ i i

J Q u Q c
dx Qdx c c

 
     

 
  

u α

α u β

 (87) ” 

The matrix   is given in equation (78). By u β  we denote the outer product of vectors u  

and .β   

We now prove the first of equations (86): 

0 0 0 0 0
1 2 3

J J J J Jd
u u u

dt Q t Q x Q y Q z Q

            
            
            

 

and using the notation of equation (10) we get  

0 0 0 0 0
1 2 3

0 0 1 2 3

J J J J Jicd
ic u u u

dx Q x Q x Q x Q x Q

            
            

            
 

and with equation (72) we get 

0 00 10 20 30
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

    
    

 
 

0 00 10 20 30
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 00 01 02 03
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 0 00 01 02 03
1 2 32

0 0

1 dJ J dQ i
u u u

Q dx Q dx Q c Q Q Q

    
     

 
 

 0
0 00 1 01 2 02 3 03

0 0

dJ dQ i
J u u u

dx Qdx c
         

and with equations (77) and (79) we have  

0
0 0 1 1 2 2 3 3

0 0

,
dJ dQ i i i i

J Q Q u u u
dx Qdx c c c c

  
 

      
 

 

which is the first of equations (86) since  

0 0 0 0.
i i

Q u Q ic Q
c c

        

We prove the second of equations (86) and we can similarly prove the third and the 

fourth: 

1 2 3
x x x x xJ J J J Jd

u u u
dt Q t Q x Q y Q z Q

            
            
            

 

and using the notation of equations (10) and (11) we obtain  
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1 1 1 1 1
1 2 3

0 0 1 2 3

J J J J Jicd ic
u u u

dx Q x Q x Q x Q x Q

            
            
            

 

and with equation (72) we get  

01 311 11 21
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

   
    

 
 

01 3 131 1 11 2 21

0

iuJ iu iud

dx Q c Q Q c Q c Q

   
     

 
 

01 3 131 1 1 11 2 21

2

0 0

1 iudJ J iu iudQ

Q dx Q dx c Q Q c Q c Q

  
       

31 1 2
1 11 01 21 13

0 0

iudJ iu iudQ
J

dx Qdx c c c
         

and with equations (77), (79) and (80), we obtain  

 1
1 11 1 2 3 3 2

0 0

dJ dQ i i i
J Q Q Q u u

dx Qdx c c c
         

which is the second of equations (86). Equation (87) results from the combination of 

equations (44) and (86). 

Using the symbol J  for the momentum vector of the material particle  

1

2

3

x

y

z

JJ

J J

J J

  
  

    
     

J  

and taking into account equations (10) and (11), the set of equations (86) can be written in the 

form  

 

2

0

1 1

2 2

3 3

dW dQ
W Qc Q

dt Qdt

u
d dQ

Q u Q
dt Qdt

u







    

 
 

     
 
  

u α

J
J u α u β

 (88) 

Equations (88) give the rate of change of the energy W  and momentum J  of the 

material particle with respect to time .t  From equation (8) we can calculate the contribution 

of charge Q  to the rate of change of the rest mass 
0m  of the material particle with respect to 

time .t   

The rate of change of the four-vector J  of the momentum of the material particle is 

given by the sum of the three terms in the right part of equation (86). The USVI and its 

consequences for the material particle depend on which of these terms is the strongest and 
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which is the weakest. This can be studied on the basis of the characteristics of each individual 

term. We now prove the following theorem about the vector pair  , .α β   

Fifth Theorem of the TSV 

“ For the vector pair  ,α β  the following equations hold:  

                           1 01 2 02 3 03
2

icbz
c c c      α   (a) 

0 β      (b) 

t


  



β
α       (c) (89) 

0 01 2 21 3 31

0 02 2 12 3 32 2

0 03 2 13 3 23

.
2

c c c
bz

c c c
c t

c c c

  

  

  

  
 

     
  
   

α
β  (d) ” 

Differentiating equations (81) and (82) with respect to , 0,1,2,3kx k   and 

considering equation (76), we obtain equations  

,
2

k

k

bc

x


 



α
α   (90) 

.
2

k

k

bc

x


 



β
β   (91) 

From equations (90) and (91) we can easily derive equations (89). Indicatively we prove 

equation (89,b). From equation (82) we obtain  

32 13 21

1 2 3

z z z

x x x
  

  
   

  
β  

and with equation (76) we get  

 1 32 2 13 3 21
2

bz
c c c      β  

and with the first of equations (75) for    , , 1,3,2i v k   we get  

0. β  

From equations (86) and (89) we conclude that the vector pair  ,α β  expresses the 

intensity of the USVI field according to the paradigm of the classical definition of the field 

potential. From equation (17) it emerges that the physical quantities , ,i 0,1,2,3ki k   have 

units (dimensions) of 
1.kg s  Thus, from equation (79) it emerges that, if Q  plays the role of 

the rest mass, the intensity α  has units of 
2.ms  If Q  is the electric charge, the intensity α  

has units of 
1.NCb

 Through equations (81) and (82) we can determine the units of the 
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constants , , ,i 0,1,2,3,ki k i k    which depend on the nature of the selfvariating charge 

.Q  

From equations (89 b,c) we conclude that the potential is always defined in the 

 ,α β - field of the USVI. That is, the scalar potential  

   0 1 2 3, , , , , ,V V t x y z V x x x x   

and the vector potential A   

   
1

0 1 2 3 2

3

, , , , , , ,

x

y

z

AA

t x y z x x x x A A

A A

  
  

      
     

A A A  

are defined through the equations 

0

,

.
ic

V V
t x

 

 
     

 

β Α

Α Α
α

 

We can introduce in the above equations the gauge function .f  That is, we can add 

to the scalar potential V  the term  

0

f ic f

t x

 
  
 

 

and to the vector potential A  the term 

f  

for an arbitrary function f   

   0 1 2 3, , , , , , ,f f t x y z f x x x x   

without changing the intensity  ,α β  of the field. The proof of the above equations is known 

[7,8,9,10] and trivial and we will not repeat it here. For the field potential of the USVI the 

following theorem holds: 

 

Sixth Theorem of the TSV 

“In the  ,α β -field of USVI the pair of scalar-vector potentials  ,V A  is always 

defined through equations  

0

0

,

.
ic

V ic A
t x

 

 
     

 

β Α

Α Α
α

 (92) 

The four-vector A  of the potential 
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 (93) 

is given by equation  

2
, for

, for

ki k

k i

i

k

i

f
z i k

b c x
A

f
i k

x

 
  

 
 



 (94) 

where 0, , 0,1,2,3kc k i   and 
kf  is the gauge function.” 

Equations (92) are equivalent to equations (89) as we have already mentioned. The 

proof of equation (94) can be performed through the first of equations (75)  

0

, , , , , v 0,1,2,3

i vk k iv v kic a c a c a

i v v k k i i k

  

   
 

of the third theorem of the TSV. The mathematical calculations do not contribute anything 

useful to our study, thus we omit them. You can verify that the potential of equation (94) 

gives equations (81) and (82) through equations (92) taking also into account the first of 

equations (75).  

According to relation (60) it is 0kc   for at least one of the indices 0,1,2,3.k   So, 

from equation (94) the following four sets of the potentials follow:  
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0
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 (95) 
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

 (98) 

Indicatively, we calculate the components 
1  and 

1  of the intensity  ,α β  of the 

USVI field from the potentials (95). From the second of equations (92) we obtain 

0 1
1

1 0

A A
ic

x x


  
  
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and with equations (95) we get  

0 01 0
1
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2f fz
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
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
 

and with equation (76) we get 
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1 01,icz   

that is we get the intensity 
1 of the field, as given by equation (81). 

From the first of equations (92) we have  

3 2
1

2 3

A A

x x


 
 
 

 

and with equations (95) we get 

 

 

 

 

03 02
1

0 2 0 2

2 2z z

b c x b c x

 


 
 

 
 

and with equation (76) we get 

2 03 3 02
1

0 0

c c
z z

c c

 
     

and considering that 
02 20   , we get  

 1 2 03 3 20

0

.
z

c c
c

      (99) 

From the first of equations (75) for    , , 2,0,3i v k   we obtain 

2 03 3 20 0 32

2 03 3 20 0 32

0c a c a c a

c a c a c a

  
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and substituting into equation (99), we see that 

1 32z   

that is, we get the intensity 
1  of the field, as given by equation (82). 

The gauge functions ,k 0,1,2,3kf   in equations (95)-(98) are not independent of 

each other. For 0kc   and 0ic   for , , 0,1,2,3k i k i   equation (100) holds 

2

2

4
, 0, , , 0,1,2,3.ki

k i k i

k i

z
f f c c k i k i

b c c


      (100) 

The proof of equation (100) is through the first of equations (75). The proof is 

lengthy and we omit it. Indicatively, we will prove the third of equations (95) from the third 

of equations (96) for 1k   and 0i   in equation (100). 

For 
0 0c   and 

1 0c   both equations (95) and equations (96) hold. From equation 

(100) for 1k   and 0i   we get equation 
2

10
1 0 2

0 1

4
.

z
f f

b c c


   (101) 

From the third of equations (96) and equation (101) we get 
2

1012
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1 2 0 1
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0 1012
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and with equation (76) we obtain 
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
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
 

and since 
10 01   , we get equation 

  0
2 0 12 2 01
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2 fz
A c c

bc c x
 


  


. (102 

From the first of equations (75) for    , , 0,1,2i v k   we obtain 

0 12 2 01 1 20

0 12 2 01 1 20

0 12 2 01 1 02

0c a c a c a

c a c a c a

c a c a c a

  
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and substituting into equation (102) we obtain equation 

02 0
2

0 2

2 fz
A

b c x

 
 


. (103) 

Equation (103) is the third of equations (95). 

According to equation (100), if 0kc   for more than one of the constants 

, 0,1,2,3kc k  , the sets of equations of potential resulting from equation (94) have in the end 

a gauge function. In the application we presented assuming 
0 0c   and 

1 0c   for a specific 

gauge function 
0f  in equations (95), the gauge function 

1f  in equations (96) is given by 

equation (101).  

 

7. The main diagonal of the T  matrix 

In this paragraph we study the elements of the main diagonal of the matrix T  of 

equation (19), that is, the elements of the matrix   of equation (78). Since 0z   we define 

the physical quantities , 0,1,2,3kT k    

k
kT

z


  

and we write the physical quantities 
k  in the form  

, 0,1,2,3.k kzT k     (104) 

We expand equation (18) for 0,1,2,3k   and get 

0 00 1 01 2 02 3 03

0 10 1 11 2 12 3 13

0 20 1 21 2 22 3 23

0 30 1 31 2 32 3 33

0

0

0

0

J J J J

J J J J

J J J J

J J J J

   

   

   

   

   

   

   

   

. 
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Considering equations (73), (77), and (104), and that 
ik ki    for every 

, , 0,1,2,3k i k i  , we get 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J zQT J zQ J zQ J zQ

J zQ J zQT J zQ J zQ

J zQ J zQ J zQT J zQ

J zQ J zQ J zQ J zQT

  

  

  

  

   

    

    

    

 

and since 0zQ  , we get 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32

0 03 1 13 2 32 3 3

0

0

0

0

J T J J J

J J T J J

J J J T J

J J J J T

  

  

  

  

   

    

    

    

. (105) 

Equations (105) comprise a 4x4 homogeneous linear system of equations with the momenta 

0 1 2 3, , , .J J J J  as unknowns. Therefore, it always has the trivial solution 

   0 1 2 3, , , 0,0,0,0 .J J J J   

In this case, from equation (14) we get 
0 0.m    

We study the case 
0 0.m   and are, therefore, interested in the non-zero solutions  

   0 1 2 3, , , 0,0,0,0J J J J   

of the system of equations (105). We prove that one case where the system of equations (105) 

has non- zero solutions is when equation (106) holds: 

0 1 2 3 0.T T T T     (106) 

In this case, equations (105) are written in the form of equations 

1 01 2 02 3 03

0 01 2 21 3 13

0 02 1 21 3 32

0 03 1 13 2 32

0 0 ( )

0 0 ( )

0 0 ( )

0 0 ( )

J J J a

J J J b

J J J c

J J J d

  

  

  

  

   

    

    

    

. (107) 

By performing the necessary calculations we get the determinant D  of the system of 

equations (107) in the form  

 
2

01 32 02 13 03 21 .D          (108) 

Considering equation (73) and that 0zQ  , we get 

 01 32 02 13 03 21 01 32 02 13 03 21

1

zQ
                 

and with equation (59) we arrive at  
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01 32 02 13 03 21 0        . (109) 

From equations (108) and (109) we obtain 0.D   Therefore, the homogeneous linear system 

of equations (107) has non-zero solutions. 

In the case when equations (106) hold, we obtain from equation (77)  

0 1 2 3 0      

and from equation (78) we get 0.   Therefore, the second term on the right side of 

equations (86) and (87) of the USVI vanishes when equations (106) hold. 

The elements of the main diagonal of matrix T  and, equivalently, the physical 

quantities , 0,1,2,3kT k  , have a specific physical content. As we will see, they are related to 

the curvature of the part of spacetime occupied by the generalized particle. 

Applying the Lorentz-Einstein transformations for the physical quantities 

,k 0,1,2,3ki   we derive equation (29), 
00 11.   The reference frame  , , ,t x y z      of 

paragraph 4 moves with respect to the reference frame  , , ,t x y z  with constant velocity 

along the .x -axis. If we assume that the motion is along the y - or z -axis, the generalization 

of equation (29) follows; the Lorentz-Einstein transformations lead to the following equation 

00 11 22 33 0.        

We also arrive at this equation from the Lorentz-Einstein transformations of 

equations (105). The function z  and the charge Q  are invariant, therefore from equation (73) 

we conclude that the physical quantities 
ki  and , , , 0,1,2,3ki k i k i    transform in the 

same manner according to Lorentz-Einstein. Applying the transformations (26) and (37) on 

equations (105) we again arrive at 

00 11 22 33 0.        

This is not a transformation equation of the physical quantities , 0,1,2,3kk k   

between two inertial reference frames. It is an equation relating the elements of the main 

diagonal of matrix T  in the same inertial frame of reference. Thus, taking into account 

equations (77) and (104), we obtain equation (110) when the Lorentz-Einstein 

transformations hold 

0 1 2 3.T T T T    (110) 

In equations (105) at least one of the momenta ,k 0,1,2,3kJ   is non-zero. Let it be 

0 0,J   then from equations (105 b,c,d) we get 

 

 

 

01 1 1 2 21 3 13

0

02 1 21 2 2 3 32

0

03 1 13 2 32 3 3

0

1

1

1

J T J J
J

J J T J
J

J J J T
J

  

  

  

  

  

   
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and substituting into equation (105 a) we get 

   

 

2

0 0 1 1 1 2 21 3 13 2 1 21 2 2 3 32

3 1 13 2 32 3 3 0

J T J J T J J J J J T J

J J J J T

   

 

      

   
 

and after the calculations we get 

2 2 2 2

0 0 1 1 2 2 3 3 0.J T J T J T J T      (111) 

We arrive at the same equation no matter which of the momentum components 

, 0,1,2,3kJ k   we consider different from zero.  

The Lorentz-Einstein transformations lead to equation (110) 

0 1 2 3T T T T    

so from equation (111) we obtain  

 2 2 2 2

0 0 1 2 3 0J J J J      

and with equation (14) we get  

2 2

0 0 0T m c   

and since 
0 0m   we have 

0 0T  , and finally with equation (110) we get 

0 1 2 3 0.T T T T      

Thus, we arrive at the following two conclusions: 

“When the Lorentz-Einstein transformations hold for the physical 

quantities ,k, 0,1,2,3ki i  , then the physical quantities ,k 0,1,2,3kT   vanish. 

0 1 2 3 0.T T T T     (112) ” 

“When  

0kT    (113) 

for at least one of the physical quantities  

 , k 0,1,2,3kT  , 

the Lorentz-Einstein transformations do not hold for the physical quantities 

,k, 0,1,2,3.ki i  ” 

From the above we conclude that if relation (113) is valid, then the part of spacetime 

occupied by the generalized particle cannot be flat, it is curved. Furthermore, from equation 

(78) we obtain 0.   Therefore, when relation (113) holds, the second term on the right side 

of equations (86) and (87) is non-zero. This term of the USVI is related to the curvature of 

spacetime.  
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In the present study the rest mass 
0m  of the material particle is given by the 

equivalent equations (8) and (14) of special relativity. This is why the Lorentz-Einstein 

transformations hold for the physical quantities ,k, 0,1,2,3,ki i   as given in equations (37). 

Therefore, we expect equation (112) to hold, which we also prove: 

Combining equations (59) and (73) we get  

  , , , 0,1,2,3
2

ki i k k i ki

b
c J c J zQ k i k i       

and we finally get 

2
, , , 0,1,2,3ki

k i i k

zQ
c J c J k i k i

b


    . (114) 

In equation (114) at least one of the physical quantities ,k 0,1,2,3kc   is not zero 

according to relation (60). We prove equation (112) for 
0 0c  , and the proof is similar for 

0kc  , with  k 0,1,2,3 .  From equation (114) for 0k   and 
0 0c  , we get 

0
0

0 0

2
, 1,2,3.i i

i

c zQ
J J i

c bc


    (115) 

Differentiating equation (115) with respect to 
0x , and considering equations (17) and 

(73), (76), and (71) we get  

0 0
0 0 0 0 0 0

0 0

2

2

i i
i i

c bcb b b
P J zQ P J zQT zQ P zQ

c bc




  
        

   
 

and with equation (115) we have  

0 0
0 0

0 0

2

2

i i
i

c bc
zQ zQT zQ

c bc




 
   

 
 

and since 0zQ   we get 

0 0, 1,2,3.icT i   (116) 

We differentiate equation (115) with respect to 
ix , i =1,2,3, and taking into account 

equations (17) and (73), (76), and (71), we get 

0
0 0

0 0

2

2

i i i
i i i i i i

c bcb b b
PJ zQT PJ zQa zQ PzQ

c bc

   
        

   
 

and with equation (115) we get  

0
0

0 0

2

2

i i i
i i

c bc
zQT zQa zQ

c bc

  
   

 
 

and since zQ  0, we obtain  
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0 0

0 0

i i
i i i

c c
T a a

c c
   

0 0

0 0

i i
i i i

c c
T a a

c c
    

so we get  

iT  0, 1,2,3.i   

According to equation (44), the Lorentz-Einstein transformation of the physical 

quantities , 0,1,2,3kC k   is given by equations (26). From the transformations given in (26) 

it is easily verified that if in the inertial frame of reference  , , ,t x y z      it is 

' ' '

1 2 3 0c c c   , then in the frame of reference  , , ,t x y z  it is 

   0 1 2 3, , , 0,0,0,0c c c c  . Therefore, in equation (116) at least one of the physical 

quantities , 1,2,3ic i   is non-zero, thus 
0 0T  . 

Combining equations (17) and (44) we obtain  

  , , 0,1,2,3i
ki k k i

k

J b
c J J k i

x



   


. (117) 

In equation (117) the rest mass 
0m  does not appear. By defining the physical 

quantities , , 0,1,2,3ki k i   through equation (117), we bypass the special relativity equation 

(14). Therefore, starting from equation (117) we can study the consequences of the 

Selfvariations for any relation between the momenta , 0,1,2,3kJ k   and the rest mass 
0m of 

the particle, which is not necessarily given by equation (14) of special relativity. In these 

cases the Lorentz-Einstein transformations do not necessarily hold and, therefore, the same 

will be true of equation (112). 

 

8. The equation of the TSV regarding the corpuscular structure of matter  

In the equations we have presented in the previous paragraphs, some physical 

quantities behave as “real numbers”, and some as “complex numbers”. By dividing these 

physical quantities with others of the same dimension, we can introduce complex numbers 

into the equations of the TSV. For instance, we can state equation (14) in the form 

2 2 2

20 31 2

0 0 0 0

1 0
J JJ J

m c m c m c m c

       
           

       
 

0

, 0,1,2,3kJ
k

m c
  . 

The introduction of complex numbers into the equations of the TSV is not necessary 

as long as we keep in mind that some sums of squares of the TSV are equal to zero. 
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We give one more example related to the study in this paragraph. From the first of 

equations (75) for ( , , ) (0,2,1)i v k   we obtain equation  

0 21 1 02 2 10 0c a c a c a    

and since 
10 01a a  , we get 

0 21 1 02 2 01 0c a c a c a   . (118) 

From equations (11), (12) and (44) we obtain 

 0 s

i
c W E

c
   

and if we suppose that 
sW E  is a “real number”, 

0c  is a “complex number”. Therefore, in 

equation (118), the physical quantities 
1 2 21 02 01, , , ,c c a a a  cannot all be “real numbers”. 

The physical quantities 
kc  and 

kia , k i , ,k i 0,1,2,3  generally behave as 

“complex or hypercomplex numbers”. For physical quantities 
kia , k i , ,k i 0,1,2,3  

there is a sum of squares that equals zero. We determine this sum in this paragraph. 

We consider the 4 4  matrices   and  , as given by equations (119) and (120): 

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

  

  

  

  

 
 
 
 
    
 
  
 
 

 (119) 

32 13 21

32 03 02

13 03 01

21 02 01

0

0

0

0

  

  

  

  

 
 
 
 
    
 
  
 
 

. (120) 

Using matrix N , equations (75) are written in the form  

0NC NJ NP   . (121) 

From equations (121) we obtain  

2 2 2 0N C N J N P   . (122) 

Also, performing the calculations and considering equation (109), we obtain equations  

0

| | | | 0

MN NM

M N

 

 
.   (123) 

We now prove the following theorem:  
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Seventh Theorem of the TSV  

“For the matrices M and N the following hold: 

2 2 2M N a I       (124) 

2 2 2 2 2 2 2

01 02 03 32 13 21a a a a a a a        (125) 

where I  is the 4 4  unit matrix.  

For 0  , matrix   has two eigenvalues 
1  and 

2  with corresponding eigenvectors 
1v  

and 
2v  given by equations 

1

2 2 2

01 02 03

01 03 13 02 21

1 2

02 01 21 03 32

03 02 32 01 13

2

2 2 2

01 02 03

01 03 13 02 21

2 2

02 01 21 03 32

03 02 32 01 13

0

1

0

1

ia

a a a

a a a a ai
v

aa a a a a a

a a a a a

ia

a a a

a a a a ai
v

aa a a a a a

a a a a a







   
  

   
   
       

 

   
 

  
  
     









. (126) 

For 0  , matrix   has the same eigenvalues 
1  and 

2  with matrix M, and the 

corresponding eigenvectors 
1n and 

2n  are given by equations 

1

2 2 2

32 13 21

32 02 21 03 13

1 2

13 03 32 01 21

21 01 13 02 32

2

2 2 2

32 13 21

32 02 21 03 13

2 2

13 03 32 01 21

21 01 13 02 32

0

1

0

1

ia

a a a

a a a a ai
n

aa a a a a a

a a a a a

ia

a a a

a a a a ai
n

aa a a a a a

a a a a a







   
  

   
   
       

 

   
 

  
  
     









. (127) 

For the physical quantities 
kia , k i , ,k i 0,1,2,3  equation (128) holds:  

2 2 2 2 2 2 2

01 02 03 32 13 21 0a a a a a a a       . (128) ” 
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Matrices M and N are given by equations (119) and (120). The proof of equations 

(124), (125), (126) and (127) is done through the proper mathematical calculations and the 

use of equation (109). 

We now multiply equation (124) from the right with the column-matrices C , J  and 

P and obtain equations 

2 2 2M C N C a C    

2 2 2M J N J a J    

2 2 2M P N P a P    

and with equation (122) we get  

2 2M C a C   

2 2M J a J  . (129) 

2 2M P a P   

From equations (129) we conclude that, for 0  , matrix 
2M  obtains the 

eigenvalue 
2   , with the four-vectorsC , J and P being parallel to the corresponding 

eigenvector v of matrix 
2M . Therefore, for 0  , the four-vectors C , J and P are parallel 

to each other, which is impossible in the external symmetry according to the internal 

symmetry theorem. Therefore, 0  , in order for matrix M to not have the eigenvector v. 

Thus, we obtain equation (128). 

Equation (128) highlights the factors on which the rest masses 
0m  and 0

2c


, as well 

as the total rest mass 
0  of the generalized particle, depend. For the determination of these 

factors we consider the three-vectors C  , J  and P , as given by equations (130), (131), and 

(132), respectively 

1

2

3

c

c

c

 
 

  
 
 

C  (130) 

1

2

3

J

J

J

 
 

  
 
 

J  (131) 

1

2

3

P

P

P

 
 

  
 
 

P . (132) 

Equations (75) for ( , , ) (1,2,3)i v k   express the orthogonality of vectors C , J  and 

P  with vector β  . We prove the orthogonality between vectors C  and β , and one can 

similarly prove the orthogonality of vectors J  and P  with vector β . 

From the first of equations (75) for ( , , ) (1,2,3)i v k   we obtain 
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1 32 2 13 3 21 0c a c a c a    

and from equations (82) and (130), the orthogonality between the vectors C  and β  emerges. 

From equations (81), (82) and (109) we conclude that the vectors α   and β  are 

orthogonal. Therefore, the vectors C , J  , P   and α   belong to the same plane  . Plane   

is orthogonal to the vector β  .  

We now consider the directional angles  ,    and  with direction from the first 

vector to the second, as given by equations (133) 

 

 

 

,

,

,



















C α

J α

P α

. (133) 

Considering that the vectors C  , J  , P  and α   belong to the same plane  , and 

equations (44) and (130),  (131) and (132), we obtain equations 

      J P C                                                            (134) 

sin( ) sin( ) sin( )

|| || || || || ||

       
 

J P C
, 

for , , 0,J P C  where || ||α  is defined as  
1

2Tα α α  . 

From the pairs of equations (44), (130), as well as (14), (131), and (15), (132), we 

obtain equations  

1

2 2 2 2
0 0

1

2 2 2 2
0 0

12
2 0 2

0 2

|| || ( )

|| || ( ) |

| || ( )

c M c

J m c

E
P

c

  

  

  

C

J

P

. (135) 

We now prove that for 
0 0c  , the following equations hold 

0 0sin cosM c c    

              
0 0sin cosm c J   . (136) 

0 0sin coscP     

We show the proof of the first of the above equations, since the proof of the other two 

is along similar lines. From the first of equations (75) for ( , , ) (0,2,3)i v k  , (0,1,3) , 

(0,1,2) , and 
0 0c  , we obtain equations  

32 3 02 2 03

0

1
( )a c c a

c
   
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13 1 03 3 01

0

1
( )a c c a

c
   

21 2 01 1 02

0

1
( )a c c a

c
   

and replacing in equation (128) we get  

2 2 2 2 2 2

01 02 03 3 02 2 03 1 03 3 01 2 01 1 022 2 2

0 0 0

1 1 1
( ) ( ) ( ) 0a a a c c a c c a c c a

c c c
                             

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

01 02 03 0 3 02 2 03 1 03 3 01 2 01 1 02 2 3 02 03 1 3 01 03 1 2 01 02( ) 2 2 2 0a a a c c c a c c c c c c c c c c                     

 

     2 2 2 2 2 2 2 2 2 2 2 2

01 0 2 3 02 0 1 3 03 0 1 2 2 3 02 03 1 3 01 03 1 2 01 022 2 2 0a c c c a c c c a c c c c c c c c c                

 

and with equation (45) we get  

     2 2 2 2 2 2 2 2 2 2 2 2

01 0 1 02 0 2 03 0 3 2 3 02 03 1 3 01 03 1 2 01 02c c c 2 2 2 0a M c a M c a M c c c c c c c                

 

and we finally obtain 

   
22 2 2 2 2

0 01 02 03 1 01 2 02 3 03c 0M a a a c c c        . (137) 

We now prove relation  

   01 02 03, , 0,0,0a a a  . (138) 

From the first of equations (75) for ( , , ) (0,3,2)i v k  , (0,1,3) , (0,2,1)  we obtain equations  

0 32 2 03 3 02 0c a c a c a    

0 13 3 01 1 03 0c a c a c a    

0 21 1 02 2 01 0c a c a c a    

and supposing that  

   01 02 03, , 0,0,0a a a   

we get 

0 32 0c a   

0 13 0c a   

0 21 0c a   

and because 
0 0c  , it is also  
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   32 13 21, , 0,0,0a a a   

that is, 0kia   for every , , 0,1,2,3k i k i  , which is impossible in the external 

symmetry. Hence, for 
0 0c  , relation (138) holds. 

Considering now the first of equations (133), we obtain  

   
1

2

2 01 02 03

1

2 2 2 2 2 22
1 01 2 02 3 03 1 3 cosc a c a c a c c c a a a         

and substituting this expression into (137) we get  

    
2 01 02 03

2 2 2 2 2 2 2 2 2 2 2 2

0 01 02 03 1 3c cos 0M a a a c c c a a a          

and since 

2 2 2

01 02 03 0a a a    

because of relation (138) we get 

 
2

2 2 2 2 2 2

0 1 3c cos 0M c c c      

and with equation (45) we get  

 

 

2 2 2 2 2 2

0 0 0

2 2 2 2 2

0 0

2 2 2 2 2

0 0

0 0

c c cos 0

c 1 cos cos 0

c sin cos

c sin cos

M M c

M c

M c

M c



 

 

 

  

  



 

 

which is the first of equations (136).  

 Because of the extremely large amount of information contained within equations 

(134) and (136), we will confine ourselves to only one application. We will determine the 

case for which the total rest mass 
0M  of the generalized particle vanishes.  

In the case when vectors α   and C   are orthogonal, that is for 
2


  , we obtain 

from the first of equations (136):  

0 0M  . 

Then, from the second of equations (134) for 
2


  , we get 

2 2 2 2

|| || cos || || cos

|| || cos || || cos

 

 

 



J P

J P
 

and with the second and third of equations (135) we obtain equation 
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 
2

2 2 2 2 2 20
0 0 0 2

cos cos
E

J m c P
c

 
 

   
 

. 

From the second and third of equations (136) we get equations 

 
0 0 0

0

2 2 2 2 2 2

2 2
2 20 0

2 2

cos

cos

m c m c J

E E
P

c c





 

 
  
 

 

and substituting into the previous equation we get 

0

2
2 2 0

2

E
m c

c


. 

Thus, we get the following set of equations  

0

2

0 0

0

0

C

M

E m c

 



 

α

. (139) 

 Equation (128), which we used to prove equations (136), is the basic equation of the 

TSV giving us information about the corpuscular structure of matter. In order to fully 

comprehend this structure, we also need the eighth theorem of the TSV. We present this 

theorem, along with its consequences, in the following paragraph. 

 

9. The conserved physical quantities of the generalized particle and the wave 

equation of the TSV 

 The generalized particle has a set of conserved physical quantities which we 

determine in this paragraph. The determination is initially made through equation (89). The 

proof procedure we follow is identical to the one followed to prove the conservation of 

electric charge from Maxwell’s equations. 

 Considering equations (89) we define the scalar quantity  and the vector quantity 

j , as given by equations 

 1 01 2 02 3 03

0 01 2 21 3 132

0 02 1 21 3 32

0 03 1 13 2 32

2

2

icbz
c a c a c a

c a c a c a
c bz

c a c a c a

c a c a c a

  



     

   
 

    
    

α

j

 (140) 

where 0   is a constant. We now prove that for the physical quantities   and j  equation 

(141) holds: 

0
t


 


j .                                           (141) 
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From the first of equations (140) we obtain  

 
t t

t t

 







 

 
 

 

  
   

  

α

α

α

 

and with the second of equations (140) and equation (89, d) we get 

 2c
t

t







   




 



β j

j

 

which is equation (141). According to equation (141), the physical quantity   is the density 

of a conserved physical quantity q with current density j  . 

 We now consider the four-vector of the current density j  of the conserved physical 

quantity q , as given by equation 

0

1

2

3

x

y

z

i cj

jj
j

jj

j j

  
  
   
  
     

   

.                                        (142) 

With the use of matrix  , as given by equation (119), equations (140) are written in the 

form  

2

2

c bz
j MC


 . (143) 

For an appropriate constant 
0   in equations (140), the conserved physical quantity q is 

of the same dimensions (units of measurement) as the selfvariating charge Q. Equivalently, 

for 
0   equation (143) gives the current density of charge q of same nature as the 

selfvariating charge Q. It is easy to realize that if Q is the electric charge, then 
0  , where 

0  is the electric permeability of the vacuum. In the case where Q is the rest mass, then 

1

4 G



 , where G is the gravitational constant. 

The quantity q , as defined above, is a special case of a conserved physical quantity. 

We will now determine the general mathematical expression for the conserved physical 

quantities of the generalized particle. We prove the following theorem: 

 

Eighth Theorem of the TSV 

“For the field  ,ξ ω  of the pair of vectors  
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01

02

03

a

ic a

a

 
 

  
 
 

ξ
                           (144) 

32

13

21

a

a

a

 
 

  
 
 

ω                           (145) 

where  0 1 2 3, , ,x x x x   is a function satisfying equation 

 k k

k

b
J P

x
 


  


   (146) 

 0,1,2,3, ( , ) 0,0 , ,k        are functions of 
0 1 2 3, , ,x x x x , the following 

equations hold: 

0

t

 


  



ω

ω
ξ

.                              (147) 

The generalized particle has a set of conserved physical quantities q with density   and 

current density j 

2

2
c

c t

 



 

 
   

 

ξ

ξ
j ω

                                       (148) 

where 0   are constants, for which conserved physical quantities the following continuity 

equation holds: 

0
t


 


j .                                                                    (149) 

The four-vectors of the current density j   are given by equation 

 

0

2
12

2

3

x

x c b
j c M M J P

x

x


  

 
 
 
 
 


      
 
 
 

 
 
 

.  (150) 

The conserved physical quantities are given by equation 
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0

V V

icq ic dV j dV                                                       (151) 

where V  is the volume occupied by the generalized particle.” 

 For the proof of the theorem we first demonstrate the following auxiliary equations 

(152)-(157) 

32

13

21

0

a

a

a

 
 
  
 
 

J    (152) 

32

13

21

0

a

a

a

 
 
  
 
 

P    (153) 

01 32

02 0 13

03 21

a a

a J a

a a

   
   

     
   
   

J   (154) 

01 32

02 0 13

03 21

a a

a P a

a a

   
   

     
   
   

P   (155) 

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a J a J a

a J a J a

a J a J a

   
   

     
      

J  (156) 

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a P a P a

a P a Pa

a Pa P a

   
   

     
      

P . (157) 

In order to prove equation (152) we get  

32

13 1 32 2 13 3 21

21

a

a J a J a J a

a

 
 
    
 
 

J  

and with the second of equations (75) for ( , , ) (1,3,2)i v k  , we have  

32

13

21

0

a

a

a

 
 
  
 
 

J . 

Similarly, from the third of equations (75) we obtain equation (153). We now get  



 50 

01 2 03 3 02 2 03 3 20

02 3 01 1 03 3 01 1 30

03 1 02 2 01 1 02 2 10

a J a J a J a J a

a J a J a J a J a

a J a J a J a J a

      
     

         
           

J  

and with the second of equations (75) we obtain  

01 0 32

02 0 13

03 0 21

a J a

a J a

a J a

   
   

     
      

J  

which is equation (154). Similarly, by considering the third of equations (75) we derive 

equation (155). Equations (156) and (157) are derived by taking into account equations (131) 

and (132). 

Equations (147) are proven with the use of equations (152)-(157). We prove the first 

as an example. From equation (145) we obtain 

32

13

21

a

a

a

 
 

     
 
 

ω  

and with equation (146) we get 

32 32

13 13

21 21

a a
b b

a a

a a

 

   
   

          
   
   

ω J P  

and with equations (152) and (153) we obtain  

0. ω  

From equations (147) and (148), the continuity equation (149) results. The proof is similar to 

the one for equation (141). The proof of equation (150) is done with the use of equations 

(152)-(157), and equation (119). The physical quantities q  are conserved, as indicated by the 

continuity equation (149). Therefore, if the generalized particle occupies volume V , then 

equation (151) holds.  

From equation (17) it emerges that the dimensions of the physical quantities 

, , 0,1,2,3ki k i   are  

  1, 0,1,2,3.ki kgs k    

Thus, from equations (79) and (80), the dimensions of the physical quantities 

, , 0,1,2.kiQ k i   emerge. Additionally, by combining equations (77) and (104), the 

dimensions of the physical quantities , 0,1,2,3.kT k   emerge. Thus, we obtain relations 

(158): 

 

 

1

1

, , , 0,1,2,3,

, 0,1,2,3.

ki

k

Q kgs k i k i

T kgs k

 



  

 
 (158) 
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Using the first of equations (158) we can determine the units of measurement of the 

 ,ξ ω -field for every selfvariating charge Q. When Q is the electric charge, we can verify 

that the field units are (Vm-1,T). When Q is the rest mass, the field units are (ms-2,s-1). The 

dimensions of the field depend solely on the units of measurement of the selfvariating charge 

Q. 

 From equation (150), and considering that ,  , we can, by using the first of 

equations (158), determine the dimensions of the physical quantities q. If we write the 

constant σ in the form 
0x   we obtain relations 

   
0x

q x Q

 


 (159)  

where x is a constant. From relations (159) we can determine the set of conserved physical 

quantities q of the generalized particle by determining the corresponding constant x. We 

reiterate that for the electric field 
0 0  , and for the gravitational field 0

1

4 G



 . In the 

case of the electric field, for 
1

x
e

 , where e is the charge of the electron, q is a dimensionless 

conserved physical quantity, that is q . For x
e

 , q is a conserved quantity of angular 

momentum. The eighth theorem of the TSV reveals the conserved physical quantities of the 

generalized particle.  

One of the most important corollaries of the eighth theorem of the TSV is the 

prediction that the generalized particle has wave-like behavior. We prove the following 

corollary:  

“For function   the following equation holds 

2
2 2

2

0

2
2 2

2 2

i k
ki

k i

i k
ki

k i

j j
c

x x x

j j
c

c t x x

 

 

    
     

   

    
     

   

 (160) 

, , 0,1,2,3k i k i  .” 

To prove the corollary, considering that 
0x ict , we write equations (147) and (148) 

in the form  

0

0

2

0

0

1

i
j

c

ic

x

i

c c x





  

 


  




  



ξ

ω

ω
ξ

ξ
ω j

.                           (161) 
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We will also use the identity (162) which is valid for every vector α   

  2   α α α . (162) 

From the third of equations (161) we obtain  

 

0

0

ic

x

ic

x

 
   

 


   



ω
ξ

ξ ω

 

and using the identity (162) we get  

   2

0

ic

x


     


ξ ξ ω  

and with the first and fourth of equations (161) we get  

2
2

0 2

0 0

i i
j

c x c x 

  
     

  

ξ j
ξ  

and we finally get 

2
2

02

0 0

i
j

x c x

  
    

  

ξ j
ξ . (163) 

Working similarly from equation (161) we obtain  

2
2

2 2

0

1

x c


    



ω
ω j . (164) 

Combining equations (163) and (164) with equations (144) and (145), we get 

2
2

2

0

, , , 0,1,2,3i k
ki

k i

j ji
k i k i

x c x x




     
        

     
 

which is equation (160).  

 From equation (160) the following two cases result, as given by equation (165) and 

equations (166) 

2 2
2 2

2 2 2

0

0
x c t

   
      

 
 (165) 

2 2
2 2

2 2 2

0

2

0

1
, , , 0,1,2,3i k

ki

k i

F
x c t

j j
k i k i

c F x x




   
       

 

  
    

  

. (166) 
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 In the first case, equation (160) gives the classical wave equation (165). In the 

second case, i.e. for 0F  , the physical quantities 
ki  , , 0,1,2,3k i k i   are expressed 

as a function of the rate of change of the four-vector of the current density j. The physical 

quantities 
ki , , , 0,1,2,3k i k i   enter into a large number of equations of the TSV for 

the external symmetry. Therefore, through the second of equations (166) we can derive a set 

of equations, for the function 0F  , as well as for the rate of change of the four-vector j. 

Equation (160) can be characterized as “the wave equation of the TSV”.  

 We end the paragraph with the proof of equations (167) for the four-vector j 

0

0

j

Mj

 


. (167) 

We first combine equations (128) and (129), and obtain  

2

2

2

0

0

0

M C

M J

M P







. (168) 

We now multiply equation (150) with the matrix N from the left and get  

 
2c b

j J P


       

and with the first of equations (123) we obtain the first of equations (167). Multiplying 

equation (150) with the matrix M from the left we also get 

 
2

2 2c b
j J P


         

and with equations (168) we obtain the second of equations (167). 

The eighth theorem completes the basic study of the law of Selfvariations. The major 

part of the study concerns the external symmetry, which is clearly more complicated than the 

internal one. In the two symmetries we used the same notation for the constant b of the law of 

Selfvariations, the total constant rest mass 
0M of the generalized particle, as well as the 

constants , 0,1,2,3kc k  . These constants do not have the same physical content in the two 

symmetries. The constants that enter into the equations of the TSV in the external symmetry 

are correlated with the theorems we presented, which determine the values of the above 

constants. In the internal symmetry, the constants b , 
0M  and 

ic , 0,1, 2,3i  in equations 

(54), (57) and (58) are not correlated with theorems that correspond to the ones of the external 

symmetry. Therefore, they should be considered absolute constants. 

In the study we presented, we combined equations (14) and (15) with the law of 

Selfvariations for the rest mass 
0 0m  , as given in equation (13). We can equally well study 

the Selfvariations for the rest mass 0

2
0

E

c
  and the symmetric equation  

0
0 , k 0,1,2,3k

k

E b
J E

x


 


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instead of law (13). We will, of course, not present this second study, since it is clear that the 

same results emerge and we just have a reversal of roles of the rest masses 
0m  and 0

2
.

E

c
 This 

remark is made in order to note the fact that the law of Selfvariations holds for 

0 00 0m E   . 

In the case where 
0 0m   and 

0 0E  , the law of Selfvariations is not defined. 

Therefore, in the applications of the present study, every case in which it emerges that 

0
0 2

0
E

m
c

   must be rejected. The study for 0
0 2

0
E

m
c

   can be made starting from 

equations (117) or from their symmetric 

  , , 0,1,2,3i
ki k k i

k

P b
c P P k i

x



   


. 

That is, not starting our investigation from the rest masses masses 
0m  or 0

2

E

c
. Of 

course, we could not arrive at equations (117) without the study we presented, which 

constitutes the fundamental investigation of the law of Selfvariations. 

The law of Selfvariations is connected with all the individual areas of physics, and it 

is impossible to investigate its consequences in one article. It is for this reason that we have 

chosen and present four basic applications of the TSV. 

 

10. The generalized photon 

 From equation (160) there result two states for the generalized particle, as expressed 

by equations (165) and (166). We shall refer to the state of the generalized particle for which 

equation (165) is valid, as the “generalized photon”. For the generalized particle the following 

corollary of the eighth theorem of the TSV holds: 

“For the generalized particle the following equivalences hold:  

2
2

2 2
0

c t

 
  


 (169) 

if and only if for each , , 0,1,2,3k i k i   it is 

i k

k i

j j

x x

 


 
             (170) 

if and only if  

2
2

2 2

2
2

2 2

0

0

c t

c t


  




  



ξ
ξ

ω
ω

.      (171) ” 
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In the external symmetry there exists at least one pair of indices 

 ( , ), , , 0,1,2,3k i k i k i  , for which 0ki  . Therefore, when equation (170) holds, then 

equation (169) follows from equation (160), and vice versa. Thus, equations (169) and (170) 

are equivalent. When equation (170) holds, then the right hand sides of equations (163) and 

(164) vanish, that is, equations (171) hold. The converse also holds, thus equations (170) and 

(171) are equivalent. Therefore, equations (169), (170), and (171) are equivalent.  

 For the generalized photon equation (165) holds, which is equation (169). Therefore, 

equations (170) and (171) also hold. According to equations (171), for the generalized photon 

the  ,ξ ω -field is propagating with velocity c  in the form of a wave. 

 We now prove that, for the generalized photon, the four-vector j  of the current 

density of the conserved physical quantities q, varies according to the equations  

2
2

2 2
0, 0,1,2,3k

k

j
j k

c t


   


.  (172) 

We prove equation (172) for 0k  , and we can similarly prove it  for 1,2,3k  . 

 Considering equation (142), we write equation (149) in the form  

0 31 2

0 1 2 3

0
j jj j

x x x x

  
   

   
. (173) 

Differentiating equation (173) with respect to 
0x  we get  

0

2

0 31 2

2

0 1 0 2 0 3

0
j jj j

x x x x x x x

        
       

           
 

0

2

0 31 2

2

1 0 2 0 3 0

0
j jj j

x x x x x x x

         
        

           
 

and with equation (170) we get 

0

0

2

0 0 0 0

2

1 1 2 2 3 3

2
20

02

0

0

j j j j

x x x x x x x

j
j

x

         
       

           


 



 

which is equation (172) for 0k  , since 
0

x ict . 

The way in which equations (171) emerge in the TSV is completely different from 

the way in which the electromagnetic waves emerge in Maxwell’s electromagnetic theory [7, 

8, 9, 10]. In Maxwell’s theory, equations (171) emerge for j=0. In the TSV it is 0j   due to 

the Selfvariations. Equations (171) emerge when equation (165) holds, that is, in the first of 

the two cases of equation (160). Furthermore, according to the TSV, in the electromagnetic 

waves, the current density j  varies according to equation (172). 



 56 

 The solutions of differential equations (169) and (172) are known. Therefore, the 

functions   and 
kj , 0,1,2,3k   are also known for the generalized photon. By knowing 

function   and the current density j  , the theorems of the TSV give a set of data and 

information about the generalized photon. We reiterate that the four-vector j   concerns a set 

of conserved physical quantities, and not just the electric current density. 

 

11. The generalized particle of the  ,α β -field 

In this paragraph we present the study of the generalized particle of the field  ,α β . 

From equations (81), (82) and (144), (145) it follows that the  ,α β -field is z , that is 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
 

according to equation (74). Thus, taking into account equation (76) we obtain  

 
0

2 2
2 2 2 2 2 2

0 1 2 32 2 2
c c c c

x c t

   
        

 
 

and with equation (45) we get  

0

2 2
2 2 2 2

02 2 2
c

x c t

   
      

 
. (174) 

 We first study the generalized photon of the  ,α β -field. Comparing equations (169) 

and (174) we conclude that the generalized photon of the  ,α β -field has a vanishing total 

rest mass 
0 : 

0 0  . (175) 

Therefore, from equations (139) we obtain equations 

1 01 2 02 3 03

2

0 0

0c c c

m c

      

  

α C
. (176) 

The current density j  of the  ,α β -field is given by equations (140). Combining 

these with the first of equations (176), it is easy to see that for the generalized photon of the 

 ,α β -field the four-vector j of the current density vanishes  

j=0. (177) 

Equation (177) does not hold for the generalized photon of every  ,ξ ω  -field, where we 

generally have 0j  . For z  and with equation (176) we obtain equation 
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, 0,1,2,3
2 2

k k

k k

bc bcz
k

x x

 
      

 
. 

Comparing this relation with equation (146), and considering equation (44), we conclude that 

for the  ,ξ ω -field equation (178) holds: 

1

2
    . (178) 

It is easy to verify that equation (177) holds exclusively for the generalized photon of the 

 ,ξ ω -fields for which    in equation (146). In the cases where    it is also 0j  . 

 Let us now suppose that the generalized photon is moving along the axis x1=x. In this 

case it is 
1 0c   and

2 3 0c c  . Taking also into account equations (175) and (45) we get 

2 2

0 1 0c c   

and we finally get 

1 0c ic  . (179) 

According to equation (179), and since 
2 3 0c c   and 

0
x ict , we get from equation (74) 

equation  

 0exp
2

ibc
z ct x

 
     

 
. (180) 

We now study the generalized particle of field  , ,α β  i.e. the case where 
0 0M   in 

equation (174). In the  ,α β -field, the functions z  and , 0,1,2,3,kj k   are already 

known as given by equation (140). Thus, we can easily study the consequences of equation 

(151) in the case when the generalized particle occupies a constant volume .V   

By combining the first of equations (140) for 0   with equation (151), we get  

 
 0

0 1 1 2 2 3 3exp exp
2 2 2

V

i cb bc b
q x c x c x c x dV

     
        

  


α C
. (181) 

According to the continuity equation (149), the physical quantity q  in equation (181) does 

not depend on time, that is, it is independent of 
0 .x ict  Furthermore, the volume  V V t  

of the generalized particle changes with time. In the case where the generalized particle 

occupies a constant volume V , and given that the physical quantity q  does not depend on 

time, from equation (181) we obtain equations 

 1 1 2 2 3 3exp 0,
2

0,

( constant).

V

b
c x c x c x dV

q

V

 
    
 







 (182) 
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Equation (180) holds for the generalized photon of field  , .α β  We want to prove 

the corresponding equation for the generalized particle. Thus, we consider the case where the 

total momentum of the generalized particle is along the axis 
1 .x x  In this case, it is 

1 2 30, 0c c c   , and from equation (45) we get  

2 2 2 2

0 1 0 0.c c M c     (183) 

Let now the generalized particle occupy the constant volume V  defined by relations 

(184) in a system of reference  1 2 3, , ,t x x x   

1

2 2

3 3

2 3 2 3

,

0 ,

0 ,

,

, 0, ,  constants.

x

x L

x L

L L L L

 

 

 

 

 





 (184) 

For   and   the following relation holds  

d d
u c

dt dt

 
    (185) 

where u  the velocity with which volume V  is moving in the chosen reference frame. 

Combining the first of equations (182) with relations (185), and taking into account that 

2 3 0c c  , we get  

1 1exp exp 0
2 2

bc bc    
      
   

 

and we finally arrive at  

1exp 1
2

0

bc L

L  

 
 

 

  

. (186) 

Equation (186) holds only when constant b  is an imaginary number, when we get  

1

4
, 1, 2, 3,...

b

0

c n n
L b

I

L



 

    



  

. (187) 

Combining equations (183) and (187) we obtain  

2 2
2 2 2 2

0 0 22

16
, 1,2,3,...,

b I.

M c c n n
L b


   



 (188) 
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Therefore, when the generalized particle of the  ,α β -field occupies a constant volume, its 

total rest mass 
0M  is quantized. 

Solving equation (188) with respect to 
0c  we obtain  

1
22 2

0 2 2 2

4 1
1 , 1, 2, 3,...

16

L bn i
c n

L b n





 
        

 
 

 (189) 

Combining equations (173), (187), (189), and considering that 
2 3 00,c c x ict    and 

b i b  , we obtain equation (190) for the confined  ,α β -field 

1
22 2

2 2 2

2 1
exp 1 , 1, 2, 3,...

16

L bn i
ct x n

L n





  
   

            
   

  

 (190) 

Equations (173)-(178) hold generally for the field  , .α β  Equations (179) and (180) 

hold for the generalized photon of the field  ,α β  in one dimension. Equations (181)-(190) 

hold for the confined within a stable part of space field  , .α β  

 

12. The plane   

In paragraph 8 we defined as   the plane normal to the vector β . Taking into 

account equations (82), the plane   is defined if and only if the constant vector τ  of 

equation (191) is not zero. 

321

2 13

3 21

0

0

0



  

 

    
    

      
    
    

. (191) 

In this paragraph we will study the plane   for the case where equations (192) hold 

321

2 13

3 21

2 2 2

32 13 21

0

0

0

0



 

 

  

    
    

      
    
    

  

τ
. (192) 

As we have already observed regarding the physical quantities in the equations of the TSV, 

there are sums of squares that are equal to zero. Therefore, equations (191) and (192) are not 

equivalent. 

We now consider a constant vector n  as defined by 
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011

2 02

3 03

an

n a

n a

  
  

    
   
   

n . (193) 

From equation (128) and the second relation of equations (192), it emerges that relations 

(194) hold for the vector n  

011

2 02

3 03

2 2 2

01 02 03

0

0

0

0

an

n a

n a

  

    
    

      
    
    

  

n
. (194) 

From equations (81), (82), and (109) we get 

01 32 02 13 03 21 0         

and with equations (191) and (193) we get 

0 τ n . (195) 

From this equation we conclude that vector n , being vertical to vector τ , belongs to the 

plane  . 

We consider a constant vector μ  as given by 

02 21 03 131

2 03 32 01 21

3 01 13 02 32

0

0

0

a a

a a

a a

 

  

  

    
    

         
         

μ n τ . (196) 

Vector μ  lies on plane   as vertical to vector τ , and is additionally vertical to vector n . 

Consequently, the vector pair  ,μ n  constitutes an orthogonal vector base on plane  . 

It is easily provable that for vectors , ,μ n τ , the following equations hold: 

2 2

2 2
i i

 

  

n τ

μ n τ
.  (197) 

In order to prove equations (197) one must take into account equations (109) and (128). The 

symbol α  for every vector α  of the TSV has been defined when we first use it in equations 

(134). 

Combining the pairs of equations (144), (194) and (145), (191), we get 

ic 

 

ξ n

ω τ
. (198) 

Consequently, the plane   is defined on every point of spacetime to which field  ,ξ ω  

extends and relations (192) hold. Additionally, the orientation of plane   in space is defined 

by the field  ,ξ ω . 

From equations (75) for    , , 1,2,3i v    we get equations 
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1 32 2 13 3 21

1 32 2 13 3 21

1 32 2 13 3 21

0

0

0

c a c a c a

J a J a J a

Pa P a Pa

  

  

  

 

and with equations (130), (131), (132), and (191) we get 

0

0

0

 

 

 

τ C

τ J

τ P

. (199) 

From equations (199) we conclude that the vectors C , J  , and P , as vertical to vector τ , 

belong to the plane  . 

Expanding the first of equations (167) we get equation 

32 1 13 2 21 3 0a j a j a j    

and with equations (142) and (191) we obtain 

0 τ j . (200) 

From equation (200) we conclude that the vector j , as vertical to vector τ, lies on plane  . 

From equations (146) and (131, (132) we get 

 
b
    J P .  (201) 

Vectors J  and P   belong to the plane  . Consequently, vector  , as a linear 

combination of vectors J   and P  , also belongs to the plane  . 

We, thus, come to the conclusion that that the vectors J , P ,C , j , and   belong 

to the plane  . These vectors vary according to the theorems of the TSV remaining 

constantly on plane  . 

We now prove that, when plane   is defined, the 4-vector j  has a rigidly defined 

internal structure. Expanding the second of equations (167) we get four equations. The first of 

these is equation 

01 1 02 2 03 3 0j j j      

which, together with equations (142) and (193), is written in the form 

0 n j . (202) 

Vector j  belongs to plane   and, according to equation (202), is normal to the vector n  . 

Consequently, vector j  is parallel to vector μ . Therefore, vector j  is written in the form 

B
j μ

μ
 (203) 

where B is a function of 
0 1 2 3, , ,x x x x  with dimensions of the 4-vector j. The remaining three 

equations from the expansion of the second of equations (167) are equations 
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01 0 21 2 13 3

02 0 21 1 32 3

03 0 13 1 32 2

0

0

0

a j a j a j

a j a j a j

a j a j a j

   

   

   

 

and with equations (191), (193), and (203) they are written in the form of equation  

0j B 
μ

n τ
μ

 

and with equation (196) we get 

 0

B
j   n τ n τ

μ
 

and since it is 0 n τ , we get 

2

0

B
j n τ n

μ
 

and because it is 0n , we get 

2

0j B
τ

μ
 

and with the second of equations (197) we get 

0

0

j iB

B ij

 

 
 

and with equation (203) we get 

0ij 
μ

j
μ

. (204) 

From equation (204), and taking into account that 
0j i c , we get 

c 
μ

j
μ

. (205) 

From equations (142) and (204), (205) we get the 4-vector j  in the form 

0

1i

j c j i

   
   

 
   
      

μ μ

μ μ

. (206) 

According to equation (206), the 4-vector j  has an extremely complicated structure. 

This is due to the internal structure of vector μ  as given by equation (196), as well as due to 

the internal structure of the density    as given by the first of equations (150). This structure 

could not be determined by the physical theories of the last century. Equation (205) is 

completely different from equation 

j u  
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which is used by last century’s theories. 

We prove the following corollary: 

“The following equations hold in the plane   

0

0
0

0

20
0

0

2

0

2
2

2

0

0

ij c

j i
j

x

j
j i c F

x

i
c F j

F
x







  


  




   



  

 
  



μ μ
j

μ μ

μ
μ

μ
n

μ

τ μ
μ

. (207) ” 

The first of equations (207) is equation (204). The second emerges from the 

combination of the continuity equation (173) with equation (204). The third and fourth 

emerge from the combination of the wave equation (160) with equation (204). The last of 

equations (207) is the first of equations (166). 

For the generalized photon, it holds that F=0, according to equation (165). So, taking 

into account equations (172), we get the following equations for the generalized photon on the 

plane   

0

0
0

0

0
0

0

2
2

2

0

2
2 0

0 2

0

0

0

0

ij c

j i
j

x

j
j i

x

x

j
j

x

  


  




  



 
   




  



μ μ
j

μ μ

μ
μ

μ

μ
.       (208) 

For the generalized photon, the fourth and fifth of equations (208) can be solved and they give 

the   function and the density 
0j i c , respectively. Then, from the first equation we get 

the current density j. Also, the second of equations (208) emerges from the third. 

The generalized photon is a special case, for F=0, of a generalized particle. For 

0F  , the system of differential equations (207) is not solvable in the simple way that the 

system (208) is. Additionally, the second, third, and fourth of equations (207) are not 

independent. Combined in pairs they give the third. 



 64 

Expanding the first of equations (167) we get four equations. As we have proven, the 

first of them is equivalent to equation (200), that is, with the fact that vector j  belongs to 

plane  . The remaining three are written in the form 

0j  τ n j .                        (209) 

Taking into account the first of equations (207), it is easily proven that equation (209) is 

equivalent to the second of equations (197). Analogous conclusions can be drawn from the 

second of equations (167), from which equation (201) as well as equation (210) emerge 

0j  n τ j .                          (210) 

Regarding the study of the corpuscular structure of the generalized particle in the 

plane , we expand the first of equations (75) for        , v, 0,3,2 , 0,1,3 , 0,2,1i k   and 

we obtain equations 

            

0 32 2 03 3 20

0 13 3 01 1 30

0 21 1 02 2 10

0

0

0

c a c a c a

c a c a c a

c a c a c a

  

  

  

 

and since it is 
ki ika a   for every k i , , 0,1,2,3k i   we get 

0 32 2 03 3 02

0 13 3 01 1 03

0 21 1 02 2 01

0

0

0

c a c a c a

c a c a c a

c a c a c a

  

  

  

.                (211) 

From equations (130), (191), (193), and (211) we get 

0c  τ n C . (212) 

From equation (212) we get relation (213) on the plane   

0

0

0

 
 


 
  

C . (213) 

Indeed, if we assume that 0C  from equation (212) we get 
0 0c   and with equation (130) 

we get    0 1 2 3, , , 0,0,0,0c c c c  , which is impossible due to relation (60). 

Because of equation (213), two cases emerge from equation (212) for the corpuscular 

structure of the generalized particle on the plane  . In the case where the vectors n   and C  

are parallel, from equation (212) we get 
0 0c   and from equation (44) we get 

2 2 2 2 2

0 1 2 3 0M c c c c     

and we finally get 

 
 

1

2 2 2 2 2
0 1 2 3M c i c c c   

C n

 (214) 

for the total rest mass 
0M  of the generalized particle. 
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In the case where the vectors n   and C  are not parallel, from equation (212) we get 

0 0c  , and, therefore, equations (134), (136), and (139) hold. 

We now study the behavior of the vectors J   and P  on the plane  . Because of the 

first of equations (134), it suffices to study the behavior of vector J . We define the 4 4  

matrix   as given by 

0

1

2

3

0 0 0

0 0 0 1

0 0 0

0 0 0

zQ

 
 


    
 
 

 

. (215) 

Equation 

1

zQ
    

emerges from the combination of equations (78) and (104). 

Using matrix  , equations (105) are written in the form 

MJ HJ  . (216) 

The right part of equation (216) is generally not zero (see equation (117) and the concluding 

remarks of paragraph 7). Taking now into account equations (131) and (193), the first of 

equations (105) is written in the form 

0 0T J  n J .                        (217) 

Taking into account equations (131), (191), and (193), the remaining three equations 

(105) are written in the form 

1 1

0 2 2

3 3

T J

J T J

T J

 
 

  
 
  

n τ J .           (218) 

Using matrix N as given by equation (120), the second of equations (75) is written in the form 

0NJ  .                          (219) 

This equation is equivalent to the four differential equations we get from the second of 

equations (75). The first of these is equivalent to the second of equations (199), and expresses 

the fact that the vector J   belongs to the plane  . The remaining three are written in the 

form 

0J  τ n J .                           (220) 

The vector J  belongs to the plane    and, therefore, is written in the form 

   2 2
   

μ n
J μ J n J

μ n
 

and with equation (217) we get 
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  0 02 2
J  

μ n
J μ J

μ n
.   (221) 

From the equations (220) and (221) we get 

 

 

0 0 02 2

0 2

J J

J

 
    

  


 

μ n
τ n μ J

μ n

n μ
τ μ J

μ

 

and with equation (196) we get 

 
 0 2

J


    
μ J

τ n n τ
μ

 

and since 0 n τ  we get 

  2

0 2
J


 

μ J
τ n τ

μ
 

and since 0τ  we get 

 

 

2

0 2

0

2 2

J

J


 


 

μ J
n

μ

μ J

μ n

 

and with the second of equations (197) we get 

0iJ
 

μ J

μ μ
 

and substituting in equation (221) we get 

0 0
0

Ji
J


  

μ n
J

μ n n
. (222) 

Taking into account that 0

iW
J

c
 , equation (222) is written as 

0iW

c

 
    

 

μ n
J

μ n n
. (223) 

From equations (11) and (222), (223) we get the 4-vector J  in the form 

0 0 0

1i
W

i J i
c

   
   

   
     
      

J μ n μ n

μ n n μ n n

. (224) 
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The corresponding mathematical expressions for the 4-vector P emerge from the 

combination of equations (222), (223), and (224) with equation (44). From equation (224) we 

conclude that 
0J  and 

0T  are the only variable physical quantities in the 4-vectors J  and P . 

According to the study we presented, the corpuscular structure of the generalized 

particle is determined by the 4-vectors C  , J , P  and their relation. According to equation 

(207), the wave behavior of the generalized particle is determined by the 4-vector j. The 

“connecting element” between the corpuscular structure and the wave behavior of the 

generalized particle are equations (146) and (150). 

The plane   is defined when relations (192) hold. Nevertheless, it should be 

considered the rule in the TSV, while the cases where the plane   is not defined should be 

considered as special. These cases can be examined using the theorems of the TSV. For this 

reason, as well as for reasons of economy of the present article, we will not refer to these 

special cases. 

 

13. Degrees of freedom of the TSV. The Schrödinger equation 

One of the most important conclusions of the eighth theorem is that it gives the 

degrees of freedom of the equations of the TSV. In equation (146) the parameters 

, , ( , ) (0,0)      can have arbitrary values or can be arbitrary functions of 

0 1 2 3, , ,x x x x . Therefore, the investigation of the TSV takes place through the parameters   

and   of equation (146). 

The TSV consists of a closed set of equations. Consequently, every specific choice of 

the parameters , , ( , ) (0,0)      completely determines the totality of the physical 

quantities that enter into the equations of the TSV. These include the rest masses 
0 0,M m  and 

0

2

E

c
, as well as the 4-vectors j  of the conservable physical quantities of the generalized 

particle. 

If we set    , , 1,0,b i    in equation (146), we get equations 

0

0

i

i
J

x

  


 



J

. (225) 

Taking into account that 
0x ict  and 0

iW
J

c
 , we recognize in equations (225) the 

Schrödinger operators [11, 12]. Using the macroscopic mathematical expressions of the 

momentum J  and energy W  of the material particle, we get the Schrödinger equation. The 

Schrödinger equation is a special case of the wave equation of the TSV. 

If we set    , , 1, ,b i    in equation (146), where   the fine structure constant, 

and take into account equation (44), we get equations 
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  

  0 0

0

1

1

i

i
J c

x

 

 

    


   



J C

. (226) 

The fine structure constant in the TSV can have the following three forms 

2

0

0

2

0

4

4

4

e

c

eQ

c

Q

c
















 (227) 

in the electromagnetic interaction. We denote e  the constant value we measure in the lab for 

the electric charge of the electron. By Q  we denote the electron’s selfvariating charge. 

The combination of equation (226) with each of equations (227), as well as the 

Schrödinger equation (225), give the exact same results for the hydrogen atom. For the TSV, 

the investigation of physical reality is put on the following terms: “In the application of the 

TSV, and in every case except of the generalized photon, the determination of the parameters 

  and  , is sought. This determination can be either theoretical or based on experimental 

data.” The determination of the parameter b  of the law of Selfvariations is made from the 

boundary conditions of the differential equations of the TSV, in the way we did in the 

application of paragraph 11. Of course, in the solution of that particular problem we cannot 

rule out the determination of the parameter b  by other methods, theoretical or experimental. 

In concluding this paragraph, it would be an omission not to refer to the work of 

Dirac. It is an investigation [13, 14] of equation (14). The development of the TSV showed 

that the Dirac equation is a special case of a wave equation when equation (112) holds. Its 

applicability concerns only flat spacetime. If spacetime is not flat in the hydrogen atom, the 

Dirac equation is only approximate. In every case, therefore for the hydrogen atom as well, 

the determination of the parameters   and   will give the exact wave equation. 

 

14. Conclusions 

In the study we present, it is proven that the interaction of material particles, the 

corpuscular structure of matter, and the quantum phenomena can be justified as a 

consequence of the law of Selfvariations. It is easily proven that the cosmological data are 

predicted and justified by the internal symmetry theorem. We have not included in the present 

article the analytical mathematical calculations about the consequences of the internal 

symmetry theorem. 

The TSV predicts a unified interaction of material particles (USVI) as given by 

equation (86). The USVI predicts a common mechanism for all interactions. Every interaction 

is resolved into three individual terms, clearly distinct from each other, as they appear in the 

right part of equation (86), and with clearly distinct consequences in the USVI. Equation (86) 

gives the rate of change of energy and momentum, as well as the orbits of material particles. 

We prove the wave equation (160) of the TSV, special cases of which are the 

Maxwell equations, the Schrödinger equation, and the related wave equations. We determine 
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a single mathematical expression for the conservable physical quantities, and calculate the 4-

vector j  of the current density. The energy and momentum of a material particle are 

calculated by solving the wave equation (160) of the TSV. 

From the study of the law of Selfvariations, equation (128) emerges as central for the 

theoretical prediction of the corpuscular structure of matter. The combination of equation 

(128) with the wave equation (160) clearly showcases the corpuscular structure and the wave 

behavior of matter, as well as the relation between them. From this combination, a method for 

the calculation of the rest masses of material particles emerges. 

The TSV has two degrees of freedom, since there are two parameters ,  , 

( , ) (0,0)    in equation (146), which can have arbitrary values within the web of 

equations and theorems of the TSV. The investigation of physical reality is reduced to the 

determination of the parameters   and   in every application of the TSV. The only 

exception is the case of the «generalized photon», where the system of differential equations 

of the TSV does not require the determination of parameters   and   for its solution. 
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