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Abstract—Current methods for evaluating the effects of human
opinions in data fusion systems are often dependent on human
testing (which is logistically hard and difficult to arrange for
repeated tests of the same population). The alternative is to use
hypothetical examples, which tend to be simplistic. To facilitate
studies of data fusion architectures which integrate “soft” human-
generated decisions, we have used a simulator of subjective
beliefs. The simulator is based on the two-stage dynamic signal
detection model of Pleskac and Busemeyer (2010). We use this
scheme to simulate human opinions and combine them using
belief fusion methods, including Bayes’ Rule; Dempster’s Rule
of Combination (DRC); Yager’s rule; the Proportional Conflict
Redistribution Rule #5 (PCR5) from Dezert-Smarandache the-
ory; and the consensus operator from subjective logic. In our
simulations, the DRC and Bayes rule exhibited performance that
was on par with, and in some cases better than PCR5 and the
consensus operator (when used in conjunction with a measure of
source reliability). In all simulated cases, Yager’s rule exhibited
inferior performance.

I. INTRODUCTION

The integration of subjective data sources in a data fu-
sion system (also known as “soft fusion”) has been studied
intensely over the past few years [1]. In addition to the
“hard fusion” of sensory information from devices that use
electronic, optical, and acoustic modalities, there is a grow-
ing interest in augmenting decision making with available
“soft” sensors (i.e., human opinions and assessments [1]).
The incorporation of human opinions into data fusion systems
could potentially improve accuracy and reliability. However,
human opinions are difficult to model as they do not exhibit
fixed error probabilities, and are often not easily characterized
by probability distributions [1]. Furthermore, the employment
of large numbers of humans for testing can be logistically
challenging and expensive, and opportunities to re-test the
same humans on modified data presentations and exposition
schemes is often difficult. At least in the early stages of testing
and tuning of data fusion algorithms, it may be desirable to
use models of human decision making rather than using actual
human-generated data.

Much work has been devoted over the past fifty years to
developing new ways of representing and combining subjec-
tive and imprecise beliefs in areas such as pattern recognition,
biometrics, medical diagnostics, and autonomous navigation.
However, the majority of studies which include elements of
human decision making have resorted to hypothetical ex-
amples, observing how fusion methodologies perform with

respect to how a ”logical and coherent human” would reason
[2]–[4]. Other studies have adopted simple stochastic models,
observing the performance of combined decisions through
Monte Carlo simulations (e.g., confusion matrices [5]). There
have also been several attempts to amass groups of humans
for direct testing and analysis [6]. This last approach is in
many ways preferred to the models it has replaced, but is
logistically cumbersome and somewhat inflexible, especially
in assessing systems and algorithms that require the tuning of
a large number of parameters.

Models of human decision making from the social sciences
and cognitive psychology have not been applied extensively to
soft and hard/soft fusion systems. The few studies that have
used such models tend to look at how task reward structures in-
fluence human decision-making strategies in situations where
the human element acts in a supervisory role [7]. The present
study seeks to analyze soft fusion systems where subjective
data sources provide confidence assessments of the decisions
they make. In Section II, we overview the model for human
simulation used here, known as two-stage dynamic signal
detection (2DSD). In 2DSD, humans are modeled via a tuple
of parameters which direct a stochastic process that represents
an internal evidence accumulation between two outcomes. The
human tuples used here are taken from [8], and are the result
of modeling human responses in a line length discrimination
task, where human subjects are shown different pairs of lines
and asked to identify (1) the longer of the two lines and (2) rate
their confidence in their response on a subjective probability
scale. In Section III, we review a few methods for representing
and combining subjective beliefs. In Section IV, we describe
ways of mathematically formulating human opinions for use
with the belief combination methods of Section III. Finally,
in Section V we use a subset of the data from [8] to simulate
human opinions for the line length discrimination task and
fuse them using the methods described in Sections III and IV.

II. HUMAN SIMULATION METHODOLOGY

A. Two-Alternative Forced Choice Tasks

Human decision-making models have been a topic of inter-
est for psychologists since the early 1960s [9]. The majority of
work has been addressing decision making in two-alternative
forced choice (TAFC) tasks, in which a subject is presented
with a scenario and is forced to choose between two alterna-
tives [9]. Models of decision making based on TAFC tasks
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assume that (1) internal evidence favoring each alternative is
accumulated over time; (2) the process of internal evidence
accumulation is subject to random fluctuations; and (3) a
decision is made when a sufficient amount of internal evidence
has been accumulated for one of the two alternatives [9]. As
described in [8], many models of human decision making have
been based on Dynamic Signal Detection (DSD).

Definition 1: Dynamic Signal Detection (DSD) [8]. Consider
a TAFC task given by the choice A and its negation A. Let the
real-valued function L(t) represent the accumulated evidence
in favor of A1 up until time instant t. A Dynamic Signal
Detection (DSD) model is described by the stochastic linear
difference equation

∆L(t) = δ∆t+
√

∆t ε(t+ ∆t), L(0) = L0 (II.1)

where δ ∈ < is known as the drift rate and ε(t) is a white
noise process with zero mean and variance σ2. The value σ is
known as the drift coefficient. The drift rate δ is either positive
or negative, depending on whether A or A is true. To make a
choice, the process occurs until a threshold, either θA, θA ∈ <
is crossed (where −θA < L0 < θA). The decision rule Λ[L(t)]
is given as

Λ[L(t)] =


A L(t) > θA,

A L(t) < −θA,
wait otherwise.

(II.2)

By itself, DSD does not present a method for modeling
subjective confidences. In two-stage dynamic signal detection
(2DSD) [8], a DSD process is simulated until a decision is
reached after time td. The evidence accumulation process of
Equation II.1 is then continued for an additional τ seconds,
after which the value of L(td + τ) is binned into a set of
confidence intervals depending on what state was chosen at
time td.

Definition 2: Two-Stage Dynamic Signal Detection (2DSD)
[8]. Consider a DSD model describing an internal evidence
accumulation L(t) as defined for a TAFC as in Definition
1. Suppose a decision of ω ∈ {A,A} is made at time td.
Let P(ω) = [p

(ω)
1 · · · p(ω)

Nω
] denote the Nω possible confidence

values associated with choosing ω. The assigned confidence
level p ∈ P(ω) associated with deciding ω after waiting tc =
td + τ is given as

p = p
(ω)
i when L(tc) ∈ [c

(ω)
i−1, c

(ω)
i ] (II.3)

where c(ω)
0 = −∞ and c

(ω)
Nω

= ∞ for each ω ∈ {A,A}. The
remaining confidence bin parameters C(ω) = [c

(ω)
1 · · · c(ω)

Nω−1]
are chosen such that ci−1 < ci for each i ∈ {1, . . . , Nω − 1}.

Using Definitions 1 and 2, a human decision maker is repre-
sented via the 2(NA +NA) + 4 parameters as summarized in
the tuple S,

S = {δ, σ, L0, θA, θA, τ,C
(A),C(A),P(A),PA}. (II.4)

For a full description of these parameters, see [8, Table 2].

1L(t) < 0 represents evidence in favor of A.

B. 2DSD Simulator Implementation

The present study used data from [8] to simulate the fusion
of opinions from six (6) subjects under a line length discrimi-
nation task. In the line length discrimination task described in
[8], subjects were shown one of six possible pairs of horizontal
lines. For any given pair, the subjects were asked to identify
(1) which of the two lines was longer; and (2) rate their
confidence in their response on the subjective probability scale
{50%, 60%, . . . , 100%}. Six different line length pair types
were presented, representing six different levels of difficulty.
The work in [8] fit the subjects of the line length discrimination
task using the 2DSD model parameters of Equation II.4 with
the following additional restrictions: (1) the decision thresh-
olds for both choices were set to be equal (i.e., θA = θA = θ);
(2) the drift rate δ was chosen on a per trial (or simulation)
basis from N(ν, η2); (3) the initial condition L0 was chosen
on a per trial (or simulation) basis uniformly in the interval
[−0.5sz, 0.5sz], where sz ∈ <+ was the size of the interval;
(4) the confidence bins for both choices were set equal (i.e.,
C(A) = C(A) = C); (5) the confidence values were fixed for
each subject as P(A) = P(A) = [0.50, 0.60, · · · , 1.00]; and
(6) the drift coefficient was fixed for each subject as σ = 0.1.
Expression II.4 was thus reduced to the 10-tuple,

S = {ν, η, sz, θ, τ, c1, c2, c3, c4, c5}. (II.5)

The time step of the simulator was fixed at ∆t = 0.001
for each subject. The parameter ν was allowed to vary with
task difficulty. Specifically, the values ν1 and ν6 of [8, Table
6] represent the mean drift rates for a subject under the
hardest and easiest task difficulties, respectively. The human
simulator algorithm for a given S is shown in Figure 1. The
parameter values used to simulate each subject can be found
in [8, Tables 3 and 6]. Also, in [8, Table 6] separate decision
thresholds θ were determined for two cases of the line length
discrimination task: (1) when subjects were asked to focus on
fast responses; and (2) when subjects were asked to focus on
accurate responses. In the present study, the values of θ which
represent the subjects focusing on accurate responses were
used. For brevity’s sake, the forthcoming simulation example
(Section V) simulates opinions for each subject using the
hardest task difficulty only (ν1).

III. BELIEF FUSION METHODOLOGIES

A. Bayesian Epistemology

Bayesian epistemology is the process of using the Kol-
mogorov axioms to represent logical constraints on degrees
of belief, and probabilistic conditioning as the primary means
of inferential reasoning [10], [11]. Let Ω represent a set of
logical sentences which fully characterizes some phenomenon
and FΩ represent a set algebra defined over Ω. The probability
function P (ω) represents the degree of belief a source holds
towards the logical sentence ω ∈ Ω. For inferential reasoning
between multiple belief assessments, a popular fusion method
is Bayes’ rule.

Definition 3: Bayes’ Rule. Suppose we observe a possible
piece of evidence x ∈ X related to the logical sentences
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Require: S is a human source 10-tuple (expression II.5)
1: function 2DSDHUMANSIM(S)
2: Choose δ from N(ν, η2)
3: Choose L0 from U(−0.5sz, 0.5sz)
4: ∆t← 0.001,
5: σ ← 0.1
6: t← 0
7: L← L0

8: while −θ ≤ L ≤ θ do . Simulate a DSD process
9: Choose ε from N(0, σ2)

10: ∆L← δ∆t+ ε
√

∆t
11: L← L+ ∆L
12: t← t+ ∆t
13: end while
14: if L > θ then
15: ω ← A . A is the decided state
16: else if L < −θ then
17: ω ← A . A is the decided state
18: end if
19: td ← t
20: tc ← td + τ
21: while t < tc do . Simulate interjudgment time
22: Choose ε from N(0, σ2)
23: ∆L← δ∆t+ ε

√
∆t

24: L← L+ ∆L
25: t← t+ ∆t
26: end while
27: c0 ← −∞
28: c6 ←∞
29: P = [0.50, 0.60, 0.70, 0.80, 0.90, 1.00]
30: for i = 1→ 6 do . Confidence value binning
31: if ci−1 < L < ci then
32: p← pi . Extract the ith element from P
33: end if
34: end for
35: return (ω, p)
36: end function

Fig. 1. Algorithm for implementing the 2DSD human simulator of [8] from
the parameters given in Equation II.5.

described by all ω ∈ Ω. Our original (a priori) beliefs, PΩ(ω),
can be updated via Bayes’ Rule:

PΩ(ω|x) =
PX (x|ω)PΩ(ω)∑

ω̂∈Ω PX (x|ω̂)PΩ(ω̂)
(III.1)

where PX (x|ω) is known as the likelihood that the sentence
ω ∈ Ω would beget the evidence x ∈ X . The quantity PΩ(ω|x)
is known as our a posteriori belief in the logical sentence ω,
given our observation of the evidence x.

B. Dempster-Shafer Theory

The limitations of Bayesian epistemology are summarized
in [10] and [11, Chapter 1]. One attempt to develop an
alternative is given in Dempster-Shafer (DS) Theory [11].
Consider a set of logical sentences Ω and a corresponding
set algebra FΩ. For simplicity, we assume that Ω is finite and

consists of disjoint elements. Hence, the algebra on Ω becomes
the powerset FΩ = 2Ω. In DS Theory, one is able to define
one’s beliefs across the powerset of Ω through a belief mass
assignment.

Definition 4: Belief Mass Assignment (BMA). A function
m : 2Ω → [0, 1] is a belief mass assignment for some frame
Ω if and only if

∑
X⊆Ωm(X) = 1.

As in [11], we assume that m(∅) = 0. A BMA can be thought
of as a normalized measure of the explicit evidence a source
holds towards each subset of Ω. As opposed to probability
functions, BMAs can be used to specify evidence on a set
of sentences A ⊆ Ω without imposing restrictions2 on the
individual sentences ω ∈ A.

For a given set of sentences A ⊆ Ω, it makes sense to define
the total amount of evidence assigned to A and the amount
of evidence which does not contradict A. These quantities are
known as belief and plausibility respectively.

Definition 5: Belief/Plausibility Functions. Consider the
BMA m on some frame Ω. The functions Bel : 2Ω → [0, 1] and
Pl : 2Ω → [0, 1] are known as belief and plausibility functions
on Ω, and are given for any A ⊆ Ω as

Bel(A) =
∑
X⊆A

m(X) (III.2)

and
Pl(A) = 1− Bel(A) =

∑
X∩A6=∅

m(X). (III.3)

The difference Pl(A) − Bel(A) describes the amount of un-
certain evidence (or imprecise evidence) held towards A.

Definition 6: Uncertainty Function. Consider the BMA m
on some frame Ω. The uncertainty function Un : 2Ω → [0, 1]
is given as

Un(A) = Pl(A)− Bel(A) =
∑

X∩A 6=∅
X 6⊂A

m(X). (III.4)

A few special types of belief functions are relevant to the
present study. A vacuous belief function is one which repre-
sents total ignorance towards Ω such that

m(A) =

{
1 A = Ω,

0 A 6= Ω.
(III.5)

A simple support function assigns a degree of belief s ∈ [0, 1]
to some A∗ ⊂ Ω such that

m(A) =


s A = A∗,

1− s A = Ω,

0 otherwise.
(III.6)

It has been shown that Bayesian probabilities form a subset
of belief functions. More specifically, a belief function whose
corresponding BMA is non-zero for only the singleton ele-
ments of 2Ω is a Bayesian probability function [11, Theorem
2.8]. It is also easy to see from the definitions of belief

2For examples of these restrictions, see [11, Chapters 1-2]
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and plausibility that Bel(A) ≤ Pl(A) for any A ⊆ Ω, with
equality only when Un(A) = 0. This relationship leads to
a set of intervals [Bel(A),Pl(A)] for every A ⊆ Ω. These
intervals beget a class of probability assignments, which can
be thought of as possible subjective probabilities which the
evidence supports3.

Shafer cites Dempster’s Rule of Combination (DRC) in [11]
as the primary method for belief aggregation and updating.

Definition 7: Dempster’s Rule of Combination (DRC) [11].
Consider the opinions of two sources, represented by the BMAs
m1 and m2 respectively. Dempster’s Rule of Combination is
defined as an orthogonal combination of these belief functions.
The resulting BMA m1,2(A) for any A ⊆ Ω is given by

m1,2(A) =

(
1

1−K

) ∑
A1,A2⊆Ω
A1∩A2=A

m1(A1)m2(A2) (III.7)

where K < 1 is the measure of conflict after combination,
given by

K =
∑

A1,A2⊆Ω
A1∩A2=∅

m1(A1)m2(A2). (III.8)

Since the DRC is both commutative and associative, extending
it to the combination of more than two BMAs is straightfor-
ward.

Up to this point, DS Theory has not addressed how to take
into account both source confidence and source reliability at
the same time. Shafer suggests in [11, Chapter 11] a method
for altering a BMA based on a level of perceived reliability
known as source discounting. This notion was later redefined
in [13] in terms of a BMA as follows.

Definition 8: Discounting on BMAs [13]. Let α ∈ [0, 1]
represent the reliability of a source. Source discounting the
BMA m for every A ⊆ Ω is given by

m(A;α) =

{
αm(A) A 6= Ω,

αm(A) + (1− α) A = Ω.
(III.9)

Source discounting can also be performed for Bayesian prob-
abilities as follows.

Definition 9: Discounting on Bayesian Probabilities. Let α ∈
[0, 1] represent the reliability of a source. Source discounting
the Bayesian probabilities P for every ω ∈ Ω is given by

P (ω;α) = αP (ω) + |Ω|−1(1− α) (III.10)

where |Ω| represents the cardinality of Ω.

Source discounting for Bayesian probabilities can be thought
of as increasing the level of entropy in the source’s belief
proportional to α. For a fully discounted Bayesian probability,
all outcomes are made equiprobable (the analogue of the
vacuous BMA in a DS theoretic construction).

3Probabilities defined in this way are referred to as “probabilities of
provability” and in general do not carry a statistical interpretation [12]

C. Variations on Dempster-Shafer Theory

If the combined sources present highly conflicting opinions
and it is not feasible to perform source discounting, a DS
theoretic approach may not provide an acceptable result [2],
[14]. One variation, Yager’s Rule, calls for interpreting the
evidence in conflict as uncertain evidence.

Definition 10: Yager’s Rule [15]. Consider two BMAs m1 and
m2 over some set of logical sentences Ω. The resulting BMA
m1,2 after combination via Yager’s rule for any A ⊆ Ω is
given as

m1,2(A) =


∑

A1,A2⊆Ω
A1∩A2=A

m1(A1)m2(A2) A 6= Ω

m1(A)m2(A) +K A = Ω
(III.11)

where K is the degree of conflict between m1 and m2 as given
in expression III.8.

Yager’s rule is commutative but in general not associative.
It is also possible to subdivide evidence amongst conflicting
propositions proportionate to the degrees of belief held by
the sources before combination. This concept has lead to the
family of Proportional Conflict Redistribution (PCR) rules by
Dezert and Smarandache. In this paper we investigate PCR5,
the PCR rule most widely used at present [16].

Definition 11: Proportional Conflict Redistribution Rule #5
(PCR5) [16]. Consider two BMAs m1 and m2 over some
set of logical sentences Ω. The resulting BMA m1,2 after
combination via PCR5 for any A ⊆ Ω is given as

m1,2(A) =
∑

A1,A2⊆Ω
A1∩A2=A

m1(A1)m2(A2)+

∑
X⊆Ω

X∩A=∅

(
m1(X)2m2(A)

m1(X) +m2(A)
+

m2(X)2m1(A)

m2(X) +m1(A)

)
.

(III.12)

Similar to Yager’s Rule, the PCR5 is commutative but in
general not associative [16]. Finally, subjective logic [17]
uses the general terminology of BMAs, belief functions, and
uncertainty while providing a way of representing any Ω as a
binary frame focused on some A ⊆ Ω and its negation. The
result is a four-valued vector known as an opinion tuple, which
can be rephrased in terms of BMAs for a binary Ω as follows.

Definition 12: Consensus Operator, Binary Frames [17].
Consider the binary frame Ω = {A,A}. The consensus
operator m1,2 can be represented completely in terms of the
BMAs m1 and m2 as

m1,2(A) =
m1(A)m2(A ∪A) +m2(A)m1(A ∪A)

KC

m1,2(A) =
m1(A)m2(A ∪A) +m2(A)m1(A ∪A)

KC

m1,2(A ∪A) =
m1(A ∪A)m2(A ∪A)

KC
(III.13)
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where KC = m1(A∪A)+m2(A∪A)−m1(A∪A)m2(A∪A).
If KC = 0, then the consensus operator becomes

m1,2(A) =
m1(A) +m2(A)

2
,

m1,2(A) =
m1(A) +m2(A)

2
,

m1,2(A ∪A) = 0.

(III.14)

The consensus operator is commutative and associative [17].

IV. BMA FORMULATION METHODS

According to the algorithm of Figure 1, a simulated human
opinion produces a decision ω ∈ {A,A} and a confidence
value p ∈ [0, 1]. To use the combination operators described
in Section III, ω and p must be translated into BMAs (or in
the case of Bayes’ Rule, probability functions). In the present
study, ω and p were used to formulate simple support functions
of degree s focused on ω, as in expression III.6. For Bayes’
rule, the likelihood values of Equation III.1 were formed such
that PX (x|ω) = s and PX (x|ω) = 1−s. The degree of support
s was set in the following four ways

1) Decisions Only: Each subject’s source strength s was
estimated beforehand by determining the subject’s pro-
portion of correct decisions over 2,000 simulations. The
subject’s simulated confidence value p was unused.

2) Confidences Only: Each subject’s source strength s was
taken as the simulated confidence value p produced at
each run of the human simulator.

3) Decision Reliability Discounting: Each subject’s source
strength s was taken as the simulated confidence value
p produced at each run of the human simulator. The
resulting simple support function was then discounted
using expression III.9 (or in the Bayesian case, ex-
pression III.10). The discount rate α was taken as the
subject’s proportion of correct decisions as described in
the “Decisions Only” BMA formulation method.

4) Evidence Strength Discounting: Each subject’s source
strength s was taken as the simulated confidence value p
produced at each run of the human simulator. The result-
ing simple support function was then discounted using
expression III.9 (or in the Bayesian case, expression
III.10). The discount rate α was taken as the subject’s
average evidence strength, estimated beforehand over
2,000 simulations. The evidence strength E(ω, p) of a
subject’s decision ω and confidence assessment p was
given as

E(ω, p) = 1−BS(ω, p|ω∗), (IV.1)

where ω∗ is the true outcome and BS(ω, p|ω∗) is the
quadratic scoring rule known as the Brier score [8].

Definition 13: Brier Score [8]. Let p ∈ [0, 1] be a con-
fidence assessment towards the outcome ω ∈ {A,A}. Let
ω∗ ∈ {A,A} represent the true outcome. The Brier score is
a measure of distance on the interval [0, 1] between the given
confidence assessment and a confidence assessment which
assigns the true outcome probability one, given by

BS(ω, p|ω∗) =

{
(1− p)2 ω = ω∗,

p2 ω 6= ω∗.
(IV.2)

Fig. 2. Evidence strengths of fused subjective data on the line length task,
hardest difficulty. Clear bars indicate the evidence strength ranges for each
fusion method. Higher evidence strengths and smaller evidence strength ranges
are better.

V. SIMULATIONS

The BMA formulation methods given in Section IV and
the combination operators described in Section III were used
to perform fusion on the simulated subjects of [8]. All belief
combination methods were initialized using vacuous BMAs
as defined in expression III.5 (or in the case of Bayes’
rule, equiprobable outcomes). All BMA formulation methods
were simulated for each combination method over 2,000 runs.
Performance for Bayesian case was taken as the average com-
bination evidence strength E(ω∗, pBayes|ω∗), where pBayes

was the resulting a posteriori probability after combination
via Bayes’ rule. For the belief function combination methods,
ranges on combination evidence strength were generated using
belief and plausibility values as lower and upper bounds on
possible subjective probabilities. The size of the evidence
strength range represents the precision of the combination rule,
and the lower bound of the evidence strength range represents
the accuracy of the combination rule. An ideal combination
rule should have high accuracy (i.e., evidence strength close to
one) and high precision (i.e., a small evidence strength range).

Figure 2 shows the average evidence strength of each com-
bination method (namely, Bayes’ Rule, DRC, Yager’s Rule,
PCR5 and the Consensus operator), across the four BMA for-
mulation methods discussed in Section IV (namely, Decisions
Only, Confidences Only, Decision Reliability Discounting, and
Evidence Strength Discounting). For comparison, the highest
and lowest average evidence strengths among the six subjects
are also shown. Subjects were combined in groups of two in
the order (((S1�S2)�S3)�· · · )�S6), where the symbol �
represents any of the combination rules from Section III, and
the subscript of S represents the subject number as given in the
columns of [8, Table 6]. Both Bayes’ rule and the DRC were
unable to combine subjective confidences consistently without
performing source discounting. In all other cases, Bayes’
rule and the DRC produced combination evidence strengths
on par with the PCR5 and the consensus operator. Yager’s
rule was found to produce the lowest combination evidence
strengths and the largest combination evidence strength ranges.
It was also observed that the BMA formulation methods which
used source discounting produced slightly higher combination
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(a) (b)

Fig. 3. Evidence strengths of combined subjective confidences, discounted by evidence strength in the line length task. Results shown for the hardest difficulty.
Duplicates of the subject which exhibited the lowest evidence strength included in the combination. (a) Average lower bound of the evidence strength range
versus the number of worst source duplicates present in the combination. Higher evidence strengths are better. (b) Size of evidence strength range versus the
number of worst source duplicates present in the combination. Smaller evidence strength range sizes are better.

evidence strengths than the ones which did not. Discounting by
decision reliabilities and source evidence strengths produced
similar combination evidence strengths.

Figure 3 shows the average strength of each combination
method (namely, Bayes’ Rule, DRC, Yager’s Rule, PCR5 and
the Consensus operator) when discounting the sources using
their estimated evidence strengths, and while also including an
increasingly large number of duplicates of the subject which
exhibited the lowest evidence strength in the combination (i.e.,
the “worst” source). These subjects were combined in a similar
manner as in Figure 2, except that the worst source and its
duplicates were combined after the other five sources. When
more than 10 duplicates of the worst source were included in
the combination, Bayes’ rule and the DRC produced higher
combination evidence strengths than the other combination
methods (Figure 3a). The size of the evidence strength range
was found to decrease the fastest with PCR5 and the slowest
with the consensus operator (Figure 3b). The size of the
evidence strength range for Yager’s rule was found to stay
relatively constant.

VI. CONCLUSIONS

We have demonstrated how it is possible to use a model
of human decision making and confidence assessment to
construct a simulator for evaluating the performance of data
fusion systems using subjective opinions. In our simulations,
Bayes’ Rule, the DRC, the PCR5, and the consensus operator
performed similarly when source discounting was performed.
Both Bayes’ rule and the DRC were unable to combine
subjective confidences consistently when source discounting
was not performed. Finally, when including more than 10
duplicates of an inferior-quality source in the combination,
Bayes’ rule and the DRC produced higher evidence strengths
than the other combination methods. Future work includes
extending the simulator for use on M -ary (M > 2) Ω, and
eventually the development of a test bed for hard and soft
data fusion algorithms for multiple tasks and models of human
decision makers.
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