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Abstract

Reliable contextual information of remotely monitored
patients should be generated to prevent hazardous situa-
tions and to provide pervasive services in home-based care.
This is difficult for several reasons. First, low level data ob-
tained from heterogeneous sensors have different degrees of
uncertainty. Second, generated contexts can be corrupted
or conflicted even if they are acquired by simultaneous op-
erations. In this paper, we utilize Dezert-Smarandache The-
ory (DSmT) as an evidence fusion approach to reduce am-
biguous or imperfect information then to get higher belief
levels in the data fusion process of contextual information.
To analyze the improvement of DSmT fusion process, we
compare DSmT with Dempster-Shafer Theory (DST) using
PCR5 rule of combination and Dempster’s rule of combi-
nation respectively.

1. Introduction

A wide range of pervasive computing technologies aim
to provide pervasive services to patients using intelligent
embedded systems in smart home-based care. A Pervasive
Healthcare Monitoring System (PHMS) [3] enables contin-
uous healthcare monitoring without spatial-temporal limi-
tations and can provide methods for independent safe liv-
ing and remote disease management by recognizing the ac-
tivities of the patient in real time. A key approach of the
PHMS is that reliable contextual information about a patient
should be generated to prevent particular hazardous situa-
tions of the patient [7]. However, a higher confidence level
in the generated contexts is difficult to produce, since mul-
tiple sensors may not provide reliable information due to
faults, operational tolerance levels, or corrupted data even
though they are acquired by simultaneous operations. For
instance, unpredictable malfunctions of sensors frequently

happen in heterogeneous sensor environments. They cause
invalid readings then change the state of the context, which
is associated with the patient, incorrectly. Some sensor
readings also give information about context only at an ab-
stract level, which can include uncertainty to some extent.
It is difficult to make a context reasoning for inferring the
activities of the patient directly. Moreover, if data obtained
from sensors are corrupted or conflicted, the activities of
the patient are more ambiguous. In this paper, we aim to
reduce ambiguous or imperfect contextual information us-
ing Dezert-Smarandache Theory (DSmT) [1] of evidence
as a sensor data fusion technique to get a reliable activ-
ity recognition under uncertain or conflicting situations in
smart home-based care applications.

Among sensor data fusion techniques, Bayesian meth-
ods [8], [9] and evidence theories such as Dempster-Shafer
Theory (DST) [12], [2] are commonly used to handle the
degree of uncertainty in fusion processes. As a general-
ized probabilistic approach, DST, which considers upper
and lower bounds of probability, has some distinct features
when compared with Bayesian theory. This is because it
represents the ignorance caused by the lack of information
and aggregates the belief when new evidence is accumu-
lated [2]. This is a useful feature to manage the degree of
uncertainty, which has not been accommodated for. How-
ever, the DST approach also has a low confidence to trust
results of Dempster’s combination rule when conflict be-
tween sources becomes important [1]. In this paper, DSmT
approach, which overcomes drawbacks of Dempster’s com-
bination rule and extends the domain of application of the
belief functions, is used as a sensor data fusion technique.

The rest of paper is organized as follows. In section 2,
we explain requirements for activity recognition under un-
certainty in home-based care. The basics of evidence the-
ories and two combination rules are introduced in section
3. We infer the activities of a patient based on the applied
scenario then compare DST approach with DSmT approach
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Figure 1. A hierarchical interrelationships be-
tween sensors, related contexts, and rele-
vant situation spaces based on a state-space
modeling

for analyzing the results of two cases in section 4. Then we
conclude the paper in section 5.

2. Requirements for Activity Recognition un-
der Uncertainty in Home-based Care

2.1. Characteristics of Sensors

A PHMS [3] can utilize several types of sensors such
as medical body sensors, environmental sensors and actua-
tors, location sensors, and time stamps. A PHMS combines
sensed data to recognize activities of patients depending on
context classifications then supports pervasive services to
patients based on pre-defined rules. However, each sen-
sor is unable to directly identify the situation of patients.
This is because the complexity of context classifications or
pre-defined rules is very high. An exceptional error case
also frequently happen in the PHMS operation. Thus, we
assume that each sensor has a binary value such as 1 (ac-
tive) and 0 (inactive) in this paper. Whenever the state of
a certain context associated with a sensor is changed, the
value of a sensor is changed from 0 to 1 or from 1 to 0.
For instance, a medical body sensor has a threshold that in-
dicates the emergency status of a patient if a sensor value
is over the pre-defined threshold. An environmental sen-
sor also has a threshold based on pre-defined rules to op-
erate the actuator. A location detecting sensor operates if
a patient is within the range of the detection area. Hence
we can simply express the status of each sensor as a frame:
Θ = {Thresholdover, Thresholdnot−over} = {1, 0}.

2.2. State-Space based Modeling

For inferring the situation of a patient under uncertainty,
we apply a formal model, the state-space based model [6],
that represents perceived contexts of the activities of a pa-
tient. A state-space based model consists of three steps as
follows.

A context attribute, denoted by αi, is defined as any
type of data that is used in the process of inferring situa-
tions. A context attribute is often associated with sensors,
virtual or physical, where the values of the sensor readings
denote the context attribute value at a given time t, denoted
by αt

i. These sensors are unable to directly identify situa-
tions on their own, but they can provide a binary value as a
context attribute.

A context state describes the current state of the appli-
cation in relation to chosen context, and is denoted by a
vector Si. It is a collection of N context attribute values that
are used to represent a specific state of the system at time t.
Hence a context state is denoted as St

i = (αt
1, α

t
2, . . . , α

t
N ),

where each value αt
i corresponds to the value of an attribute

αi at time t. In this paper, whenever the activity is rec-
ognized by a certain binary sensor, the value of the sensor
changes to 1 from 0 then the context state changes the cur-
rent state depending on the aggregation of the state of some
context attributes having 1 value.

A real-life monitoring situation is represented by a situ-
ation space. It is a collection of regions of attribute values
corresponding to some pre-defined situations and denoted
by a vector space Ri = (αR

1 , α
R
2 , . . . , α

R
M ), that consists

of M acceptable regions for these attributes. An acceptable
region αR

i is defined as a set of elements V that satisfies a
predicate P, i.e., αR

i = V \ P (V ). A particular activity
can be performed or associated with a certain region in the
intelligent home.

Finally, we apply interrelationships among sensors(αt
i),

related contexts(St
i ), and relevant activities within a

region(Ri) for making the state-space based model as
shown in Figure 1.

2.3. Quality of Data

In home-based care applications, some types of infor-
mation are more important than others for recognizing the
situation/activity of a patient. For example, a high body
temperature may be a strong indicator of a general sick-
ness while other attributes such as the values of environ-
mental sensors or location sensors may not be so important
for inferring the particular situation. To model the variation
in the importance of context attributes which recognize the
situation/activity of a patient, we define the quality of data,
which assigns weights to context attributes. These weight-
ing factors reflect the importance of each attribute at any
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given time and location. Hence we can define the quality of
data as below.

Quality of Data: Given a context attribute i, a quality of
data ψi associates weights ω1, ω2, . . . , ωN with combined
attributes of values αt

1 + αR
1 , α

t
2 + αR

2 , . . . , α
t
N + αR

N of i,
respectively, where

∑N
j=1 ωj = 1. A weight ωj ∈ (0, 1]

represents the relative importance of a context attribute αj

compared to other attributes in the given time t and region
R.

3. Basics on DST and DSmT

3.1. Basics of Evidential Theory

An evidential theory such as DST that is further extended
by Shafer [10], is a generalization of traditional probabil-
ity, which allows us to better quantify uncertainty. Shafer’s
model, denoted here by M0(Θ), consider Θ = {θ1, · · · , θn}
as a finite set of n exhaustive and exclusive elements repre-
senting the possible states of the sensor. In DST, the set,
denoted by Θ, is called the frame of discernment of the
sensor. For instance, {1, 0} is the frame of discernment
for sensors in which one(1) represents the value of sen-
sor is over the threshold and zero(0) represents the value
of sensor is not over the threshold. In the DSmT frame-
work [1], the free DSm model, denoted by Mf (Θ) where
Θ = {θ1, · · · , θn}, is only assumed to be a finite set of n
exhaustive elements. If one considers θ1 and θ2 are truly
exclusive (i.e., θ1 ∩ θ2 = ∅), then the model is said to be
hybrid. When we include all exclusivity constraints on el-
ements of Θ, Mf (Θ) is equal to M0(Θ). This means that
DST model is a particular case of DSm hybrid model. Be-
tween the free DSm model and the Shafer’s model, there
exists a wide class of fusion problems represented in terms
of DSm hybrid model where Θ involves both fuzzy contin-
uous hypothesis and discrete hypothesis.

In DST, the power set of Θ, denoted 2Θ, is defined by
the rules 1, 2, and 3 given below based on Θ and M0(Θ). In
DSmT, the hyper-power set, denoted DΘ, is defined by the
rules 4, 5, and 6 without additional assumption on Θ but the
exhaustivity of its elements.

1) ∅, θ1, · · · , θn ∈ 2Θ.
2) If θ1, θ2 ∈ 2Θ, then θ1 ∪ θ2 belong to 2Θ.
3) No other elements belong to 2Θ, except those obtained

by using rules 1) or 2).
4) ∅, θ1, · · · , θn ∈ DΘ.
5) If θ1, θ2 ∈ DΘ, then θ1∩θ2 and θ1∪θ2 belong to DΘ.
6) No other elements belong to DΘ, except those ob-

tained by using rules 4) or 5).
When Shafer’s model (M0(Θ)) holds, DΘ reduces to the

classical power set 2Θ. Without loss of generality, the gen-
eral set, denoted GΘ, on which will be defined the basic be-
lief assignments is equal to 2Θ if Shafer’s model (M0(Θ))

is adopted. Whereas GΘ = DΘ if DSm model is preferred
depending on the nature of the problem.

Generally, many factors surrounding the sensors have an
impact on the quality of the observation of the sensor. Thus,
evidential theory uses a number in the range [0,1] to repre-
sent the degree of belief in the observation. The distribution
of a unit of belief over the frame (Θ) is called evidence.
Then a mass function m(.) : GΘ → [0, 1] associated to a
given source, say s, of evidence is defined to represent the
distribution of belief and to satisfy two conditions:

ms(∅) = 0 and
∑

X∈GΘ

ms(X) = 1 (1)

X is a subset of Θ and ms(X) is the general basic belief
assignment (gbba) of X committed by the source s.

In evidential theory, a range of probability rather than a
single probabilistic number is used to represent uncertainty
of the sensor. The lower and upper bounds of the probability
are called the Belief (Bel) and Plausibility (Pl) respectively.
Thus, Bel and Pl of any proposition X ∈ GΘ are defined as:

Bel(X) �
∑

Y ⊆X
Y ∈GΘ

m(Y ) and Pl(X) �
∑

Y ∩X=∅
Y ∈GΘ

m(Y )

(2)
Based on eq. (2), Bel shows the degree of belief to which

the evidence supports X. Whereas Pl shows the degree of
belief to which the evidence fails to refute X.

3.2. Evidential Operations

For inferring the situation/acitivity along evidential net-
works, reliability discounting methods which transform be-
liefs of each source are used to reflect the sensor’s credibil-
ity, in terms of discount rate r (0 ≤ r ≤ 1). The discount
mass function is defined as:

mr(X) =
{

(1− r)m(X) X ⊂ Θ
r + (1− r)m(Θ) X = Θ (3)

where the source is absolutely reliable (r = 0), the source
is reliable with a discount rate r (0 < r < 1), and the source
is completely unreliable (r = 1).

In evidential theory, a multi-valued mapping is used to
reflect the relationship between two frames of discernment
(ΘA,ΘB) which represent the evidence to the same prob-
lem with different views. Thus, a multi-valued mapping Γ
describes a mapping function Γ : ΘA ← 2ΘB by assigning
a subset Γ(ei) of ΘB to each element ei of ΘA. Based on
the multi-valued mapping, translation can be used to de-
termine the impact of evidence originally appearing on a
frame of discernment on elements of a compatibly related
frame of discernment. For example, suppose that ΘA car-
ries a mass function m, the translated mass function over the
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compatibly related ΘB is defined as:

m′(Bj) =
∑

Γ(ei)=Bj

m(ei) (4)

where ei ∈ ΘA,Bj ⊆ ΘB , and Γ : ΘA → 2ΘB is
a multi-valued mapping. Sometimes, the relationship be-
tween an element ei of ΘA and a subset Bij of ΘB may be
uncertain. Thus, an evidential mapping in [4] assigns proba-
bilities to an elements ei of ΘA instead of a set of subsets to
represent such uncertain relationships. A piece of evidence
on ΘA is also propagated to ΘB through an evidential map-
ping when the relationship is uncertain. Translation is just a
special case of propagation, in which relationships between
evidence space ΘA and hypothesis space ΘB are certain.

Finally, belief distributions on the same frame in DST
can be combined by several independent sources of evi-
dence using Dempster’s combination rule. The Proportional
Conflict Redistribution rule no. 5 (PCR5) [5] is currently
used in DSmT as a combination rule. No matter if the con-
flicting mass is big or small, PCR5 mathematically does a
better redistribution of the conflicting mass than other rules
since PCR5 goes backwards on the tracks of the conjunctive
rule. For this reason, we consider PCR5 as a combination
rule in DSmT. We also compare PCR5 with Dempster’s rule
used in DST. Both rules are mainly based on the conjunctive
consensus operator defined for two-sources cases by:

m12(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) (5)

The totlal conflicting mass drawn from two sources, de-
noted k12, is defined as:

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) =
∑

X1,X2∈GΘ

X1∩X2=∅

m(X1∩X2)

(6)
Based on eq. (6), we know that the total conflicting mass

is the sum of partial conflicting masses. If k12 is close to 1,
two sources are almost in total conflict. Whereas if k12 is
close to 0, the two sources are not in conflict.

3.3. DST Combination Rule

In DST, the Dempster’s rule of combination of m1(.)
and m2(.) is obtained based on Shafer’s model (m0(Θ))
and two independent sources m1(.) and m2(.). In this case,
GΘ = 2Θ then mDS(∅) = 0 and ∀(X �= ∅) ∈ 2Θ by:

mDS(X) =
1

1− k12
m12(X), (k12 �= 1) (7)

where m12(X) and k12 are defined by eq. (5) and eq.
(6) respectively. Dempster’s rule can be directly extended
for the combination of N independent and equally reliable
sources of evidence.

3.4. DSmT Combination Rule

In DSmT, PCR5 is used as a combination rule in this pa-
per. PCR5 redistributes the partial conflicting mass only
to the elements involved in that partial conflict. First,
PCR5 calculates the conjunctive rule of the belief masses of
sources. Second, PCR5 calculates the total or partial con-
flicting masses. And last, PCR5 redistributes the conflict-
ing masses proportionally to non-empty sets involved in the
model according to all integrity constraints.

PCR5 combination rule for two sources is defined by
[11]: mPCR5(∅) = 0 and ∀(X �= ∅) ∈ GΘ

mPCR5(X) = m12(X)+∑
Y ∈GΘ\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )
m1(X) +m2(Y )

+
m2(X)2m1(Y )
m2(X) +m1(Y )

](8)

where m12 is defined by eq. (5) and all denominators
such as m1(X) + m2(Y ) and m2(X) + m1(Y ) are dif-
fer from zero(0). If a denominator is zero, that fraction
is discarded. All sets in the formula are also in canoni-
cal forms. Thus, c(X) is the canonical form of X. (i.e., if
X = (A ∩B) ∩ (A ∪B ∪ C) then c(X) = (A ∩B)).

4. Comparative Analysis

4.1. Applied Scenario

Many ambiguous situations can happen in home-based
care applications. However, we simply assume two situa-
tions in this paper. A patient or an elderly person is ”sleep-
ing” or ”fainting” on the sofa when the lighting and the
heater of the living room are turned on and the pressure
sensor attached on the sofa becomes active. In addition,
medical body sensors (blood pressure, body temperature,
and respiratory rate) are operated to check the status of the
person. Based on these simplified two cases, we can de-
rive evidential networks as shown in Figure 2. We can then
find out more closely correct situations through evidential
inference. In Figure 2, each state (sensors, objects, and
contexts) is represented by the evidential forms such as a
frame of discernment (Θ) as shown in Table 1. All relations
between sensors, objects, and the related contexts are also
represented by a multi-valued mapping as shown in Table
2.

4.2. Situation (Activity) Inference

Within a scenario, an evidence of the sensor operation
in a context attribute may deduce objects in detail, or be
summed up onto a context state by adapting a different qual-
ity of data. That is then translated into the relevant situation
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Figure 2. An example of ”sleeping” or ”faint-
ing” situation inference based on the eviden-
tial forms

Table 1. Examples of frames of discernment
Name Type Frame of discernment

Pressure Sensor {Threshold↑,¬Threshold↓}
Sofa Context {Active, Inactive}
Sleeping Situation {Sleeping, Fainting}

recognition by applying an evidential mapping. On a sit-
uation recognition step, several belief distributions can be
combined by different rules of combination. Among them,
we use Dempster’s rule of combination and PCR5 rule of
combination. Based on the simplified scenario, inference
procedures are followed by some steps of evidential opera-
tions.

First, we represent an evidence on each sensor as a mass
function. We use the abbreviations Pressure sensor = Ps,
Location sensor = Ls, Motion sensor = Ms, Blood Pressure
sensor = BPs, Temperature sensor = Ts, and Rate sensor =
Rs. According to Figure 2, a mass function on each sensor
is represented by:

mPs({Ps}) = 1; mLs({¬Ls}) = 1; mMs({Ms}) = 1;
mBPs({BPs}) = 1; mTs({¬Ts}) = 1; mRs({Rs}) = 1;

Second, evidences on each sensor are discounted since
each sensor has different discount (error) rates. As a dis-
counting rate, we assume that medical body sensors have
5% error rate, location sensors have 10% error rate, and en-
vironmental sensors have 20% error rate. Discounted mass
functions can be calculated to get sensor’s credibility using
eq. (3):

Table 2. Multi-valued mapping relationships
Relationship Multi-valued mapping

Pressure(Ps)→Sofa (S)
{Ps} → {S};
{¬Ps} → {¬S};
{(Ps,¬Ps)} → {(S,¬S)};

S→(S, Heater (H))

{S} → {(S,H)};
{¬S} → {¬(S,H)};
{(S,¬S)} →
{(S,H),¬(S,H)};

(S, H)→Sleeping (Sl)

{(S,H)} → {Sl};
{¬(S,H)} → {¬Sl};
{(S,H),¬(S,H)} →
{(Sl),¬(Sl)};

(Sl)→Activity (A)
{Sl} → {A};
{¬Sl} → {¬A};
{(Sl,¬Sl)} → {(A,¬A)};

mr
Ps({Ps}) = 0.90; mr

Ps({Ps,¬Ps}) = 0.10;
mr

Ls({¬Ls}) = 0.80; mr
Ls({Ls,¬Ls}) = 0.20;

mr
Ms({Ms}) = 0.80; mr

Ms({Ms,¬Ms}) = 0.20;
mr

BPs({BPs}) = 0.95; mr
BPs({BPs,¬BPs}) = 0.05;

mr
Ts({¬Ts}) = 0.95; mr

Ts({Ts,¬Ts}) = 0.05;
mr

Rs({Rs}) = 0.95; mr
Rs({Rs,¬Rs}) = 0.05;

Third, we apply a multi-valued mapping to represent
the relationship between sensors and associated objects by
translating mass functions. In other words, the belief lev-
els of a context attribute are represented by a multi-valued
mapping. We use the abbreviations Sofa = S, Lighting = L,
Heater = H, Blood = Bl, Body = B, and Respiratory = R.

mS(S) = mr
Ps({Ps}) = 0.90;

mS({S,¬S}) = mr
Ps({Ps,¬Ps}) = 0.10;

mL(¬L) = mr
Ls({¬Ls}) = 0.80;

mL({L,¬L}) = mr
Ls({Ls,¬Ls}) = 0.20;

mH(H) = mr
Ms({Ms}) = 0.80;

mH({H,¬H}) = mr
Ms({Ms,¬Ms}) = 0.20;

mBl(Bl) = mr
BPs({BPs}) = 0.95;

mBl({Bl,¬Bl}) = mr
BPs({BPs,¬BPs}) = 0.05;

mB(¬B) = mr
Ts({¬Ts}) = 0.95;

mB({B,¬B}) = mr
Ts({Ts,¬Ts}) = 0.05;

mR(R) = mr
Rs({Rs}) = 0.95;

mR({R,¬R}) = mr
Rs({Rs,¬Rs}) = 0.05;

Fourth, context attributes are aggregated then translated
to the related context states by using a multi-valued map-
ping. Mass functions on ”Sofa”, ”Lighting”, and ”Heater”
are aggregated then translated onto Context State 1 (CS1)
used for determining ”sleeping” or ”fainting” situation.
Mass functions on ”Blood”, ”Body”, or ”Respiratory” are
aggregated then translated onto Context State 2 (CS2) used
for only determining ”fainting” situation.
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m1CS1({CS1}) = mS({S}) = 0.90;
m1CS1({CS1,¬CS1}) = mS({S,¬S}) = 0.10;
m2CS1({¬CS1}) = mL({¬L}) = 0.80;
m2CS1({CS1,¬CS1}) = mL({L,¬L}) = 0.20;
m3CS1({CS1}) = mH({H}) = 0.80;
m3CS1({CS1,¬CS1}) = mH({H,¬H}) = 0.20;
m1CS2({CS2}) = mBl({Bl}) = 0.95;
m1CS2({CS2,¬CS2}) = mS({Bl,¬Bl}) = 0.05;
m2CS2({¬CS2}) = mB({¬B}) = 0.95;
m2CS2({CS2,¬CS2}) = mB({B,¬B}) = 0.05;
m3CS2({CS2}) = mR({R}) = 0.95;
m3CS2({CS2,¬CS2}) = mR({R,¬R}) = 0.05;

Fifth, each context state is summed up by adapting a dif-
ferent quality of data. Within context state 1, we assume
that the weighting factor of ”S” = 0.6, ”L” = 0.2, and ”H”
= 0.2. Within context state 2, we assume that the weighting
factor of ”Bl” = 0.3, ”B” = 0.3, and ”R” = 0.4.

mCS1({CS1}) =
{((0.6)×m1CS1) + ((0.2)× {m3CS1})}({CS}) = 0.7;

mCS1({¬CS1}) = {((0.2)×m2CS1)}({¬CS1}) = 0.16;

mCS1({CS1,¬CS1}) = {((0.6)×m1CS1) + ((0.2)×
{m2CS1 +m3CS1})}({CS1,¬CS1}) = 0.14;

mCS2({CS2}) =
{((0.3)×m1CS2)}+((0.4)×{m3CS2})({CS}) = 0.665;

mCS2({¬CS2}) = {((0.3)×m2CS2)}({¬CS2}) =
0.285;

mCS2({CS2,¬CS2}) = {((0.3)×m1CS2) + ((0.3)×
{m2CS2}+ ((0.4)× {m3CS2}}({CS2,¬CS2}) = 0.05;

And last, one context state (CS1) is only used for infer-
ring ”sleeping” (Sl) situation. Two context states (CS1 and
CS2) are used for inferring ”fainting” (F) situation.

mSl({Sl}) = mCS1({CS1}) = 0.7;
mSl({¬Sl}) = mCS1({¬CS1}) = 0.16;
mSl({Sl,¬Sl}) = mCS1({CS1,¬CS1}) = 0.14;

m1F ({F}) = mCS1({CS1}) = 0.7;
m1F ({¬F}) = mCS1({¬CS1}) = 0.16;
m1F ({F,¬F}) = mCS1({CS1,¬CS1}) = 0.14;

m2F ({F}) = mCS2({CS2}) = 0.665;
m2F ({¬F}) = mCS2({¬CS2}) = 0.285;
m2F ({F,¬F}) = mCS2({CS2,¬CS2}) = 0.05;

For inferring ”sleeping” situation, we just calculate mSl

mass function. However, for inferring ”fainting” situation,
we should calculate two mass functions m1F and m2F . In
this case, two independent sources are combined to achieve
the consensus by using Dempster’s rule of combination or
PCR5 rule of combination.

4.3. Applying Dempster’s rule of combina-
tion

To achieve the conjunctive consensus with the conflict-
ing mass (k12), we first apply the results of last steps into
eq. (5) and eq. (6).

For instance,

M =
(
m1(F ) m1(¬F ) (m1(F ) ∪m1(¬F ))
m2(F ) m2(¬F ) (m2(F ) ∪m2(¬F ))

)

m12(∅) = 0; m12(F ) = 0.5936; m12(¬F ) = 0.0935;
m12(F ∪ ¬F ) = 0.007;

Then,

k12 = m12(F ∩ ¬F ) =
m1(F )m2(¬F ) +m1(¬F )m2(F ) = 0.3059;

After we apply the value of k12 into eq. (7), we can
obtain the result of Dempster’s rule of combination. Then,
we can get the degree of belief for ”sleeping” situation and
”fainting” situation using eq. (2).

mDS(F ) = m1(F1)⊕m2(F2) = 1
1−k12

m12(F ) = 0.8552;
mDS(¬F ) = 1

1−k12
m12(¬F ) = 0.1347;

mDS(F ∪ ¬F ) = 1
1−k12

m12(F ∪ ¬F ) = 0.0101;

Bel({Sl}) = mDS({Sl}) = mSl({Sl}) = 0.7;
Pl({Sl}) = mDS({Sl}) +mDS({Sl,¬Sl})

= mSl({Sl}) +mSl({Sl,¬Sl}) = 0.84;
Pl({Sl})−Bel({Sl}) = mDS({Sl,¬Sl}) = 0.14;
Bel({F}) = mDS({F}) = 0.8552;
Pl({F}) = mDS({F}) +mDS({F,¬F}) = 0.8653;
Pl({F})−Bel({F}) = mDS({F,¬F}) = 0.0101;

As a result, the value of Bel on ”fainting” is greater
than that on ”sleeping” in DST approach. The value of (Pl
- Bel) on ”fainting” situation is also greater than that on
”sleeping” situation. Hence we can infer that the situation
of a patient is ”fainting” situation.

4.4. Applying PCR5 rule of combination

For inferring ”fainting” situation with PCR5 rule of com-
bination, we first achieve the conjunctive consensus with
the conflicting mass (k12) as same as Dempster’s rule of
combination. After achieving (k12), the partial conflicting
mass m1(F )m2(¬F ) is distributed to F and ¬F propor-
tionally with the masses m1(F ) and m2(¬F ) assigned to
F and ¬F respectively. Also, the partial conflicting mass
m2(F )m1(¬F ) is distributed to F and ¬F proportionally
with the masses m2(F ) and m1(¬F ) assigned to F and
¬F respectively. Thus, we get two weighting factors of the
redistribution for each corresponding set F and ¬F respec-
tively.
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For example, we suppose that x1 be the conflicting mass
to be redistributed to F , and y1 be the conflicting mass to be
redistributed to ¬F to calculate the first partial conflicting
mass m1(F )m2(¬F ).

x1

m1(F )
=

y1
m2(¬F )

=
x1 + y1

(0.7) + (0.285)
= 0.2025;

Thus, x1 = 0.1418, y1 = 0.0577;
We also suppose that x2 be the conflicting mass to be

redistributed to F , and y2 be the conflicting mass to be re-
distributed to ¬F to calculate the second partial conflicting
mass m2(F )m1(¬F ).

x2

m2(F )
=

y2
m1(¬F )

=
x2 + y2

(0.665) + (0.16)
= 0.129;

Thus, x2 = 0.0858, y2 = 0.0206;
According to eq. (8), we can obtain the result of PCR5

rule of combination. Then we can get the degree of belief
for ”fainting” situation using eq. (2).

mPCR5(F ) = m12(F ) + x1 + x2 = 0.8212;
mPCR5(¬F ) = m12(¬F ) + y1 + y2 = 0.1718;
mPCR5(F ∪ ¬F ) = m12(F ∪ ¬F ) + 0 = 0.007;

Bel({F}) = mPCR5({F}) = 0.8212;
Pl({F}) = mPCR5({F})+mPCR5({F,¬F}) = 0.8282;
Pl({F})−Bel({F}) = mPCR5({F,¬F}) = 0.007;

In DSmT approach, the value of Bel on ”fainting” and
the value of (Pl - Bel) on ”fainting” are also greater than
that on ”sleeping” situation. Hence we can also infer that
the situation of a patient is ”fainting” situation.

4.5. Compare DSmT with DST

Based on the above results of two combination rules, we
can infer the situation of a patient as ”fainting” situation.
However, we can also know that the conflicting mass of
PCR5 rule (mPCR5(F ∪ ¬F ) = 0.007) is less than that
of Dempster’s rule (mDS(F ∪ ¬F ) = 0.0101) when we
compare two rules of combination. This is because that
Dempster’s rule takes the total conflicting mass and redis-
tributes it to all non-empty sets, even those not involved in
the conflict. Table 3 shows examples of the degree of be-
lief of patient’s situation/acitivity using two rules of com-
bination when different numbers of sensors are activated to
recognize the ”fainting” situation of a patient. In addition,
Figure 3. shows a graph that represents uncertain levels
(mDS,PCR5(F ∪ ¬F )) of two rules of combination based
on the numbers of activated sensors.

Based on Table 3, the belief level of ”fainting” situation
is less than 50% when one or two sensors are activated.
The belief level of that is sometimes over 50% when three

Table 3. Examples of the degrees of Belief
based on numbers of activated sensor

Activated S Bel(DS) Pl(DS) Bel(P5) Pl(P5)

S 0.055 0.069 0.212 0.219
Bl 0.052 0.062 0.100 0.107
B,R 0.217 0.233 0.342 0.349
S,Bl 0.401 0.414 0.424 0.431
S,L,H 0.235 0.273 0.431 0.438
S,L,Bl 0.561 0.575 0.542 0.549
S,L,H,Bl 0.766 0.782 0.650 0.657
S,L,B,R 0.855 0.865 0.821 0.828
S,L,H,B,R 0.937 0.947 0.892 0.899
S,L,H,Bl,B,R 0.993 1.000 0.993 1.000
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Figure 3. Uncertainty levels (Pl-Bel) based on
the number of activated sensors

sensors are activated. The belief level of that is close to 1
when four or more sensors are activated. This result indi-
cate that the ”fainting” situation of a patient is recognized
with a high degree of confidence when four or more sensors
are activated. In addition, the uncertain levels (Pl-Bel(DS))
of DST are greater than those (Pl-Bel(PCR5)) of DSmT
even if the values of Bel(DS) and Pl(DS) are greater than
those of Bel(PCR5) and Pl(PCR5) in most of 50%+ cases
as shown in Figure 3. Hence we can reduce the uncertain
situation/activity of a patient whenever we apply PCR5 rule
of combination into the home-based care scenario.

We also know that the belief level is affected by different
weighting factors of each sensor. Thus, we apply different
weighting factors into the applied scenario (No activation in
sensor Ls and Ts) to show the variations of the degrees of
belief as shown in Table 4. Based on Table 4, we correctly
consider the designing of the weighting factors. The dis-
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Figure 4. Belief on discounting rates (r)

counting rate r is also important to improve the belief level
of a patient’s situation/acticity. For instance, when we apply
a different discounting rate r into a respiratory sensor (R),
the belief level is changed as shown in Figure 4. Increasing
the discounting rate r of a respiratory sensor decreases the
belief levels of ”fainting” situation of a patient. Therefore,
reducing the discounting rate r of each sensor is one method
to increase the belief level of the situation of a patient.

5. Conclusion

In this paper, we utilize an evidential fusion approach
that recognizes the situation(activity) of a patient in home-
based care to reduce the different degrees of uncertainty in
sensed data or in generated contexts. We also apply DSmT
for fusion process instead of DST to mitigate the corrupted
or conflicted contexts then to get higher belief levels in fu-
sion process of contextual information. Finally, we analyze
the improvement of DSmT fusion process by comparing
Dempster’s rule of combination and PCR5 rule of combina-
tion used in DST and DSmT respectively. We will continu-
ously work to improve the quality of data by considering the
weighting factor in context classifications. This is because
that correctly designing the quality of data is one of impor-
tant factor for reducing vague or conflicting information.
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