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Abstract: The aim of this article was to investigate multiple targets tracking in natural environment based on
Dezert–Smarandache theory (DSmT). On the basis of establishing conflict strategy and combination model, the basic
framework and algorithm of fusing multi-source information were described. The multiple targets tracking platform which
embedded location and colour cues into the particle filters (PFs) was developed in the framework of DSmT. Three sets of
experiments with comparisons were carried out to validate the suggested tracking approach. Results showed that the conflict
strategy and DSmT combination model were available, and the introduced approach exhibited a significantly better
performance for dealing with high conflict between evidences than a PF. As a result, the approach was suitable for real-time
video-based targets tracking, and it had the ability to track interesting targets. Furthermore, the approach can easily be
generalised to deal with larger number of targets and additional cues in a complicated environment.
1 Introduction

Video-based target tracking is one of the research hotspots in
the field of computer vision, and it has many wide
applications in military guidance, visual surveillance, visual
navigation of robots, human–computer interaction medical
diagnosis and military guidance etc. [1]. Along with the
rapid growth of information techniques in the last 10 years,
moving targets tracking has attracted many researchers’
attention, and has become a very popular research topic.
Although many effective visual target tracking methods
have been proposed, there are still a lot of difficulties in
designing a robust tracking algorithm because of
challenging complex scenarios such as significant
illumination change in natural environment, pose variations
of the objects and non-linear deformations of shapes and
noise and dense clutters in complex background etc. [2–4].
Particle filters (PF) have many advantages for solving those

problems of non-linear and non-Gaussian system, and the
filters are very suitable for moving targets tracking. In the
last 15 years we have witnessed a rapid development of
the theory of PF, and the corresponding algorithms of PF
are widely applied in tracking fields. Godsill and Vermaak
[5] presented the PF of variable sampling rate based on a
specific observation, and Abdallah et al. [6] introduced the
PF of box according to a non-white and biased observation.
Crisan and Obanubi [7] analysed PF with random
resampling times, and deduced central-limit theorem type
results for the approximating particle system with random
resampling times. Maroulas and Stinis [8] described an
improved PF for multiple moving targets tracking based on
drift homotopy for stochastic differential equations, and the
suggested algorithm improved the performance of PF. At
present, lots of strategies have been developed for
addressing multiple targets tracking by PF (see e.g. [9–12]).
Despite the flexibility and availability of PF, there still exist
many open problems facing the variation of target motion
state, the appearance variation of either target or
background and the serious cross and occlusion in natural
environment etc. Hence, lots of algorithms have been
introduced to track moving targets in different cases. Ottlik
and Nagel [13] discussed the initialisation of model-based
vehicle tracking in video sequences of inner-city
intersections. Chen et al. [14] analysed moving targets
tracking under varying illumination conditions. However,
the above approaches have mainly improved local
performances by optimising PF algorithms, and there still
exist many key issues which need to be discussed further.
Recently, the Dezert–Smarandache theory (DSmT) by
Dezert and Smarandache has been viewed as a general
flexible bottom–up approach for managing uncertainty and
conflicts for a wide class of static or dynamic fusion
problems, where the information to combine is modelled as
a finite set of belief functions provided by different
independent sources of evidence [15, 16]. Hence, the
DSmT of plausible and paradoxical reasoning has become a
very important method to deal with high conflicting,
uncertain and imprecise sources of evidence in intelligent
systems by information fusion. The corresponding
researches showed that the conflicting focal elements were
increased based on DSmT, and the computational effort was
also increased in the course of reasoning. Based on this
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input, improved methods were presented to reduce the
computational efforts [17, 18]. At present, some researches
focus on video-based target identification based on DSmT,
the related studies of video-based target tracking based on
DSmT are very less. The authors discuss different modified
algorithms for video-based targets tracking, and more
details can be found [19, 20].
In real natural environment such complete knowledge is

difficult to obtain because of natural environment, which
includes multiple target crosses and high occlusions,
background clutter and illumination and camera calibration
problems etc. Although researchers have made progress,
these problems facing target tracking in natural
environment are very difficult to solve effectively.
Thereby, how to develop a robust and real-time
video-based targets tracking approach is very necessary in
natural environment. Owing to the efficiency of DSmT in
combining conflict evidences, the objective of this article
is to present a novel approach of video-based multiple
targets tracking that will handle the targets of crosses and
occlusions in order to attain excellent information fusion
in the framework of DSmT.

2 Foundations of the DSmT and PF

DSmT is a generalisation of the classical Dempster–Shafer
theory (DST). The DSmT framework can easily handle not
only exclusivity constraints, but also non-existential
constraints or mixed constraints as well which is very
useful in some dynamic fusion problems where the DST
usually fails; it differs from DST because it is based on free
Dedekind’s lattice, and the detailed examples of the types
of constraints can be found [15]. In this section, the DSmT
and PF were described on the basis of reviewing the DST.
Although the DST considers ∪ as a set of exclusive

elements, the DSmT relaxes this condition and allows for
overlapping and intersecting hypotheses. This allows for
quantifying the conflict that might arise between different
sources throughout the assignment of non-null confidence
values to the intersection of distinct hypotheses. Let ∪ =
{θ1,…,θN} be a set of N elements which can potentially
overlap, where θi denotes the ith element in the finite set
∪ . The hyper-power set D ∪ is defined as the set of all
composite propositions built from elements of ∪with ∪
and ∩ ( ∪ generates D ∪ under operators ∪ and ∩ ) operators
such that [16], where D ∪ denotes Dedekind’s lattice, and
which is also called hyper-power set in the DSmT framework.
(1) φ, θ1,…,θN∈D ∪ ; (2) If A, B∈D ∪ , then A ∩ B∈D ∪

and A ∪B∈D ∪ ; (3) No other elements belong to D ∪ ,
except those obtained by using rules (1) or (2).
As in the DST, the DSmT defines a map m(·):D ∪ → [0, 1].

This map defines the confidence level that each sensor
associates with the element of D ∪ . This map supports
paradoxical information, and the DSmT combination rules
of conflict and uncertain sources are given by

m(w) = 0,
∑
A[D<

m(A) = 1 (1)

m(A) =
∑

A1,A2,...,AN[D<

A1>A2>...>AN=A

∏D
i=1

mi(Ai) (2)

PF is one kind of sampling simulation based on sequential
Monte Carlo. Owing to its multiple hypothesis property, PF
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can be applied to any state-space model to estimate the
trajectory of an object in frames effectively; it is originally
developed to track objects in clutter or a variable of interest
as it evolves over time, and typically with a non-Gaussian
and potentially multi-modal probability density function
(pdf). The basis of the PF is to construct a sample-based
representation of the entire pdf. A series of actions are
taken, each one modifying the state of the variable of
interest according to some model. Moreover, at certain
times an observation arrives that constrains the state of the
variable of interest at that time. Generally, PF is an optimal
Bayesian algorithm for non-linear and non-Gaussian object
tracking, and it obtains the most likely posterior estimation
based on sequential Monte Carlo. The detailed description
of PF was given in the literature [21].
Let a set of discrete particles be approximately depicted for

a complicated posterior probability density, and the method
level depends on the number of particles. Let us consider
Xt = (x1, x2,…,xt) as the state vector (location, size etc.)
describing the target and Zt = (z1, z2,…,zt) as the vector of
measurements (colour, texture etc.) up to time t. The
tracking is based on the estimation of posterior state
distribution p(xt|Zt) at each time step. The estimation is
performed using a two-step Bayesian recursion. The first
step is prediction, one finally gets

p(xt Zt−1

∣∣ )/
∫
p(xt xt−1

∣∣ )p(xt−1 Zt−1

∣∣ )dxt−1 (3)

The second step is filtering, which is given by

p(xt Z t

∣∣ )/ p(zt xt
∣∣ )p(xt zt−1

∣∣ ) (4)

This recursion requires the specification of the state evolution
p(xt|xt − 1) and a measurement model linking the state and the
current measurement p(zt|xt). The basic idea behind the PF is
very simple. Starting with a weighted set of samples, which is
given by

St−1 = s(n)t−1, p
(n)
t−1

∑N
n=1

p(n)
t−1 = 1

∣∣∣∣∣
{ }

(5)

where St− 1 denotes the object state of time t− 1, n denotes
the nth sample.
According to p(xt − 1|zt − 1), new samples are obtained by

propagating each sample according to the target’s state model,
p(xt|xt − 1). In the filtering step, each sample is weighted
based on the observation, and N samples are drawn with
replacement according to πt = p(zt|xt). The value will
represent the best estimation of the target, given by

E[St] =
∑N
n=1

p(n)
t s(n)t (6)

PF has been proven to be very successful for non-linear and
non-Gaussian estimation problems, and the basic tracking
step includes selection of samples, propagation of samples,
observation of samples and calculation and estimation of
the mean state, and the detailed content can be found in the
literatures [22, 23]. Although many effective target tracking
methods have been proposed by PF, there are still a lot of
difficulties in designing a successful tracking platform in
natural environment. Hence, on the basis of the adaptive PF
457
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Fig. 1 Relation of conflict and correlative factors
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[24], the following address the tracking approach based on
DSmT in detail.

3 Multiple targets tracking based on DSmT

3.1 Algorithm description

Let us assume that the number of targets is t (t≫2 targets),
the number of cues is c and the t and c are known. Up to
time t − 1, each target is associated with a track uJ

{ }t
J=1

.
At time t, an image frame is extracted from the video
sequence and a number of measurements are obtained for
each target candidate. Thus, the target given is to combine
these measurements in order to determine the best track for
each candidate. It is important to note that a target
candidate, refers to a particle sample, the hyper-power set
D ∪ defines the set of the hypotheses for which different
cues can provide confidence values. These hypotheses can
correspond to: (i) individual tracks θJ, (ii) union of tracks
θ1 ∪… ∪ θN, which symbolises ignorance, (iii) intersection
of tracks θ1 ∩… ∩ θN, which symbolises conflict or (iv) any
tracks combination obtained by ∪ and ∩ operators.
The confidence level is expressed in terms of mass function{

m(n)
t,l (·)

}c
l=1

that is committed to each hypothesis and which
satisfies the condition in (1) and (2). Given this framework,
m(n)

t,l (A) expresses the confidence value with which cue l
associates particle n to hypothesis A at time t. Based on
DSmT combinational rule, a single map function m(n)

t (·) can
be derived as follows

m(n)
t (A) = m(n)

t,1 (·)⊕ m(n)
t,2 (·)⊕ · · · ⊕ m(n)

t,c (·) (7)

where m(n)
t (A) denotes the overall confidence level with which

all cues associate particle n to hypothesis A at time t.
Since the target candidates must be associated with

individual tracks, the information contained in compound
hypotheses is transferred into single hypotheses (i.e. single
tracks) through the notions of the belief or plausibility
functions and is given by

Bel(n)t (uJ ) =
∑

A # uJ

A [ DQ

m(n)
t (A) (8)

Pls(n)t (uJ ) =
∑

A> uJ = w

A [ DQ

m(n)
t (A) (9)

where Bel(n)t (uJ ) (resp. Pls(n)t (uJ )) quantifies the confidence
with which particle n is associated with θJ at time t using
the notion of belief (resp. plausibility).
The confidence levels are not used to determine whether a

given candidate is the best estimate or not of the target, they
are rather used to quantify the weight of the candidate as a
sample of the state posterior distribution p(Xt|Zt). As a
result, the PF algorithm based on DSmT is implemented,
and the corresponding step is given as follows:

1. Initialisation: generate N samples St−1,j =
{
s(n)t−1, j,

p(n)
t−1, j

}N
n=1 for each target, j = 1,…,t independently, with

p(n)
t−1, j = 1/N , and set t = 1.

2. Propagation: S(n)t,j = A · S(n)t−1,j + w(n)
t−1,j
458
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3. Observation for each particle: compute
{
m(n)

t−1, l(A)
}c
l=1

and m(n)
t−1, l(A) for A∈D ∪ , calculate the particle weight

p(n)
t−1, j = Bel(n)t−1(uJ ) or p(n)

t−1, j = pls(n)t−1(uJ ), and normalise

the weight: p̃(n)
t−1, j =

(
p̃(n)
t−1, j

)
/
(∑N

n=1 p̃
(n)
t−1, j

)
4. Estimation: target j = 1…t is given by E[St, j] =∑N

n=1 p̃
(n)
t, j s

(n)
t, j

5. Resampling for each target: generate St, j =
{
s(n)t, j , p

(n)
t, j

}N
n=1

by resampling N times from St, j, where p
(
s(n)t, j

) = p̃(n)
t, j

6. Incrementing: when t = t + 1, go to (2).

3.2 Conflict strategy

Since preservation of conflicting focal elements can increase
assignment of the focal element in the framework of DSmT,
the convergence is very slow for assign function of main
focal element in most cases, and the difficulty of tracking is
increased greatly. Hence, a modified conflict strategy was
presented. Namely, local conflict was not assigned globally
but was assigned locally by refining global conflict into r
local conflicts. Fig. 1 shows the relation of conflict and
correlative factors.
Video-based multiple targets tracking may take place in

many cases including target crossing, target occlusion,
target scale variation and illumination change etc. Hence,
the tracking process has high conflict and uncertainty in
natural environment. By consulting the thoughts in the
literature [25], a union operator is selected when the focal
element is weak, and an extraction operator is selected
when the focal element is strenuous for obtaining more
information. Namely, when the conflict is strenuous, the
conflict is assigned to a focal element which has a close
relationship with conflict. When a conflict is weak, the
conflict is mostly assigned to a focal element which has a
close relationship with conflict. According to Fig. 1, r local
conflicts are reassigned between conflicted focal element,
and the assigned rule is basic belief assignment and belief
of evidence. Finally, an inconsistent parameter R is
introduced in order to efficiently describe the total level of
conflicts between evidences, the conflict level based on
mass (·) function can be corrected by R and the
corresponding expression of R is given by Yang et al. [18].
According to (10), when the parameter R tends to 1, the
conflict between evidences is strenuous, and conflicts are
partly transferred to a union of conflict focal elements.
IET Comput. Vis., 2013, Vol. 7, Iss. 6, pp. 456–466
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When the parameter R tends to 0, the conflicts between
evidences are very weak, and they are partly transferred to
the conflict focal elements.

R =
∑
A#Q

m1(A)−m2(A)
2

∣∣∣ ∣∣∣√
(10)

where m1, m2 denotes the basic probability assignment
function of two evidences source, respectively.
At the same time, an efficient approach of settling conflict

assignment problem is adopted based on the idea of the
literature [26]. If the support degree of m1 and m2 for
involving conflict focal element A was greater than focal
element B, m(A) value of assembled basic probability
assignment should be greater than m(B). Especially, most
conflicts should be assigned to the union of involving a
conflict focal element when the conflict is strenuous, or
most conflicts should be assigned to the focal element of
involving conflict when the conflict is weak. As a result,
the following conflict strategies between evidences are
defined based on the above idea.
If the basic focal elements are A and B, then the conflict

strategies are defined as follows

m(A> B)c = m1(A)m2(B)+ m1(B)m2(A) (11)

m(B) =
∑

A>B=B

m1(A)m2(B)+ m(A> B)c

m0(B)

m0(A)+ m0(B)+ m0(A< B)
(1− R)

(12)

m(A< B) =
∑

A>B=A<B

m1(A)m2(B)+ m(A> B)c

m0(A< B)

m0(A)+ m0(B)+ m0(A< B)
(1− R)

(13)

m(A> B) = m(A> B)c · R (14)

where m0 denotes the basic probability assignment function
based on the D–S evidence theory.

3.3 Dynamic combination model

According to the above analysis, the following established
dynamic combination model of multiple targets tracking.
In order to describe conveniently, the cues of colour and
location were used to track two targets in this section. For
two targets, ∩ ∪ was defined as follows

< = u1, u2, u1 < u2
{ }

(15)

In (15), θ1 refers to the first target, θ2 refers to the second
target and u1 < u2 refers to the rest of the scene. Actually,
hypothesis u1 < u2 can refer to the background information.
Since this latter can change during tracking, we will refer to
u1 < u2 as the false alarm hypothesis. Besides,
u1 > u2 = f because of the possible occlusion, and
uj > u1 < u2 = w for j = 1, 2.
The number of picture elements of the ith colour and the

total number of picture elements of an image ratio are
called normalised colour histograms. Let us assume that
both target models are known and given by normalised
colour histograms

{
qj(u)

}m
u=1

, where u is a discrete colour
index, and m is the number of histogram bins. At time t, the
IET Comput. Vis., 2013, Vol. 7, Iss. 6, pp. 456–466
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normalised colour histogram of particle s(n)t,j is given by{
h(n)t,j (u)

}m
u=1

. The probability that particle s(n)t,j belongs to
target j = 1, 2 according to the colour histogram is derived
from the following Gaussian pdf.

p(n)t,j = 1
2p

√
s
e
− d(n)t,j

( )2

/ 2s2
( )

, j = 1, 2 (16)

d(n)t,j =

1−

∑m
u=1

h(n)t,j (u)qj(u)

√
(17)

where σ is a colour bandwidth parameter, d(n)t,j is the
Bhattacharyya distance betweenh(n)t,j (u)and qj(u) at time t.
Let us define qFA(u)

{ }m
u=1

as the histogram of the scene from
which we subtract the histogram of targets 1 and 2.

qFA(u) = max qscene(u)− q1(u)− q2(u), 0
{ }

(18)

The probability that s(n)t,j belongs to the false alarm hypothesis
will be given by

p(n)t, FA = 1
2p

√
s
e− d(n)t, FA

( )2
/ 2s2
( )

(19)

where d(n)t,FA =

1−∑m

u=1 h
(n)
t,j (u)qFA(u)

√
The mass functions of particle n according to colour can be

evaluated as follows

m(n)
t,2 u1 < u2
( ) = p(n)t,FA

p(n)t,1 + p(n)t,2 + p(n)t,FA

(20)

m(n)
t,2 (uj) =

p(n)t,j

p(n)t,1 + p(n)t,2 + p(n)t,FA

, j = 1, 2 (21)

The targets locations at time t− 1 are known and given by
(xt−1,1, yt−1,1) and (xt−1,2, yt−1,2). At time t, the probability
that a particles(n)t,j located at

(
x(n)t,j , y

(n)
t,j

)
belongs to target j = 1,

2 according to the location information is defined from a
Gaussian pdf as follows

p(n)t,j = 1
2p

√
s
e
−

x(n)t,j − xt−1,j

( )2
+ y(n)t,j − yt−1,j

( )2
2s2 (22)

where σ denotes a parameter of bandwidth, the probability
that a given particle does not belong to θ1 and θ2 is
inversely proportional to the distance between particles and
both targets. Since Θ is exhaustive, a particle that does not
belong to θ1 and θ2, and does belong to u1 < u2. This leads
us to the definition of a new pdf, p(n)t,FA, which measures the
membership of a particle n = 1,…,N to the false alarm
hypothesis.

p(n)t,FA = 1
2p

√
s
e− dmax−d(n)1−2

( )2
/ 2s2
( )

(23)

dn1−2 =

x(n)t−1 −

xt−1,1 − xt−1,2

2

( )2
+ y(n)t−1 −

yt−1,1 − yt−1,2

2

( )2√
(24)
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Fig. 2 Basic framework of tracking process
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where dmax is the radius of a circle centred on the midpoint of
targets 1 and 2, and which contains all the particles used for
tracking at time t− 1, d(n)1−2 is the distance separating particle n
and the midpoint.
The mass function of particle n according to its location is

given as follows

m(n)
t,1 (uj) =

p(n)t,j

p(n)t,1 + p(n)t,2 + p(n)t,FA

, j = 1, 2 (25)

m(n)
t,1 (u1 < u2) =

p(n)t,FA

p(n)t,1 + p(n)t,2 + p(n)t,FA

(26)

Based on the modified combination strategy introduced, the
combination rule leads to the mass function m(n)

t (·), and the
corresponding combination rules of colour and location are
defined in Table 1.
where

m(n)
t (u1) = m(n)

t,1 (u1) · m(n)
t,2 (u1) (27)

m(n)
t (u2) = m(n)

t,1 (u2) · m(n)
t,2 (u2) (28)

m(n)
t (u1 > u2) = m(n)

t,1 (u1) · m(n)
t,2 (u2)

+ m(n)
t,1 (u2) · m(n)

t,2 (u1) (29)

m(n)
t u1 < u2
( ) = m(n)

t,1 u1 < u2
( ) · m(n)

t,2 u1 < u2
( )

(30)

m(n)
t (w) = m(n)

t,1 u1 < u2
( )

m(n)
t,2 (u1)+ m(n)

t,2 (u2)
( )

+ m(n)
t,2 u1 < u2
( )

m(n)
t,1 (u1)+ m(n)

t,1 (u2)
( )

(31)

According to Table 1, (27) is the confidence level with which
both cues associate s(n)t,j to target 1. Equation (28) is the
confidence level with which both cues associate s(n)t,j to
target 2. Equation (29) is the conflict value between the
cues for membership of s(n)t,j to targets 1 or 2. Equation (30)
expresses the confidence value with which both cues agree
that the particle corresponds to a false alarm. Equation (31)
quantifies the conflict between the targets and the false
alarm hypothesis.
The weight of s(n)t,j particle within the posterior p(Xt|Zt)

distribution is calculated using belief (or the plausibility)
function for target J, given by

p(n)
t,J = Bel(n)t (uJ ) = m(n)

t (uJ )+ m(n)
t (u1 > u2)

J = 1, 2
(32)

Based on the above discussion, the generalisation of the
tracking scheme described in this section to t targets can be
carried out by defining a frame of discernment
Table 1 Combination rules of colour and location

m(n)
t ,2 (u1)

Lo
ca

tio
n
cu

e

m(n)
t ,1 (u1) m(n)

t (u1)

m(n)
t ,1 (u2) m(n)

t (u1 > u2)

m(n)
t ,1 (u1 > u1) f
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< = u1, . . . , ut, u1 < · · ·< ut
{ }

, where θJ denote an
individual target, and u1 < · · ·< ut denote the false alarm
hypothesis. Hence, the same method can be adopted to
establish a dynamic combination model of t targets in the
framework of DSmT.

4 Tracking experiments

4.1 Tracking realisation

Based on the above analysis of combination strategy and
dynamic model for multiple targets tracking in natural
environment, an improved algorithm of multi-source
information fusion was realised in the framework of DSmT.
The algorithm by merging location and colour cues was
embedded in the tracking frame of PF, and the whole
tracking process included read module of video sequence,
setting parameter module, preprocessing module of video
image, detecting module of moving targets and tracking
module of moving targets. Fig. 2 shows the basic
framework of the tracking process.
According to Fig. 2, the read module of the video sequence

was used to read video data by video collecting equipment
and provide right data format for latter tracking. For the
setting parameter module, it was used to provide correlative
parameters for every module. For the preprocessing module
of video image, it was used to suppress noise and
Colour cue

m(n)
t ,2 (u2) m(n)

t ,2 (u1 < u2)

m(n)
t (u1 > u2) f

m(n)
t (u2) f

f m(n)
t (u1 < u2)
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Fig. 3 Main algorithm flowchart of tracking target
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pre-segment of video image. For the detecting module of
moving targets, it was used to detect interesting moving
target and eliminate the influence of illumination and
shadow. For the tracking module of moving targets, it was
mainly used to track moving target detected and gain the
corresponding data including speed and location etc. The
tracking algorithm was designed on the basis of analysing
the tracking process. Fig. 3 shows the main algorithm
flowchart of tracking target.
Based on the basic framework and algorithm of multiple

tracking targets, Visual studio 2005 C++.net environment
and OPENCV1.0 (open source computer vision library)
were used to develop the corresponding targets tracking
platform. As a result, the platform of multiple targets
tracking was operated by Pentium(R)D CPU 3.00 GHz,
Fig. 4 Operation panel of tracking platform

IET Comput. Vis., 2013, Vol. 7, Iss. 6, pp. 456–466
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4 GB memory, 300 G hard disk and Windows XP. The
tracking procedure can be performed when a new video
frame comes. Fig. 4 shows the operation panel of the
tracking platform.

4.2 Tracking examples and results

Since the purpose of this article was to address tracking and
not the target detection, targets were selected manually.
In this section, tracking experiments with comparisons were
carried out to validate the introduced approach. Especially,
this section mainly illustrated how to use the location and
colour cues for multiple targets tracking in natural
environment, and the introduced approach how to improve
the efficiency and robustness for the following factors: (i)
crossing targets, (ii) occlusion targets and (iii) scale
variation of targets. Finally, three sets of tracking
experiments based on different scenes were carried out to
validate the suggested approach.
The first video scene was a campus region, and the tracking

experiment of only two targets in a natural environment was
carried out to validate the introduced approach. The video was
captured from internet platforms, and the target objects
included two pedestrians. According to the introduced
approach, the tracking process was executed by merging the
location and colour cues of different targets. In the
experiment, image pre-processing was employed, and
the initial positions of objects were manually designated.
Initialisation of tracking was executed at the beginning of
every image subsequence, which included calibration of the
location and space area of targets tracked, estimation of the
moving direction and speed of every object and calculation
of the scaling according to the trend of relative motion
between targets tracked and imaging lens. Let the two
pedestrians in video scene keep uniform motion along the
moving direction of cross and occlusion, and the
illumination change be also omitted.
In the course of tracking experiment, the colour distribution

of objects had obvious difference by comparing with the
surrounding environment, and the surface feature relative to
the distributed location of structural distortion is very small.
At the same, there existed high conflict problems including
scale variations, cross and occlusion of objects. From 60 to
81 frames, the two objects underwent the following
processes including cross, part and full occlusion. The
number of particle was variable with conflict levels between
evidences, and the maximum number of particles was 40
when the two targets were basically covered. Namely, 40
particles were only used to handle the high conflict between
evidences. Fig. 5 shows the variation of particle number in
different tracking stage.
Fig. 5 Variation of particle number in different tracking stage
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Finally, the whole video-based tracking was accomplished,

and the video demonstrating tracking results were available
by the introduced approach. Fig. 6 shows the main frames
with tracking particles during tracking experiment, and
Fig. 7 shows the tracking process of main frames and
tracking result.
In order to validate the stability for handling high conflict

between evidences by the introduced approach, a mean shift
approach was also applied to track the above image
sequences. At last, the tracking process and result of two
kinds of approaches were obtained. Fig. 8 shows the
deviation of target centre (Δx, Δy) during tracking by
Fig. 6 Main frames with tracking particles during tracking experiment

Fig. 8 Deviation of target centre of the two approaches

Fig. 7 Tracking process of main frames and tracking result
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comparing with the two approaches. It was seen from Fig. 8
that the variation of deviation of target centre was much
smaller than that of the mean shift approach during almost
the whole tracking. However, the mean shift approach’s
accuracy deteriorated rather quickly when the two targets
had high cross and occlusion. Thereby, the results showed
that the suggested approach could track moving targets
effectively, and the approach had better adaptation to the
variation of target and background.
The second tracking experiment was carried out to test the

availability of the introduced approach. The corresponding
video image was also captured from internet platforms, a
IET Comput. Vis., 2013, Vol. 7, Iss. 6, pp. 456–466
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Fig. 9 Tracking process of main frames of two moving targets and the tracking result
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group of pedestrians were walking into a campus region along
different orientation and the colour character of clothing was
very similar. During tracking experiment, two objects of the
video scene were designated to execute tracking in a
cluttered scene. In the experiment, the initial positions of
objects were designated manually after pre-processing and
initialisation of the image sequence. Let the objects keep
uniform motion, and the illumination change be omitted,
too. With the increased number of particles, the processing
time was also increased, and smoother tracking was
obtained. During the tracking experiment, 50 particles or so
were used to handle the high conflict between evidences.
For the sake of clarity, the right person was denoted target
1, and the left person was denoted target 2. At last, the
tracking experiment was executed by the introduced
approach. Fig. 9 shows the tracking process of main frames
and the tracking result.
According to Fig. 9, the tracking sequence was divided into

three stages. Namely, Figs. 9a and b were the stages of
tracking pre-occlusion, Figs. 9c–f were the stages of
tracking occlusion and Figs. 9g and h were the stages
of tracking post-occlusion. Hence, stage 1 was the
pre-occlusion sequence, stage 2 corresponded to the
occlusion sequence and stage 3 was the post-occlusion
sequence. Especially, tracking in stage 2 was challenging
because of the closeness of the targets, and the measured
cues might lead to a false identification. The location cue
lost gradually its ability to separate targets 1 and 2 as they
converged to the intersection point. However, the location
cue remained a valid measurement because it was
independent from the relative location of targets with
respect to the camera (occluding or occluded). The colour
cue was extremely sensitive to the occlusion. During stage
2, target 1was partially or totally occluded by target 2. As a
result, the colour measurement for particles associated with
target 1 was corrupted by the presence of target 2. When
the occlusion was total, target 1 disappeared from the scene,
and the colour measurement became invalid. The occlusion
also affected the behaviour of particles associated with
target 2, since the presence of target 1 in its neighbourhood
which would be interpreted by the introduced approach as a
rapid change in the background information. The tracking
performances in stage 3 depended on the outcome of
tracking during stage 2. Finally, the tracking process
imputed to a correct identification.
IET Comput. Vis., 2013, Vol. 7, Iss. 6, pp. 456–466
doi: 10.1049/iet-cvi.2012.0193
In order to analyse the variation of average values of the
confidence levels for all particles in the course of handling
occluding and occluded targets, the following equations
were given by

mavg(uJ ) =
1

N

∑N
n=1

m(n)
t (uJ ) (33)

mavg(u1 > u2) =
1

N

∑N
n=1

m(n)
t (u1 > u2) (34)

Belavg(uJ ) =
1

N

∑N
n=1

m(n)
t (uJ ) (35)

According to (33)–(35), the average values of the confidence
levels for all particles were calculated. Fig. 10 shows the
variation of average values of the confidence levels for all
particles during tracking.
In Fig. 10, the Figs. 10a–c denoted the variation of

mavg(θ1), mavg(θ1 ∩ θ2) and Belavg(θ1) for the occluded
targets, respectively. Figs. 10d–f denoted the variation of
mavg(θ1), mavg(θ1 ∩ θ2) and Belavg(θ1) for the occluding
targets, respectively. It was seen from Fig. 10 that the
confidence level for the occluded target (mavg(θ1)) was high
during stages 1 and 3, but the confidence level was slowly
decreased in stage 2, as shown in Fig. 10a. Indeed, the
colour and location cues both agreed the identity of the
target in stages 1 and 3. However, the target was occluded
in stage 2, and this reduced the confidence value provided
by the colour cue.
During the same stage, the location confidence remained

high, which explained the increase in the conflict
(mavg(θ1 ∩ θ2)), as shown in Fig. 10b. The variation of
average values of the confidence levels was given by belief
function (Belavg(θ1)), as shown in Fig. 10c. The curve of
Fig. 10c showed the high confidence with which the target
was located despite the occlusion. This was mainly because
of the introduction of the conflict information through the
DSmT combination model. Figs. 10d–f showed that the
effect of occlusion on the occluding targets was small by
comparing with its effect on the occluded targets. The
existence of such an effect could be justified by the
presence of target 1 in the immediate neighbourhood of
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Fig. 10 Variation of average values of the confidence levels for all particles during tracking

a Variation of mavg(u1) for the occluded targets
b Variation of mavg(u1 > u2) for the occluded targets
c Variation of Belavg(u1) for the occluded targets
d Variation of mavg(u1) for the occluding targets
e Variation of mavg(u1 > u2) for the occluding targets
f Variation of Belavg(u1) for the occluding targets
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target 2, which rapidly modified the colour measurement for
some particles. So, it can be seen from the whole tracking
experiment that the introduced approach accurately
identifies the targets during the three tracking stages. This is
due to the effective handling of the conflicting information
Fig. 11 Tracking process of main frames of three moving targets and t
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provided by the location and colour cues during the second
stage of tracking based on the efficient conflict strategy and
excellent DSmT combination model.
Furthermore, the third video image came from a park

square was executed to test the robustness of the introduced
racking result
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Fig. 12 RMS error curves of estimated position

a Target 1
b Target 2
c Target 3
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approach. In the video scene, three pedestrians were walking
into the square along different orientations from dark shadow
area to bright area. Owing to the tree shadow, the brightness
of three pedestrians had obvious change. Especially, the trees
in the scene were shaking ceaselessly, the pedestrians were
occluded each other time after time and the objects scale
had great change. For this complicated scene, three
pedestrians in the video scene were designated as three
targets to finish the tracking experiment, and 85 particles
were used to handle the high conflict between evidences or
so. For the sake of clarity, the left person was denoted
target 1, the middle person was denoted target 2 and the
right person was denoted target 3 according to Fig. 11a.
Finally, three targets in the scene were tracked accurately
by the introduced approach. Fig. 11 shows the tracking
process of main frames and tracking result. According to
Fig. 11, although the illumination in the scene had obvious
change, the colour of target 3 clothes was similar to the
scene, three targets were crossed and occluded time after
time, the introduced approach overcame these interference
factors and the approach avoided the effect of illumination
change and disturbance between targets. As a result, the
tracking performance was greatly improved for handling
high conflict evidences in a cluttered scene.
In order to estimate the robustness of the introduced

approach for handling high conflict between evidences, a
scale-adaptive tracking approach based on literature [24]
was also applied to track the above image sequence. At the
same time, the root-mean-square (RMS) error of estimated
position was introduced to evaluate the performance of
different tracking methods, and the corresponding
expression of RMS error was given by

RMSt =

1

m

∑m
j=1

xj(t)− x̂j(t)
( )2

+ yj(t)− ŷj(t)
( )2[ ]√√√√ (36)

where m denotes the number of tracking simulation, (xj(t),
yj(t)) denotes the real position at time t in jth experiment,
x̂j t( ), ŷj t( )

( )
denotes the estimated position at time t in jth

experiment.
As a result, the RMS errors of estimated position for every

target were analysed by the 100 tracking experiments, and
Fig. 12 shows the RMS error curves of the two approaches
during tracking experiments. Owing to the illumination
change and confusion between targets, the processing time
of the two approaches was increased. Finally, the tracking
performance of the two approaches both had some decline
with the mutation of video scene according to Fig. 12.
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However, the tracking ability of the introduced approach
was better than the approach [24]. The approach [24]
mainly partitioned the reference object into several
sub-regions by clustering in colour space, then the colour
distribution of each sub-region was modelled as the
Gaussian, and its location constituted the spatial constrain
on the layout of the object. Finally, the reference model
was integrated into the PF to search for the object location
and detect the scale change of the object. Experimental
results showed that the approach had good reliability for the
scale change of the objects in a cluttered scene. However,
the measurement errors of three targets were increased with
the scene mutation, and the tracking errors of three targets
were also increased markedly by comparing the two
approaches. Particularly, the RMS errors were very bigger
when three objects were completely occluded many times
in 30 s or so and the brightness in the scene was changed
obviously. Hence, it was very difficult for general
scale-adaptive approaches to effectively settle these high
conflict issues between evidences, and the tracking
capability was declined markedly. However, the introduced
approach had excellent robustness to the illumination and
scale changes and complete occlusions between objects,
tracking accuracy and stability were better than the
approach [24], and the tracking capability was also greatly
improved.

5 Conclusions

This article investigated the multiple targets tracking in
natural environment based on DSmT by a series of
experiments, and the suggested conflict strategy and DSmT
combination model have been tested and evaluated. In view
of the results obtained and low computational complexity,
the suggested approach is suitable for real-time video-based
targets tracking. The following conclusions can be drawn:

1. DSmT is a useful theory for dealing with uncertainty
problems. Study showed that the DSmT could be used to
handle multiple targets tracking problem in cluttered scenes,
and the dynamic combination model combined a PF was
developed to actualise the video-based tracking.
Experimental results have been demonstrated that the
introduced approach ameliorated the interference immunity
when tracking multiple targets. Especially, the tracking
accuracy and robustness can be improved, but the real-time
characteristics of video image have not been affected.
Therefore, the approach is useful for dealing with high
conflict between evidences and improving the performance
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of PF, and the approach can be successfully applied in
dynamic targets tracking in natural environment.
2. On the basis of establishing conflict strategy and
combination model, the basic framework and algorithm of
fusing multi-source information were described. The
multiple targets tracking platform, which embedded location
and colour cues into the PF, was developed in the
framework of DSmT, and this strategy helped the platform
to track the objects smoothly. As a result, three sets of
experiments including many difficult tracking scenes with
comparisons were carried out to validate the approach. The
results showed that the approach exhibited a more
significant performance for tracking robustness than some
conventional PF and scale-adaptive approaches, and it had
the ability to track an interesting target. Hence, the
approach can easily be generalised to deal with additional
cues and targets in cluttered scenes.
3. The tracking results with comparisons to other
representative methods had better adaptation to the target of
cross and occlusion, background variation and illumination
change in challenging situations. Especially, by comparison
with the variation of particle number in different tracking
stage, the results demonstrated that the number of particle
was variable with the conflict level between evidences, and
the maximum number of particles was 50 when the two
targets were covered wholly. At the meantime, the variation
of average values of the confidence levels for all particles
was also discussed, and the maximum average value of
confidence level was about 1 and 0.9 during occluded and
occluding stage, respectively. Furthermore, by analysing the
RMS errors of estimated position for every target, the
tracking ability and accuracy of the introduced approach
was very excellent.
4. Although an enhanced video-based tracking platform was
established, a known issue in the suggested approach was that
object detection and mutation phenomena in complicated
scene had not been discussed in detail. Therefore a
comprehensive study in more realistic cases for larger
number of targets should be discussed. Further research can
not only promote the development of multiple targets
tracking technique, but also have very important theoretical
meaning and practical value for pushing the applied
research of video-based target tracking, and this work will
be reported in a future publication.
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