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Abstract – This paper presents the results of numerical 

experiments devoted to examination of influence 

of the target attribute hypotheses definitions on quality 

of information fusion. The main goal of the research 

works presented herein was to find answers 

to the subsequent questions: ‘In the context of attribute 

information fusion in C2 systems, is it reasonable 

to extend the information scope of a sensor?’ and ‘Does 

the extension of the sensor information scope always 

provide tangible benefits in quality of fusion?’  

 In order to achieve that there have been defined two 

measures: decision robustness and decision bias.  

 In the experimentation Dezert-Smarandache Theory 

has been used as the main fusion engine.      

 In this paper, both Bayesian and non-Bayesian basic 

belief assignments  have been considered. 

 

Keywords: Primary hypotheses, posterior hypotheses, 

target threat, DSmT, Bayesian bba, non-Bayesian bba. 

1 Introduction 

In C2 systems, fusion algorithms should be prepared for 

integrating information obtained from sensors, which are 

ontologically different [1]. One of the factors that 

influence the quality of the fusion is an exact definition of 

basic belief assignments, based on sensor data [9], [10]. 

In this paper, the subject of study is a correlation 

between the definitions of posterior hypotheses and 

the quality of target attribute fusion. In order to find it out 

a number of numerical experiments has been made. 

During the experimentation, the target threat attribute 

was taken into consideration, due to its high ability to 

create multiple posterior hypotheses [4].  

There have been defined two categories of sensors, used 

for experimentation, namely: narrow information scope 

sensors (NISS) and extended information scope sensors 

(EISS). The former enables to assess two basic classes 

of the target (i.e. FRIEND and HOSTILE), while the latter 

enables also to classify FAKER.     

In the next sections, examples of posterior hypotheses, 

descriptions of the numerical experiments, the results 

of these experiments, and the conclusions will be given.  

2 Attribute information fusion for 

Bayesian bba 

Consider the following case of the target threat 

information fusion. It is assumed that DSm free model 

holds and Bayesian bba is defined as follows: 

 m1(F) = 0.2, m1(H) = 0.8; 

 m2(F) = 0.9, m2(H) = 0.1; 

Figure 1  shows the Venn’s diagram, related to this 

case. According to [5], [6], [7], [8], and [10] F∩ H 

hypothesis describes a training target, called FAKER (FK), 

comprehended as a type of FRIEND (F), acting as 

HOSTILE (H) for exercise purposes. That means 

the target possesses features of both friendly and hostile 

target.   

 
Figure 1 Venn’s diagram for the Threat attribute 

The corresponding evidence table has been presented 

at Table 1.  

Table 1 Evidence table for two sensors discerning 

FRIEND and HOSTILE targets 

m2  \  m1 F [0.2] H [0.8] 

F [0.9] F [0.18] F ∩ H [0.72] 

H [0.1] F ∩ H [0.02] H [0.08] 

Application of the classical DSm rule of combination 

results in the following bba: 

 m(F) = 0.18, m(H) = 0.08, m(F ∩ H) = 0.74 

which in the consequence leads to subsequent values 

of belief functions:  

 Bel(F) = m(F) + m(F ∩ H) = 0.92 

 Bel(H) = m(H) + m(F ∩ H) = 0.82 

 Bel(F ∩H) = m(F ∩ H) = 0.74 

In that case the problem resides in the expression 

of F∩H which does not fully reflect the nature 

of FAKER. On one hand FAKER represents the target 

that encompasses the features of friendly and hostile 

targets. On the other hand it performs a specific type of 

FRIEND. Underlying the calculation of the belief 
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functions is the assumption that FAKER supports both 

hypotheses: FRIEND and HOSTILE.   

A simple correction of the calculation, by omitting 

the F∩H hypothesis support for HOSTILE, however 

incompatible with DST and DSmT, may be regarded as 

a kind of instant solution. Thus:   

 Bel(F) = m(F) + m(F ∩ H) = 0.92  

 Bel(H) = m(H) = 0.08  

 Bel(F ∩H) = m(F ∩ H) = 0.74  

Notice that this treatment may have some serious 

repercussions, since FAKER, with the biggest mass 

assigned in this case, is a posterior hypothesis, 

which means it has no direct support from the sensor data.  

The described fusion case may be regarded as a follow-

up of the one of two possible events: 

• integration of information, originated from two 

sensors, which detect different features 

of the target or 

• integration of conflicting information, originated 

from two sensors one of which is reliable, 

and another is corrupted. 

In the first event FAKER hypothesis seems to be highly 

appropriate. As a result of combination of evidence 

the biggest mass is assigned to it. Finally, due to 

the hypotheses hierarchy, according to which FAKER 

supports FRIEND, the corresponding belief function for 

a friendly target reaches the highest value. The lowest 

mass value is assigned to HOSTILE (0.08 after 

the correction). 

In the second event the posterior hypothesis F∩ H, 

previously defined as FAKER should be regarded 

specifically. According to DST and DSmT the mass 

corresponding to that hypothesis is conflicting. Therefore 

omitting it in the belief function calculation may provide 

a serious corruption of the final decision, due to the fact 

the friendly target hypothesis would be fostered regularly.  

3 Attribute information fusion for 

non- Bayesian bba 

For comparison, consider another target threat attribute 

fusion case, where every sensor provides additional 

information related to the training value (FAKER). That 

means the acquired bba is non-Bayesian. Similarly as in 

the previous example it has been assumed that DSm free 

model holds. The gathered evidence has been summarized 

with the following table: 

Table 2 Evidence table for two sensors discerning 

FRIEND, HOSTILE and FAKER targets 
m2  \  m1 F [0.2] H [0.4] F ∩ H [0.4] 

F [0.5] F [0.1] 
F ∩ H [0.2] F ∩ H [0.2] 

H [0.1] F ∩ H 
[0.02] 

H [0.04] 
F ∩ H 
[0.04] 

F ∩ H 

[0.4] 

F ∩ H 
[0.08] 

F ∩ H 
[0.16] 

F ∩ H 
[0.16] 

Application of the classical DSm rule of combination 

results in the following bba: 

 m(F) = 0.1, m(H) = 0.04, m(F ∩H) = 0.86 

which in the consequence leads to subsequent values 

of belief functions: 

 Bel(F) = m(F) + m(F ∩ H) = 0.96  

 Bel(H) = m(H) + m(F ∩ H) = 0.9  

 Bel(F ∩ H) = m(F ∩ H) = 0.86  

Applying the analogical correction as in the previous 

example leads to the following belief function values:.  

 Bel(F) = m(F) + m(F ∩ H) = 0.96  

 Bel(H) = m(H) = 0.04  

 Bel(F ∩H) = m(F ∩ H) = 0.86  

The fundamental difference between these two 

examples resides in the quantitative support for FAKER 

hypothesis. In the second case it is supported in three 

ways: 

• directly: when both sensors identify the target as 

FAKER (Table 2: the black-colored mass); 

• when only one sensor identifies the target as 

FAKER (Table 2: the green-colored mass); 

• indirectly: as a combination of FRIEND and 

HOSTILE hypotheses, similarly as in the first 

example (Table 2: the purple-colored mass); 

This means that (in the second example) the risk 

of allocating the FAKER hypothesis inappropriately high 

mass value, while one of the sensors delivers false 

information, was significantly reduced.  

Discerning these two cases underlies an alternative 

correction method, which may be regarded as less 

‘invasive’. Namely, in the second case it is possible to 

apply a decomposition of FAKER for particle hypotheses: 

SPECIFIC_FAKER and CONFLICTING_FAKER, as 

follows:  

m(FK) = m(FSK) + m(FCK)      (1) 

where: 

 m(FSK) = m1(F ∩ H)·m2(F) + m1(F ∩ H)·m2(H) + 

  +  m1(F) ·m2(F ∩ H) ) + m1(H)·m2 (F∩ H) +  

+ m1(F ∩ H)·m2 (F∩ H) = 0.2 + 0.04 + 0.08 + 

+0.16 + 0.16 = 0.64   

 m(FCK) = m1(H)·m2(F) + m1(F)·m2(H)       

    = 0.2 + 0.02 = 0.22 

Such decomposition enables to calculate the belief 

function values as follows: 

 Bel(F) = m(F) + m(FSK) + m(FCK)          

     = 0.1 + 0.64 + 0.22 = 0.96  

 Bel(H) = m(H) + m(FCK)= 0.04 + 0.22 = 0.26 

 Bel(FK) = m(FSK) + m(FCK) = 0.86  

The correction above enables to utilize the complete 

information that resides in the descriptive definition 

of FAKER, while maintaining compliance of the belief 

function calculation with DST and DSmT.   

It is worth of notice, that in both of the cases, 

independently of the introduced correction, FAKER 

hypothesis is never going to be accepted. This is due to 

the hypotheses hierarchy, according to which FAKER, 

as a subtype of a friendly target, supports FRIEND 

hypothesis. Thus: Bel(F) ≥ Bel(FK). Then, the posterior 

hypothesis of FAKER performs a kind of auxiliary 



hypothesis to resolve the problem of basic target threat 

classification (i.e. FRIEND/HOSTILE). 

If more precise classification is necessary, the 

respective decomposition of FRIEND 

(e.g. SPECIFIC_FRIEND and FAKER) and hypotheses 

refinement are required, just as shown at Figure 2 .  

 
Figure 2 Venn’s diagram for the Threat attribute 

with distinguished battle target 

In such case the respective belief functions should be 

calculated as follows: 

 Bel(FB) = m(F) + m(FCK) = 0.1 + 0.22 = 0.33  

 Bel(H) = m(H) + m(FCK)= 0.04 + 0.22 = 0.26 

 Bel(FK) = m(FSK) + m(FCK) = 0.86 

4 Examination of fusion quality 

Within the numerical examination work there have been 

realized: 

• Decision robustness examination and 

• Changeability of the belief functions. 

The decision robustness performs a kind of decision 

stability margin. That is the degree, to which extent 

the decision is resistant to obstacles caused by both types 

of uncertainty (random and deterministic).  

In the examination, presented herein the decision 

robustness is based on the quantitative and qualitative 

analysis of the fusion cases, where slight modification of 

the input (sensor)  data determines the decision change. 

The decision robustness may be expressed as follows: 

N

n
R C

D −=1         (2) 

where: 

nC – the number of conflicting theses1; 

N – the number of possible theses (measurement 

scenarios). RD = 1 means the best system. 
Another measure, very useful while examination, is a 

decision bias. The decision bias defines the tendency 

of the preference of one prior hypothesis, regarding the 

other one, under the assumption of symmetric mass 

distribution.  

The decision bias may be expressed as follows: 
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where: 

nH – the number of HOSTILE theses; 

nF – the number of FRIEND theses; 

                                                 
1 A thesis, by its definition, is a confirmed hypothesis. In 

this paper the thesis is comprehended as an interpretation 

of hypotheses fusion. 

mx(F|F) – the mass (originated from the x-th sensor) 

of the FRIEND hypothesis, on condition the data from 

the x-th sensor indicate the target is FRIEND. 

The belief functions changeability examination 

performs a complement to the decision robustness study. 

Its general idea is to define the pace of the belief function 

change, while modification of the selected sensor data.  

4.1 Examination of robustness for NISS 

In the experimentation three possible interpretations 

of sensor data have been considered, namely: FRIEND 

(F), HOSTILE (H), and UNKNOWN (U). 

With assumption of two existing sensors, that makes nine 

possible measurement-decision scenarios. Additionally, 

the simulated bba was symmetric, as follows: 

• for the reliable hypotheses: m1(F|F) = m2(F|F) = 

m1(H|H) = m2(H|H) =  0.9; 

• for the unreliable hypotheses: m1(F|H) = m2(F|H) 

= m1(H|F) = m2(H|F) =  0.1; 

• for hypotheses equally reliable:  

m1(F|F∨H) = m1(F) = m1(H) = m2(F) = m2(H) =  0.5; 

Table 3 shows an example evidence table for 

a combination of two conflicting bbas: 

m1(F|F) = 0.9, m1(H|F) = 0.1; 

m2(F|H) = 0.1, m2(H|H) = 0.9; 

Table 3 Evidence table for two NISSes 

m1 0,9 0,1 

m2 F H 

0,1 F 0,09 0,01 

0,9 H 0,81 0,09 

Calculation of the respective belief functions leads to 

the subsequent results: 

 Bel(F) = m(F) + m(F ∩ H) = 0.91  

 Bel(H) = m(H) + m(F ∩ H) = 0.91  

 Bel(F ∩H) = m(F ∩ H) = 0.82 

Introducing UNKNOW thesis, which is not directly 

related to any of the existing hypotheses, requires a brief 

comment. Namely, should a combination of the gathered 

evidence result in equal bba (i.e. the target may be equally 

interpreted as FRIEND or HOSTILE), UNKNOW thesis 

is applicable. Thus: 

U = F ∨ H         (4) 

Table 4 summarizes the results of the experiment. 

The case of combination of conflicting bba mentioned 

above was colored in red.  

Table 4 Hypotheses table for two NISSes 

1 2 3 

HOS FRD FRD/HOS 

HOS H 

U (F:0.91, 

H:0.91) H 

FRD 
U (F:0.91, 

H:0.91) F F 

FRD/HOS H F 
U (F:0.75, 

H:0.75) 

The decisions presented in Table 4 have been made 

upon the calculated belief functions, related 



to the subsequent hypotheses. Yellow filling denotes 

the acceptance of UNKNOWN thesis, which was due 

to the fact the maximum value of the belief function 

referred equally to FRIEND and HOSTILE. 

This is an undesired phenomenon, which decreases 

the decision robustness significantly. The decision 

robustness, in this case, amounts to: RD = 0.(6)2. 

One of the assumptions of the numerical experiments 

was a symmetric distribution of mass for both sensors. 

That means that every sensor provides bba, which may be 

interpreted as indicating definite  presence of FRIEND 

or HOSTILE target, or indefinite presence of any of those. 

However, the degrees of belief for each of the definite 

cases were equal. Underlying this, an analysis 

of the fusion results enables to assess the decision bias, 

which amounts to: bD=0. 

4.2 Changeability of belief function for 

selected input data (for NISS) 

This section presents an analysis of changeability 

of the belief functions for the case, where data obtained 

from one of the sensors indicate the presence of the 

hostile target. Assume: 

    m1(F) = 0.2, m1(H) = 0.8; 

Starting with m2(F) = 0.1 the FRIEND mass was being 

increased by ∆m = 0.1, with simultaneous decrease 

of m2(H), which was presented at Figure 3. 

 
Figure 3 Changeability of belief functions for NISS. 

Sensor 1: HOSTILE 

Values of the belief functions for: HOSTILE, FRIEND, 

and FAKER are marked with colors: red, blue, and 

yellow, respectively. The elaborated decision has been 

made by acceptance the hypothesis, of which the belief 

function was maximal. Thus it is not difficult to notice 

that FAKER hypothesis was never going to be accepted, 

due to the hypotheses hierarchy, mentioned in the 

previous section. 

Figure 3 also presents the decision ‘turn’, which occurs 

while: m2(F) = 0.8. This is quite intuitive, remembering 

the assumption, related to bba for one of the sensors. 

Then, UNKNOWN thesis is going to be accepted, due 

to the fact the maximum values of the belief functions 

                                                 
2 Notation 0.(X) means a repeating decimal that is 0.XX… 

refer equally to FRIEND and HOSTILE. When m2(F)> 

0.8,  FRIEND thesis will be accepted as the final decision.    

4.3 Examination of robustness for EISS 

Similarly, as in the previous experiment, the same three 

possible interpretations of sensor data have been 

considered. Simulated mass distribution was also 

symmetric.  

Table 5 presents possible interpretations of data, 

originated from one sensor. The first three columns 

contain binary assignment of the considered hypotheses. 

Successive three columns contain the same assignment, 

expressed in terms of the obtained bba3. The next column 

contains ordinal numbers of the hypotheses, and the last 

one the respective interpretation.  

Table 5 Hypotheses table with interpretation 

F H F∩H m(F) m(H) m(F∩H) 

0 0 0 - - - 

0 0 1 0,1 0,1 0,8 1 FAKER 

0 1 0 0,1 0,8 0,1 2 HOSTILE 

0 1 1 0,1 0,45 0,45 3 HOS/FAK 

1 0 0 0,8 0,1 0,1 4 FRIEND 

1 0 1 0,45 0,1 0,45 5 FRD/FAK 

1 1 0 0,45 0,45 0,1 6 FRD/HOS 

1 1 1 0,(3) 0,(3) 0,(3) 7 faulty sensor 

Table 6 performs one of the obtained evidence tables 

for a case of combination of two conflicting bba: 

m1(F|F) = 0.8, m1(H|F) = 0.1, m1(F ∩ H|F) = 0.1; 

m2(F|H) = 0.1, m2(H|H) = 0.8, m2(F ∩H|H) = 0.1; 

Hypotheses of FRIEND and FAKER have been 

distinguished with colors: green and pink, respectively. 

The rest of the colors refers to FAKER hypothesis, 

whereas its actual tints correspond to the respective 

particle hypotheses, mentioned in section 3.   

Table 6 Evidence table for two EISSes 

m1 0,8 0,1 0,1 

m2 F H F∩H 

0,1 F 0,08 0,01 0,01 

0,8 H 0,64 0,08 0,08 

0,1 F∩H 0,08 0,01 0,01 

The numerical experiments have examined two cases 

of FAKER decompositions: 

• Two subtypes decomposition, according to (1), 

where: 

Bel(F) = m(F) + m(FSK) + m(FCK)     (5) 

Bel(H) = m(H) + m(FCK)        (6) 

Bel(FK) = m(FSK) + m(FCK)        (7)  

• Three-element decomposition4, according to (8): 

                                                 
3 The first and the last case simplify to the same situation. 

Therefore one of them has been omitted.  
4Since FFK supports only FRIEND, and FHK supports only 

HOSTILE, such decomposition is called ‘three-element’. 



m(FK) = m(FFK) + m(FHK) + m(FKK) + m(FCK)  (8) 

where: 

Bel(F) = m(F) + m(FFK) + m(FKK) + m(FCK)   (9) 

Bel(H) = m(H) + m(FHK) + m(FCK)      (10) 

Bel(FK) = m(FFK) + m(FHK) + m(FKK) + m(FCK) (11)  

 FK:  friend-faker, HK: hostile-faker, KK: faker-faker 

Table 7 summarizes the results of the numerical 

experiments performed with application of two-element 

FAKER decomposition, where the described above fusion 

case comprises one of the elements of this table (marked 

with red). 

Table 7 Hypotheses table for two-element FAKER 

decomposition case 

FAK HOS HOS/FAK FRD FRD/FAK FRD/HOS FAIL 

Dec 2 1 2 3 4 5 6 7 

1 F F F F F F F 

2 F H F F F H F 

3 F F F F F F F 

4 F F F F F F F 

5 F F F F F F F 

6 F H F F F F F 

7 F F F F F F F 

Analogical results for three-element FAKER 

decomposition have been summarized in Table 8. 

Table 8 Hypotheses table for three-element FAKER 

decomposition case 

FAK HOS HOS/FAK FRD FRD/FAK FRD/HOS FAIL 

Dec 3  1 2 3 4 5 6 7 

1 F∩H F∩H F∩H F∩H F∩H F∩H F∩H 

2 F∩H H H F∩H F∩H H H 

3 F∩H H F∩H F∩H F∩H F∩H F∩H 

4 F∩H F∩H F∩H F F F F 

5 F∩H F∩H F∩H F F F∩H F∩H 

6 F∩H H F∩H F F∩H F F∩H 

7 F∩H H F∩H F F∩H F∩H F∩H 

Comparing the results obtained for both cases 

of decomposition, it is easy to notice the significant 

disparity in the number of decisions, indicating FRIEND 

and HOSTILE. Calculating the respective values 

of decision bias results in: 

  bD(2F) = 0.935, bD(3F) = 0.(2); 

The respective decision robustness values amount to: 

  RD(2F)= 1, RD(3F) = 1; 

This means, that in both cases, with symmetric bba , it 

is possible to determine which hypothesis will be 

accepted. 

Due to the fact that in the real conditions, measurements 

are always affected by errors, obtained bbas should be 

regarded as approximate. It is also problematic to achieve 

the complete symmetry, which was one of the 

assumptions for numerical experiments. In such case 

defining decision robustness and decision bias may not be 

sufficient for decision-making. Therefore it is suggested 

to calculate the respective differences between 

the maximal value of the belief function and the second 

high value of the belief function, for a given 

measurement-decision scenario. This enables to assess a 

kind of the ‘second-order’ margin, that determines the 

stability of decision. 

Table 9 and Table 10 summarize calculated differences 

of the belief functions for two-element FAKER 

decomposition and three-element FAKER decomposition, 

respectively. In both cases the least value amounts 

to ∆Bel = 0.01, which means that modification of bba 

with this value (or higher) implies the change of decision. 

The decision robustness values may also be calculated, 

taking 0.01 as a given precision of the measurement. 

Thus:  

837.0)2(01.0
=FRD , 

816.0)3(01.0
=FRD ; 

Table 9 Belief functions difference table for two-

element FAKER decomposition case 

∆Bel 1 2 3 4 5 6 7 

1 0,01 0,01 0,01 0,08 0,045 0,045 
0,0(3

) 

2 0,01 0,44 0,01 0,08 0,045 0,125 
0,0(3

) 

3 0,01 0,01 0,01 0,08 0,045 0,045 
0,0(3

) 

4 0,08 0,08 0,08 0,64 0,36 0,36 
0,2(6

) 

5 0,05 0,045 0,045 0,36 0,2025 0,2025 0,15 

6 0,04 0,125 0,045 0,36 0,2025 0,19 0,15 

7 0,03 0,033 
0,0(3

) 
0,2(6

) 
0,14999

3 0,15 0,(1) 

Table 10 Belief functions difference table for three-

element FAKER decomposition case 

∆Bel 1 2 3 4 5 6 7 

1 0,15 0,09 0,395 0,01 0,08 0,325 0,2(6) 

2 0,09 0,61 0,26 0,01 0,055 0,295 0,1(6) 

3 0,395 0,26 0,09 0,01 0,2025 0,055 
0,18(3

) 

4 0,01 0,01 0,01 0,62 0,305 0,305 0,2 

5 0,08 0,055 0,2025 0,305 0,1125 0,01 0,0(3) 

6 0,325 0,295 0,055 0,305 0,01 0,01 0,0(3) 

7 0,26663 
0,1(6

) 
0,18(3

) 0,2 0,0(3) 
0,0(3

) 0,(1) 

It is obvious, that in practice the decision change is very 

important. However, as important as the change in itself is 

the type of change. It is intuitive that (in terms of tactics) 

the change of decision from FAKER to FRIEND is less 

important than from FRIEND to HOSTILE.  

Table 9 and Table 10 should be analyzed together with  

Table 7 and Table 8. In Table 9, yellow color denotes the 

decision change from FRIEND to FAKER. In Table 10, 

green color denotes the decision change from FAKER to 

FRIEND, and red color denotes the change from FRIEND 

to HOSTILE. Thus for a given precision, equal to 0.01 the 



respective critical values of decision robustness may be 

calculated as follows:  

  1)2(01.0
=FR K

D , 980.0)3(01.0
=FR K

D ; 

Applying inductive reasoning it is acceptable that for 

every given value of precision, decision robustness may 

be estimated, as: 
PK

D

PE

D

P

D RRR ≤≤         (12) 

where: 

 E – estimated decision robustness index; 

 P – assumed measurement precision; 

  K – critical decision robustness index; 

4.4 Changeability of belief function for 

selected input data (for EISS) 

Similarly, as for NISS the examination of changeability 

of belief function have been performed for EISS. It was 

assumed that data originated from one sensor indicate 

a presence of the hostile target. Assume: 

m1(F) = 0.1, m1(H) = 0.8, m1(F∩ H) = 0.1; 

Starting with m2(F) = 0.1 the FRIEND mass was being 

increased by ∆m = 0.1 with simultaneous decrease 

of m2(H), which was presented at Figure 4. The mass 

of m2(F∩H) was constant, amounted to m2(F∩ H) = 

0.2. 

 
Figure 4 Changeability of belief functions for EISS. 

Two-element and three-element FAKER 

decomposition. Sensor 1: HOSTILE 

Figure 4 presents the changeability of the belief 

functions for both cases of the FAKER decomposition. 

Yellow denotes the belief function referring to FAKER. 

Dark red and dark blue denote the belief functions 

referring to HOSTILE and FRIEND, respectively, 

with the three-element decomposition applied. Whereas 

the light colors: red and blue denote HOSTILE and 

FRIEND, respectively, with two-element decomposition 

applied. 

Figure 4 shows the significant predominance 

of FRIEND hypothesis for two-element FAKER 

decomposition, which has already been noticed during 

examination of decision robustness. The respective lines, 

corresponding to FRIEND and HOSTILE hypotheses for 

both cases are almost parallel, which is due to 

the relatively low mass of FAKER, i.e. m1(F∩ H). 

Focusing on the placement of the lines, corresponding 

to FRIEND and FAKER, it is easy to read the hypotheses 

hierarchy. Since for two-element FAKER decomposition 

FAKER completely supports FRIEND (i.e. the complete 

mass of FAKER is transferred to FRIEND), the respective 

line corresponding to FRIEND is situated above the one, 

corresponding to FAKER. On the other hand, since 

FAKER does not completely support FRIEND in case 

of three-element decomposition it is reasonable that 

the respective line, corresponding FRIEND is situated 

under the one corresponding to FAKER. Thus FRIEND 

hypothesis in such case will never be accepted. 

For three-element FAKER decomposition the decision 

change occurs close to m2(F) = 0.67. Therefore, for each  

m2(F) > 0.67 FAKER hypothesis should be accepted. 

For two-element FAKER decomposition the decision 

change occurs in the middle of the range. Therefore, for 

each m2(F) > 0.4 FRIEND hypothesis should be accepted. 

The next experiment was to perform the analogical 

examination of changeability of belief function, however, 

the bba obtained from the first sensor had not precisely 

identified the target threat. Assume: 

m1(F) = 0.1, m1(H) = 0.45, m1(F∩H) = 0.45; 

m2(F∩H) = 0.2 

Figure 5, similarly as  Figure 4, shows a significant 

predominance of FRIEND hypothesis for two-element 

FAKER decomposition. The respective lines, 

corresponding to FRIEND and HOSTILE hypotheses for 

both cases are not parallel, which is due to the relatively 

high mass of FAKER, i.e. m1(F∩ H). 

 
Figure 5 Changeability of belief functions for EISS. 

Two-element and three-element FAKER 

decomposition. Sensor 1: FAKER or HOSTILE 

Figure 6 presents the changeability of belief function for 

three-element FAKER decomposition. The line referring 

to the belief function for FRIEND hypothesis has been 

omitted intentionally, since it is irrelevant to decision-

making. 



 
Figure 6 Changeability of belief functions for EISS. 

Three-element FAKER decomposition. Sensor 1: 

FAKER or HOSTILE 

Comparing the graphs for changeability of belief 

functions presented at Figure 6 and Figure 4 it is easy to 

notice, that the belief in the predominant thesis 

of HOSTILE is being significantly reduced. Increasing 

the mass corresponding to FAKER results in change 

of the decision to FAKER close to m2(F) = 0.28, however, 

similarly as in the previous experiment, FRIEND 

hypothesis is irrelevant to decision-making. The change 

of the experiment assumptions also influences the two-

element FAKER decomposition case (see Figure 7). 

Increasing the mass corresponding to FAKER implies that 

within the entire range of mass m2 FRIEND is the only 

relevant hypothesis. 

 
Figure 7 Changeability of belief function for EISS. 

Two-element FAKER decomposition. Sensor 1: 

FAKER or HOSTILE 

5 Comparison of fusion quality for 

diverse bba 

Application of the introduced measures enables to 

notice that one of the most important disadvantages 

of NISS information fusion is poor decision robustness. 

In about 30% of cases making decisions whether the 

target was FRIEND or HOSTILE was impossible. The 

only way the target could be identified as FAKER, was 

typically conflicting  (by the combination of FRIEND 

from one sensor and HOSTILE from the other sensor). 

This conflicting mass is also problematic to manage, due 

to the fact that, according to DST and DSmT it should 

support both FRIEND and HOSTILE, while FAKER is 

also a subtype of FRIEND. 

EISS information fusion enables to deal with 

the problem of conflicting mass, since in such kind 

of fusion, the conflicting mass is not the only one 

indicating FAKER. The discussed cases of two-element 

decomposition and three-element decomposition differ 

from each other in terms of the defined measures. 

Even though, in both cases, the decision robustness 

values, calculated with the zero error, are equal to unity, 

which is an undoubted advantage in comparison with 

NISS fusion, the decision robustness values, calculated 

with the error of 0.01 differ significantly, providing better 

results for the two-element decomposition. 

However, the decision bias is the key measure for 

the discussed comparison. For the two-element FAKER 

decomposition case the decision bias is relatively high. 

That means the results obtained with this method are 

tendentious in the consequence fostering FRIEND thesis. 

This also affects the decision robustness value, mentioned 

above, making it falsely high. Particularly, the difference 

in the decision robustness values is caused by existence 

of one case, where the decision change from FRIEND 

to HOSTILE is possible with error of 0.01. However, it is 

worth of notice, that this very case holds only if 

the evidence from both sensors shows no preference 

of any the types (i.e. FRIEND and HOSTILE are equally 

probable, according to data from both sensors). Anyway 

the decrease of the decision robustness is the high price 

that needs to be paid in three-element decomposition 

fusion, for this specific case. On the other hand, an arbitral 

acceptance of FRIEND in two-element decomposition 

fusion for this very case may seem to be a bit suspicious. 

It is very important to notice that in all of the considered 

cases of fusion, the respective values of belief functions 

were close. The reader might find it counterintuitive: 

Since EISS better fits the real world, combination 

of evidence based on these sensors should probably 

provide higher values of the respective belief functions. 

This is not exactly the truth. The reliability of the results 

obtained for EISS is comparably higher, not the belief 

functions. This is due to the fact the respective belief 

functions encompass more focal elements, supported 

directly by sensor data.      

6 Conclusion 

The results of the numerical experiments have proven 

that taking into account the reliability of the elaborated 

decisions, application of EISS sensors is much more 

appropriate. Particularly, the best benefits may be 

achieved by applying three-element decomposition 

of FAKER hypothesis. This mechanism enables to 

decrease significantly the risk the resulting posterior 

hypothesis has been caused by fusion error, sensor 

damage or intentional introduction of false data. 



It is worth of notice, that the specific features 

of the presented mechanisms, demonstrated in the target 

threat attribute, may also be applied to other attributes. 

In the worst case, an application of the decomposition, 

described herein, may cause the creation of posterior 

hypotheses that refer to the targets that do not exist.  

That, in turn, should be verified by mechanisms 

of information evaluation [2], [3] to eliminate such cases 

from the further analysis. On the other hand, remaining 

these cases will not degrade the quality of fusion, since 

the masses assigned to the improbable hypotheses are 

relatively small. However that will make the posterior 

hypotheses creation process less cost-effective.  

As a direction for the forthcoming research works, 

related to the basic belief assignments the authors look 

forward to combination of ontological and evidential 

approaches [4], particularly an application of the former 

for creation of the posterior hypotheses.            
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