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Abstract—Theories of evidence have already been applied more
or less successfully in the fusion of remote sensing images. These
attempts were based on the classical evidential reasoning which
works under the condition that all sources of evidence and their
fusion results are related to the same invariable (static) frame of
discernment. When working with multitemporal remote sensing
images, some change occurrences are possible between two images
obtained at a different period of time, and these changes need
to be detected efficiently in particular applications. The classical
evidential reasoning is adapted for working with an invariable
frame of discernment over time, but it cannot efficiently detect nor
represent the occurrence of change from heterogeneous remote
sensing images when the frame is possibly changing over time.
To overcome this limitation, dynamic evidential reasoning (DER)
is proposed for the sequential fusion of multitemporal images.
A new state-transition frame is defined in DER, and the change
occurrences can be precisely represented by introducing a state-
transition operator. Two kinds of dynamical combination rules
working in the free model and in the constrained model are pro-
posed in this new framework for dealing with the different cases.
Moreover, the prior probability of state transitions is taken into ac-
count, and the link between DER and Dezert–Smarandache theory
is presented. The belief functions used in DER are defined simi-
larly to those defined in the Dempster–Shafer theory. As shown
in the last part of this paper, DER is able to estimate efficiently
the correct change detections as a postprocessing technique. Two
applications are given to illustrate the interest of DER: The first
example is based on a set of two SPOT images acquired before and
after a flood, and the second example uses three QuickBird images
acquired during an earthquake event.

Index Terms—Change detection, Dezert–Smarandache theory
(DSmT), Dempster–Shafer theory (DST), dynamical evidential
reasoning, evidence theory, image fusion.

I. INTRODUCTION

INFORMATION fusion resulting from multitemporal and
multisource remote sensing images remains an open and
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important problem [1]. The remote sensing images can be quite
different in their modality [2]: Orbits may be ascending and
descending, and parameters of acquisitions may differ from one
image to the other even when the two acquisitions are derived
from the same sensor. In change detection of remote sensing
images, the authors focused first on change measure [3]–[7],
and then, they developed techniques for classifying changed
features [8]–[14]. At this level, the change detection appears
as a classification problem. The specific case of very high
resolution data suggests the introduction of object recognition
so that the temporal behavior of those satellite image objects
is being used for change detection applications [15]. In this
paper, the change detection is considered as a postclassifica-
tion procedure that focuses on the transition between classes.
Hence, we consider that it is reasonable to deal with uncertain,
imprecise, and even conflicting information. Evidence theo-
ries, including the Dempster–Shafer theory (DST) [16] and
Dezert–Smarandache theory (DSmT) [17]–[19], are valuable
for dealing with such information, and they have already been
applied for remote sensing applications [1], [20]–[22]. In past
works, a particular attention was paid to obtain very specific
results for the decision-making support through efficient fusion
of the sources of evidence. Thus, many works focused mainly
on the redistribution of the conflicting beliefs [23]–[25]. These
combination approaches can be called static approaches since
they work under the assumption that the frame, on which the
decision-making support is based, is temporally invariable in
the fusion process. However, in the fusion of the multitemporal
remote sensing images, unexpected change occurrences can
arise in some parts of the images. The classical combination
rules in evidence theories provide specific classification results
in the invariable parts of images, but it cannot precisely de-
tect the change occurrences in the variable parts. In fact, the
changes can be considered as a conflict between the sources of
information in a multitemporal fusion process, but the classical
conflict belief produced by the conjunctive combination cannot
precisely represent change areas [21].

Therefore, a dynamic evidential reasoning (DER) working
under the condition that the frame does not necessarily remain
invariable during the fusion is proposed. In this paper, a new
frame called “state-transition power set” is defined, and the
change occurrences among different hypotheses can be pre-
cisely represented by the state-transition operator in this frame.
Dynamical combination rules are then proposed to work either
in the free model or in the constrained model. The free model is
well adapted when no prior knowledge is known on elements
of the frame. The constrained model can be used if some
integrity constraints between elements of the frame are known.
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The conditioning combination rule is also used when the prior
probability about the change occurrences is available. There
are some links between DER and DST, or DSmT, which will
be analyzed in the sequel. The dynamic belief function Bel(·),
plausibility function Pl(·), and pignistic probability BetP(·)
[26], [27] are defined similarly as in DST. The dynamical
approach improves the performances of the classification of
areas and also of the estimation of the changes through the
fusion of multitemporal sources of evidence.

The next section introduces the DER framework in detail and
the dynamic combination that works on the free model (see Sec-
tion II-B1) as well as the hybrid model (see Section II-B2) and
the decision-making support (see Section II-D). Section II-C
focuses on the case where some prior knowledge is available
to account for some class transition constraint. Section III
presents a set of examples that show why the classical belief
approach cannot perform accurately for analyzing time series
of images. Section IV gives two applications of the DER
approach: The first application is based on a set of two SPOT
images acquired before and after a flood over Gloucester, U.K.,
in 2000 (see Section IV-A), and the second one considers a
set of three QuickBird satellite images acquired before and
after the Boumerdes earthquake in 2003 (see Section IV-B).
Section V concludes.

II. DER APPROACH

A. Space of State Transitions in DER

DSmT has been already applied for the fusion of multitempo-
ral satellite images in [1]. However, the classical frame used is
not well adapted for measuring the changes among its elements.
The conjunctive elements (intersections) in hyperpower set DΘ

represent either the overlap between hypotheses in free Dezert-
Smarandache (DSm) model or the conflict produced by the con-
junctive combination in the hybrid DSm model when there is a
known integrity constraint between some elements of the frame
of discernment. Therefore, the conjunction A ∩B is unable to
characterize the transition A changing to B (denoted by A →
B) or B changing to A (denoted by B → A). If we need to dis-
tinguish two possible state transitions for change detection, we
need to define a new operator, and we cannot use the classical
conjunctive (intersection) operator as in classical approaches.
We propose the state-transition operator “changing to,” denoted
by →, satisfying the following reasonable conditions:
(C1) Impossible (forward) state transition where ∅ stands for

the null hypothesis

A → ∅ Δ
= ∅

(C2) Impossible (backward) state transition

∅ → A
Δ
= ∅

(C3) Distributivity of ∪ w.r.t. →

(A ∪B) → C = (A → C) ∪ (B → C)

(C4) Distributivity of → w.r.t. ∪

A → (B ∪ C) = (A → B) ∪ (A → C)

(C5) Associativity of state transition

(A → B) → C = A → (B → C) = A → B → C.

For notation convenience, a (state) transition A → B will be
denoted by tA,B . It is important to note that the order of indexes
does matter because tA,B �= tB,A in general, but if A = B,
obviously, tA,A = A → A represents a particular transition,
i.e., the invariable transition actually from state A to state A.
A chain of transitions θ1 → θ2 · · · → θn will be denoted by
t1,2,...,n, a transition θi → (θj ∪ θk) will be denoted by ti,j∪k, a
transition (θi ∩ θj) → (θk ∪ θl) will be denoted by ti∩j,k∪l, etc.

In the theories of belief functions (DST, DSmT, or trans-
ferable belief model (TBM) [28]), the result of the fusion of
sources of evidence defined on a same frame of discernment Θ
is obtained by a given rule of combination relatively to a fusion
space GΘ, where GΘ can be either the classical power set 2Θ,
a hyperpower set DΘ, or a superpower set (the power set of the
refined frame), depending on the theory used. In this paper, we
propose to use another fusion space (the space of transitions),
denoted by TΘ, in order to deal explicitly with all possible state
transitions that we want to detect.

First, the transition frame is given by

Θ1→n =Θ1 ×Θ2 × · · · ×Θn

= {tX1,X2,...,Xn
|Xi ∈ Θi, i = 1, 2, . . . , n}

where Θi is the frame associated with the ith source in the time
series and × is the Cartesian product operator. The space of
transitions will be denoted and defined by

TΘ
n = GΘ1→n .

In this paper, we assume to work in a simpler case where
GΘ = 2Θ. In other words, we will work with the simpler space
denoted by TΘ

n and defined by

TΘ
n = 2Θ1→n = 2Θ1×Θ2×···×Θn .

TΘ
n can be called state-transition power set, which is com-

posed by all the elements in Θ1→n with the union operator ∪.
We define the union ∪ as a componentwise operator in the
following way:

∀tX , tY ∈ TΘ
n , tX ∪ tY = tX∪Y . (1)

Following conditions C1–C5, we note that, in most cases

t(X1,X2,...,Xn) ∪ t(Y1,Y2,...,Yn) = t(X1,X2,...,Xn)∪(Y1,Y2,...,Yn)

�= tX1∪Y1,X2∪Y2,...,Xn∪Yn
.

If ∀Xi �= Yi;Xi, Yi are singletons, t(X1,X2,...,Xn)∪(Y1,Y2,...,Yn)

indicates only two kinds of possible transitions,
tX=(X1,X2,...,Xn) or tY=(Y1,Y2,...,Yn), whereas the element
tX1∪Y1,X2∪Y2,...,Xn∪Yn

represents 2× 2× · · · × 2 = 2n

kinds of possible transitions. It is obvious that they are
quite different, and tX1∪Y1,X2∪Y2,...,Xn∪Yn

is much more
imprecise than t(X1,X2,...,Xn)∪(Y1,Y2,...,Yn). For instance,
t1,2 ∪ t2,1 = t(1,2)∪(2,1) �= t(1∪2),(2∪1) = t(1,2)∪(1,1)∪(2,2)∪(2,1)
following C3 and C4.
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As we can see, the important and major difference between
the classical approaches (DST, TBM, and DSmT) and DER
approach is the choice of the fusion space that we are working
with. With DST, TBM, or DSmT, the fusion space is always
the same (independent of the number of sources) as soon as
the sources are defined with respect to the same frame Θ,
whereas with the DER approach, the fusion space is always
increasing with the number of sources, even if the sources are
all referring to the same frame Θ. This, of course, increases the
complexity of DER approach, but this is the “price to pay” to
identify and estimate the possible change occurrences in remote
sensing image sequences as it will be shown in the last section
of this paper. Clearly, DST and DSmT are not well adapted
for detecting change occurrences. For example, the transition
tA,B,A from state A in source 1 to state B in source 2 and back
to state A in source 3 cannot be represented in the fusion space
proposed classically with TBM, DST, or DSmT. In such static
frames, transitions are stressed in the conflict between sources.

Example 1: Let us consider a simple case Θ = Θ1 = Θ2 =
{θ1, θ2} with Shafer’s model; then, 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}.
We first consider at time 1 the initial set of invariable transitions
defined as follows:

Θ1→1 = Θ;

TΘ
1 ≡ 2Θ = {t∅ ≡ ∅, t1 ≡ θ1, t2 ≡ θ2, t1∪2 ≡ θ1 ∪ θ2}.

If we want to consider all the possible transitions from time
stamp 1 to time stamp 2, one starts with the cross-product frame

Θ1→2 = Θ1 ×Θ2 = {t1,1, t1,2, t2,1, t2,2}

which has |Θ1| × |Θ2| = 2× 2 = 4 distinct elements, and we
build its power set TΘ

2 = 2Θ1→2 , including its 16 elements,
as in the classical way. The empty set element (∅) can be
interpreted as the following set of impossible state transitions
corresponding to t∅,∅, t∅,1, t∅,2, t∅,1∪2, t1,∅, t2,∅, and t1∪2,∅. We
recall that the imprecise elements are derived from application
of conditions C3 and C4 and not from the componentwise union
of n-tuples involved in transition indexes. The cardinality of
TΘ
n increases with the number of the sources n as |TΘ

n | =
2|Θ1|×|Θ2|×···×|Θn|.

The power set of transitions that we want to work with for
such very simple example will be given by

TΘ
2 =2Θ1→2

=
{
∅, t1,1, t1,2, t2,1, t2,2,
t1,1 ∪ t1,2 = t(1,1)∪(1,2) = t1,1∪2,

t1,1 ∪ t2,1 = t(1,1)∪(2,1) = t1∪2,1,

t1,1 ∪ t2,2 = t(1,1)∪(2,2),

t1,2 ∪ t2,1 = t(1,2)∪(2,1),

t1,2 ∪ t2,2 = t(1,2)∪(2,2) = t1∪2,2,

t2,1 ∪ t2,2 = t(2,1)∪(2,2) = t2,1∪2,

t1,1 ∪ t1,2 ∪ t2,1 = t(1,1)∪(1,2)∪(2,1),

t1,1 ∪ t1,2 ∪ t2,2 = t(1,1)∪(1,2)∪(2,2),

t1,1 ∪ t2,1 ∪ t2,2 = t(1,1)∪(2,1)∪(2,2),

t1,2 ∪ t2,1 ∪ t2,2 = t(1,2)∪(2,1)∪(2,2),

t1,1 ∪ t1,2 ∪ t2,1 ∪ t2,2 = t1∪2,1∪2
}
.

B. Combination Rules in DER

The classical combination rules usually work under the
assumption that all the sources of information refer to the
same common frame of discernment. The results of existing
combination rules do not deal with unexpected changes in the
frame, and they manage the conflicting beliefs without taking
into account these possible changes in the frame. Nevertheless,
for the detection of changes, the conflicting information is more
important than the compatible information.

The fundamental difference between the classical approach
and this proposed DER approach is that the frame of the fusion
process is considered possibly variable over time, and the fusion
process is adapted for the changes’ detection and their identifi-
cation. When the elements of the frame are invariable, they can
be considered as a special case of changes corresponding to
invariable transition. The dynamical combination rules will be
defined by using the state-transition operator to take advantage
of the useful information included in the conflict between
sources. The combination rules work in the free and constrained
models.

Combination Rule in the Free Model of Transitions: In the
free model, there is no prior knowledge on state transitions,
and all kinds of changes among the elements are considered
possible. We start first with the combination of the two tem-
poral sources of evidences. Let m1 and m2 be two basic
belief assignments (bbas) provided by two temporal sources of
evidence, respectively, over the frame of discernment Θ1 and
Θ2 satisfying Shafer’s model. m1(A), A ∈ 2Θ1 is the mass of
belief committed to the hypothesis A by source 1, and m2(B),
B ∈ 2Θ2 is the mass of belief committed to the hypothesis B
by source 2. Sources 1 and 2 are considered independent.

In this paper, we propose to compute the mass of belief of
a forward transition tAk,Bl

= Ak → Bl, l ≥ k as m(tAk,Bl
) =

mk(A)ml(B) where k and l are temporal stamps/indexes. Note
that, because mk(A)ml(B) = ml(B)mk(A), this mass of be-
lief also can be associated to the backward transition tBl→Ak

=
Bl → Ak. We assume that we are always working with ordered
products corresponding to forward temporal transitions. By
convention, the bba mi provided by the source i is assumed to
be available at time i before the bba mj provided by the source
j if i < j. Indexes of sources correspond actually to temporal
stamps. Following this very simple principle, the conjunctive
combination rule in the free model of transitions, denoted by
DERf, is defined by

∀ tX1,X2
∈ TΘ

2 , m1→2(tX1,X2
) = m1(X1)m2(X2) (2)

where X1 ∈ 2Θ1 and X2 ∈ 2Θ2 .
This simple conjunctive rule can be extended easily for

computing the mass of belief of a chain of transitions using
either a sequential fusion or a joint fusion process as follows.

1) Sequential fusion of n > 2 sources: ∀ tX1,...,Xn
∈ TΘ

n

m1→n(tX1,...,Xn
) = m1→n−1(tX1,...,Xn−1

)mn(Xn) (3)

where tX1,...,Xn−1
∈ TΘn−1 and Xn ∈ 2Θn .
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2) Direct joint fusion of n > 2 sources: The n sequential
sources of evidence can also be directly combined by
∀ tX1,X2,...,Xn

∈ TΘ
n

m1→n(tX1,X2,...,Xn
) = m1(X1)m2(X2) · · ·mn(Xn) (4)

where Xi ∈ 2Θi , i = 1, . . . , n.
In this free model, the result of the combination is very

specific since all kinds of change occurrences are distinguished
in the results, but the computation burden is very large because
of the large increase of the cardinality of TΘ

n with n.
Combination Rule in the Constrained Model of Transitions:

In the constrained model of transitions, one knows that some
kinds of changes among the different elements cannot occur

according to our prior knowledge. The set ∅ Δ
= {∅M, ∅} can be

defined in introducing some integrity constraints as done in the
hybrid model of DSmT. ∅M includes all the transitions in TΘ

i ,
i = 1, 2, . . . , n, which have been forced to be empty because of
the chosen integrity constraints in the model M, and ∅ is the
classical empty set. If the sources of evidence share the same
reliability in the combination, the conflict among the evidences
will be regarded as possible changes or as empty sets depending
on the constraints that we have. The mass of the empty sets
arising from integrity constraints can be distributed to the other

focal elements. The notation tA,B
M
= t means that the transition

tA,B is equivalent to the transition t in the underlying model M
given the integrity constraints.

• DERDS rule of combination: If the mass of empty sets
is small, it can be proportionally distributed to the other
focal elements similarly to Dempster–Shafer’s rule, and
we denote this rule by DERDS for short. This distribution
of the mass of the conflict can be interpreted as optimistic
and is mathematically defined as follows: ∀tn−1 ∈ TΘ

n−1,
∀Xn ∈ 2Θn , ∀tn ∈ TΘ

n , n ≥ 2

m1→n(tn) =

∑
ttn−1,Xn

M
=tn

m1→n−1(tn−1)mn(Xn)

1−K
(5)

where K represents the mass of belief committed to the
empty sets (i.e., the degree of conflict) which is given by

K =
∑

ttn−1,Xn∈∅
m1→n−1(tn−1)mn(Xn). (6)

When considering the direct combination of n sequential
sources altogether, one has ∀tn ∈ TΘ

n , and Xi ∈ 2Θi , i =
1, 2, . . . , n

m1→n(tn) =

∑
tX1,X2,...,Xn

M
=tn

m1(X1) · · ·mn(Xn)

1−K
(7)

where

K =
∑

tX1,X2,...,Xn∈∅
m1(X1) · · ·mn(Xn). (8)

• DERY rule of combination: If the mass of the empty
sets is quite large, it implies that the combination results

will not be very credible, and all the mass of empty sets can
be prudently allocated to the ignorance transition tΘn =
tΘ1,Θ2,...,Θn

similarly to Yager’s rule [29]. For short, we
denote this rule by DERY, and it is mathematically defined
by the following: ∀tn ∈ TΘ

n , tn /∈ ∅, and Xi ∈ 2Θi , i =
1, 2, . . . , n

m1→n(tn) =
∑

tX1,...,Xn

M
=tn/∈∅

m1(X1) · · ·mn(Xn)

+
∑

tX1,...,Xn∈∅,tn=tΘn

m1(X1)m2(X2) · · ·mn(Xn).

(9)

Remark: The summation introduced in (5), (7), and (9)
allows to take into account the integrity constraints of the model
of the space of transitions as shown in the next example.

For simplicity and in our application, we assume that all
frames Θ1,Θ2, . . . ,Θn do not change with time and they are
the same and equal to Θ. That is, Θ1 = Θ2 = · · · = Θn = Θ.

Example 2: Let us consider the frame Θ = {θ1, θ2} with the
following two integrity constraints representing the impossible

state transitions ∅M
Δ
= {t1,2, t2,2}. Therefore, due to these in-

tegrity constraints, the fusion space TΘ
2 , as given in detail in

Example 1, reduces to the following simple set:

TΘ
2 = {∅, t1,1, t2,1, t1∪2,1}.

We also consider the following bba inputs:

θ1 θ2 Θ

m1 0.4 0.6 0
m2 0.5 0.2 0.3

According to the underlying hybrid model M, only the prod-
ucts m1(θ1)m2(θ2) and m1(θ2)m2(θ2) take part in the con-
flict. The other products m1(θ1)m2(θ1), m1(θ1)m2(θ1 ∪ θ2),
m1(θ2)m2(θ1), and m1(θ2)m2(θ1 ∪ θ2) correspond to some
mass of belief of admissible state transitions. The mass of belief
committed to the total conflict is therefore given by

K = m1(θ1)m2(θ2) +m1(θ2)m2(θ2) = 0.2.

The conjunctive masses of belief of possible transitions are
given by

m∩(t1,1) =m1(θ1)m2(θ1) = 0.4× 0.5 = 0.20

m∩(t1,1∪2) =m1(θ1)m2(θ1 ∪ θ2) = 0.4× 0.3 = 0.12

m∩(t2,1) =m1(θ2)m2(θ1) = 0.6× 0.5 = 0.30

m∩(t2,1∪2) =m1(θ2)m2(θ1 ∪ θ2) = 0.6× 0.3 = 0.18.

Due to the integrity constraints t1,2 = (θ1 → θ2)
M
= ∅

and t2,2 = (θ2 → θ2)
M
= ∅ and the condition C4 given in

Section II-A, one has{
t1,1∪2 = t1,1 ∪ t1,2

M
= t1,1 ∪ ∅ = t1,1

t2,1∪2 = t2,1 ∪ t2,2
M
= t2,1 ∪ ∅ = t2,1.
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Therefore, the mass m∩(t1,1∪2) must be transferred to t1,1,
whereas the mass m∩(t2,1∪2) must be transferred to t2,1 only.
Finally, the result given by the DERDS rule is

m(t1,1) =
m∩(t1,1) +m∩(t1,1∪2 ≡ t1,1)

1−K

=
m1(θ1)m2(θ1) +m1(θ1)m2(θ1 ∪ θ2)

1−K

=
0.20 + 0.12

0.8
= 0.40

m(t2,1) =
m∩(t2,1) +m∩(t2,1∪2 ≡ t2,1)

1−K

=
m1(θ2)m2(θ1) +m1(θ2)m2(θ1 ∪ θ2)

1−K

=
0.30 + 0.18

0.8
= 0.60.

In the hybrid model, if all transitions among the exclusive
elements are not allowed, the DERDS combination rule reduces
to the classical Dempster–Shafer’s rule of combination.

If DERY is used instead of DERDS, one obtains

m(t1,1) =m∩(t1,1) +m∩(t1,1∪2 ≡ t1,1) = 0.32

m(t2,1) =m∩(t2,1) +m∩(t2,1∪2 ≡ t2,1) = 0.48

m(tΘ,Θ) =m(t1∪2,1∪2) = m(t(1,1)∪(2,1)∪(1,2)∪(2,2))

=m(t(1,1)∪(2,1)∪∅∪∅) = m(t(1,1)∪(2,1))

=K = 0.2.

For decision-making support, the mass of partial ignorance
and/or m(tΘ,Θ) can be redistributed to the other more specific
state-transition hypotheses in many ways using different prob-
abilistic transformations of a bba into a subjective probability
measure, like for instance BetP or DSmP transformations [17].

C. Prior Knowledge Consideration

In the previous section, we have only considered the bbas
provided by the sources of evidences in the DER fusion rules.
In some applications, however, we may also have access to extra
prior information on the state transitions. This prior information
is supposed to be modeled as a prior Bayesian bba m0(·) on
the space of all transitions or, equivalently, to a given prior
probability function p(·). If this prior information is known and
fits with the reality and if it is taken properly into account, the
results in the estimation of change detections are expected to be
more precise.

In this section, we propose a solution to improve the DER
approach by including the prior probability about the change
from the hypothesis X to Y . For this purpose, one assumes
that probabilities p(tX,Y ) for all X , Y ∈ 2Θ are known and
given. The mass of belief of this change occurrence is then
calculated as the weighted conjunctive product m1→2(tX,Y ) =
m1(X)p(tX,Y )m2(Y ). In the fusion of n sequential sources of
evidence, the fusion results including prior information, using
a first-order time-homogeneous Markov chain of transitions for
Xi ∈ 2Θ, i = 1, 2, . . . , n, will be given by

m1→n(tX1,X2,...,Xn
)=m1(X1)

n∏
i=2

p(tXi−1,Xi
)mi(Xi). (10)

The DERDS taking into account these weighted (discounted)
bbas is then given by the following: ∀tn ∈ TΘ

n and Xi ∈ 2Θ for
i = 1, 2, . . . , n

m1→n(tn) =

∑
tX1,···,Xn

M
=tn

m1(X1)
∏n

i=2 p(tXi−1,Xi
)mi(Xi)

∑
tX1,···,Xn �=∅

m1(X1)
∏n

i=2 p(tXi−1,Xi
)mi(Xi)

.

(11)

If the prior probability of a given transition is 0, i.e., p(tX,Y ) =
0, then tX,Y will be forced to be equal to the empty set as in
a constrained model. The combination rule in the constrained
model can be seen as a special case of this rule where the
forced empty sets are transitions assigned with zero probability
p{∅M} = 0, and the other transitions are equiprobable. The
prior and transition probabilities must be acquired by experi-
ence, or from a training database.

Remark: Because the order in the computation of the prod-
uct does matter in DER to identify the transitions, all the
dynamical combination rules developed in the free model or
constrained models (with or without prior information on the
probability of transitions) are not commutative since the transi-
tions are oriented. Therefore, the fusion of the sources must be
done properly following a (forward) temporal sequence. DSmT
can be seen as a generalization of DST, the power set 2Θ is a
subset of hyperpower set DΘ, and we have

m∩(A) =
∑

X1∩X2···∩Xn=A

A∈DΘ,Xi∈2Θ

m1→n(tX1,X2,...,Xn
) (12)

where m∩(·) is obtained by the combination of n sources of

evidence in DSm free model and m1→n(·) is the combination
results of these n sources of evidence by DERf. This relation
indicates that the combination results in DER are much more
specific than that in DSmT and DST, and that is why DER
is well adapted to estimate the belief in state transitions using
these fusion rules.

D. Decision-Making Support With DER

For decision-making support, the element of the frame hav-
ing either the maximum of belief function Bel(·), the maximum
of plausibility function Pl(·), or the maximum of pignistic
probability BetP(·) [26], [27] is often chosen.1 These functions
can be also used in DER approach as well. Indeed, all the
elements in Θ1→n composed by the state transitions through
the singleton elements have a specific and unique meaning, and
they are considered as the singleton elements in DER. All the
focal elements in TΘ

n can be decomposed in the disjunctive
canonical form using these singleton elements with the oper-
ator ∪, and we call them the canonical focal elements. For

1The DSmP(·) transformation proposed in [18] which provides better proba-
bilistic informational content than BetP(·) can also be chosen instead. However,
DSmP(·) is more complicated to implement than BetP(·), and it has not been
tested in our application for now.
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example, m(t(θ1∪θ2),θ3) = m(tθ1,θ3 ∪ tθ2,θ3) because of the
condition (C3). The belief, plausibility functions, and the pig-
nistic transformation are defined in DER similarly as in DST;
that is

Bel(A) =
∑

A,B∈TΘ
n ;B⊆A

m(B) (13)

Pl(A) =
∑

A,B∈TΘ
n ;A∩B �=∅

m(B). (14)

The interval [Bel(A),Pl(A)] is then interpreted as the lower and
upper bounds of imprecise probability for decision-making sup-
port [16], and the pignistic probability BetP(A) commonly used
to approximate the unknown probability in [Bel(A),Pl(A)] is
calculated by

BetP(A) =
∑

A,B∈TΘ
n ,A⊆B

|A ∩B|
|B| m(B) (15)

where |X| stands for the cardinality of the element X . In
DER, the cardinality of A ∈ TΘ

n is the number of the singleton
elements that it contains in its canonical form. For example,
|t(θ1∪θ2),θ3 | = |tθ1,θ3 ∪ tθ2,θ3 | = 2.

III. NUMERICAL EXAMPLES

We show here how dynamical evidential reasoning works. Its
results are compared to those based on the classical fusion rules.
Results of DER for change detections in remote sensing images
are given in the next section.

Example 3: Let us consider two sources of information in the
same frame of discernment Θ = {θ1, θ2, θ3, θ4}, and the bbas
are given by

θ1 θ2 θ3 Θ

m1 0.4 0 0.3 0.3
m2 0 0.3 0.2 0.5

• With DSm free model of Θ: The results obtained are the
following:

1) With DSm classic/conjunctive rule (DSmC)

m(θ1 ∩ θ2) = 0.12

m(θ1 ∩ θ3) = 0.08

m(θ1 ∩ θ4) = 0.20

m(θ2 ∩ θ3) = 0.09

m(θ2 ∩ θ4) = 0.09

m(θ3 ∩ θ4) = 0.21

m(θ3) = 0.06

m(θ4) = 0.15.

2) With DERf rule: We identify each possible transi-
tion, and we get

m(t1,2) =m1(θ1)m2(θ2) = 0.12

m(t1,3) =m1(θ1)m2(θ3) = 0.08

m(t1,4) =m1(θ1)m2(θ4) = 0.20

m(t3,2) =m1(θ3)m2(θ2) = 0.09

m(t3,3) =m1(θ3)m2(θ3) = 0.06

m(t3,4) =m1(θ3)m2(θ4) = 0.15

m(t4,2) =m1(θ4)m2(θ2) = 0.09

m(t4,3) =m1(θ4)m2(θ3) = 0.06

m(t4,4) =m1(θ4)m2(θ4) = 0.15.

Note that the main difference between DSmC
and DERf lies in the ability of DERf to refine
the partial conflicts into several distinct transi-
tions states. More precisely, the mass 0.21 of the
partial conflict θ3 ∩ θ4 computed as m(θ3 ∩ θ4) =
m1(θ3)m2(θ4) +m1(θ4)m2(θ3) = 0.21 with clas-
sical DSm free rule becomes clearly split into two

transitions t3,4
Δ
= θ3 → θ4 and t4,3

Δ
= θ4 → θ3 with

associated masses 0.15 and 0.06.
One sees that, if the DSmC rule is used to detect

the change occurrence reflecting conflicting informa-
tion, θ3 ∩ θ4 gets the biggest mass which indicates
that the transition θ3 → θ4 or θ4 → θ3 is most likely
to happen. Nevertheless, the most mass (or credibil-
ity) is actually committed to θ1 by source 1 and to θ4
by source 2. Therefore, the change occurrence from
θ1 to θ4 is intuitively most likely to occur, which is
consistent with the result provided by the DERf rule.

• With a hybrid model for Θ: We assume now the fol-

lowing set ∅M
Δ
= {t3,3, t1,4, t4,1, t2,4, t4,2} of impossible

transitions in the model. The corresponding DSm hybrid
model is therefore defined by the following corresponding
set of integrity constraints:

∅M
Δ
= {θ3, θ1 ∩ θ4, θ2 ∩ θ4}.

1) With the DSm hybrid rule of combination (DSmH)
[19] proposed in the DSmT framework as an exten-
sion of Dubois–Prade’s rule, one gets

m(θ1 ∩ θ2) = 0.16

m(θ1) = 0.12

m(θ2) = 0.12

m(θ4) = 0.27

m(θ1 ∪ θ4) = 0.12

m(θ2 ∪ θ4) = 0.12

m(Θ) = 0.09.
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2) With the DERDS rule of combination, one gets

m(t1,2) = 0.64

m(t4,4) = 0.36.

In this hybrid model, DERDS gets the most spe-
cific results about the state transition because of the
use of the constraints. DSmH yields to more uncertain
results since it works under the assumption that the
element for the decision making is invariable in the
fusion process, and it tries to overestimate the invari-
able hypothesis by the redistribution of conflicting
beliefs to partial ignorance. Therefore, DSmH ap-
pears to be not well adapted for the change detection.

• With Shafer’s model of Θ: In Shafer’s model, all the
transitions between different elements are considered im-
possible to occur.

1) With Dempster–Shafer’s rule, one gets

mDS(θ3) = 0.3

mDS(θ4) = 0.7.

2) DERDS will provide the same results as

m(t3,3) = 0.3

m(t4,4) = 0.7.

3) With the DERY rule, one gets

m(t3,3) = 0.06

m(t4,4) = 0.15

m(tΘ,Θ) =m
(
t(1,1)∪(2,2)∪(3,3)∪(4,4)

)
= K = 0.79.

This indicates that Shafer’s model does not fit
well for change detection, and the classical DST
approach cannot be used efficiently to detect the
change occurrences.

Example 4: Let us see how DER works in a high conflict-
ing situation by analyzing the well-known Zadeh’s example.
Therefore, we consider the frame Θ = {θ1, θ2, θ3} satisfying
Shafer’s model with the following Bayesian bbas:

θ1 θ2 θ3
m1 0.9 0.1 0
m2 0 0.1 0.9

• With Shafer’s model, one gets
1) DS rule: m(θ2) = 1.
2) DERDS: m(t2,2) = 1.
3) DSmH: m(θ2) = 0.01, m(θ1 ∪ θ2) = 0.09, m(θ1 ∪

θ3) = 0.81, and m(θ2 ∪ θ3) = 0.09
4) DERY: m(t2,2) = 0.01, and m(tΘ,Θ) =

m(t(1,1)∪(2,2)∪(3,3)) = 0.99.
Dempster’s rule provides counterintuitive results be-

cause of the high conflict in this case. DSmH provides a
reasonable result which lies in its proper distribution of the
conflicting beliefs, but it cannot well identify and estimate
the change occurrences. DERDS gets the absolute state
transition because of the constraints. Nevertheless, this
absolute result is very risky. DERY commits all the con-
flicting mass of belief to the ignorance transition, which

yields, of course, to a very imprecise result which can
make sense in such high conflicting case. It implies that the
prudent distribution of the mass of empty sets by DERY

can be less risky than the optimistic distribution done by
DERDS in the potentially high conflicting conditions.

As we can see, the combination results in the hybrid model2

mainly depend on the given integrity constraints and how the
redistribution of the mass corresponding to partial (or total)
conflicts is done. Since it is rather difficult to clearly emphasize
the differences between DER and DSm in the hybrid model, we
propose to analyze and compare DERf with DSmC only in the
free model in the following examples.

Example 5: Consider another pair of bbas over the frame
Θ = {θ1, θ2} which is given by

θ1 θ2 θ1 ∪ θ2
m1 0.45 0.2 0.35
m2 0 1 0

• With DSm free model:
1) DSmC: m(θ1 ∩ θ2) = 0.45 and m(θ2) = 0.55.
2) DERf: m(t1,2) = 0.45, m(t2,2) = 0.2, and

m(t1∪2,2) = 0.35.
Source 1 commits most of its belief to θ1, whereas

source 2 is absolutely confident in θ2. It is quite possible
that θ1 changes to θ2, and the results produced by DERf
reflect the intuitive reasoning. Nevertheless, the results of
DSmC show that θ2 is the most credible since two specific
transition states in DERf are linked together to a focal
element in Dezert-Smarandache free model as follows:
m(θ2) = m(t2,2) +m(t1∪2,2) = 0.55. For the singleton
elements, one gets

Bel(·) BetP(·) Pl(·)
t1,2 0.45 0.625 0.8
t2,2 0.2 0.375 0.55

From Bel(·), Pl(·), or BetP(·) values, we can draw the
conclusion for the decision making that the most relevant
(credible, plausible, or possible) hypothesis is t1,2.

Example 6: Let us consider a pair of bbas over Θ = {θ1, θ2}
given by

θ1 θ2 θ1 ∪ θ2
m1 0.6 0 0.4
m2 0 1 0
m3 0 0.5 0.5

• With DSm free model
1) DSmC: m(θ1 ∩ θ2) = 0.6 and m(θ2) = 0.4.
2) DERf: m(t1,2,2) = 0.3, m(t1,2,1∪2) = 0.3,

m(t1∪2,2,1∪2) = 0.2, and m(t1∪2,2,2) = 0.2.
For the singleton elements, based on DERf, one gets

Bel(·) BetP(·) Pl(·)
t1,2.2 0.3 0.60 1
t1,2,1 0 0.20 0.5
t2,2,1 0 0.05 0.2
t2,2,2 0 0.15 0.4

2Shafer’s model is just a special case of hybrid model [17]–[19].
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Fig. 1. DER flowchart for change detection of remote sensing images.

The results of DERf precisely represent the belief of
change occurrences, whereas the elements in DSmC can-
not reflect the process of state transition because of its
invariable frame. In the decision making, it indicates that
the hypothesis t1,2,2 is most likely to happen according to
Bel(·), Pl(·), or BetP(·), which means that θ1 in source 1
(at time 1) changes to θ2 in source 2 and to θ2 in source 3.

IV. APPLICATION ON REAL REMOTE SENSING IMAGES

The application of DER, as a postclassification-based change
detection technique from remote sensing images, is presented
with the flow chart of Fig. 1.

The process can be summarized as follows: from a time
series of N images (for which geometric correction, coregis-
tration, and radiometric correction may be required).

1) Perform an appropriate classification (supervised or un-
supervised) on each image.

2) Apply an appropriate mass assignment from the classifi-
cation outputs. It may be of Bayesian type, distance type,
and membership value and has to be transformed into
mass type mk(Xl), including uncertainty (i.e., Θ).

3) Define a (possibly hybrid) frame of discernment TΘ
n . At

this step, the class index has to be carefully identified to
well define transitions tX1,...,Xn

.
4) Apply the DER fusion rule [(7) or (9)], and use Bel, Pl,

or BetP criteria for decision making.

Fig. 2. SPOT images of Gloucester. (a) Before image, acquired on
11/16/1999. (b) After image, acquired on 10/21/2000. (c) Ground truth.

TABLE I
CLASS DESCRIPTION OF THE GLOUCESTER SPOT IMAGES

It has been analyzed in theory (in Section II) and shown by
the numerical examples (in Section III) that DSmT does not
work well for change detection, particularly when the number
of sources is larger than 2. Therefore, only DER will be
applied in the next two experiments. In those experiments, an
unsupervised clustering method has been used. We choose the
evidential c-means (ECM) approach, detailed in [30], which
uses the radiometric information only. ECM is adapted to the
classification of uncertain data, and the imprecise classes can be
acquired by ECM. This classification technique has been used
here because it is unsupervised, and the results can be directly
used as the mass functions (bbas). Nevertheless, any kind of
classifiers (including supervised ones) may be used at this
level. Moreover, all the other available features which may be
based on radiometric [31], morphological, or textural features,
as well as decision models based on Bayesian [32], support
vector machine [10], [33], [34], or object-based technique [11],
[35], may of course be applied in this image classification
level. More features are expected to lead to the derivation of
better classification results with ECM, but it will increase the
computation complexity. In this paper, we want to focus on the
way to apply DER after the image classification.

A. Change Detection With a Pair of SPOT Images

In this experiment, a pair of SPOT images is considered,
corresponding to a flood over Gloucester, U.K., from October
to November 2000 shown in Fig. 2.

The feature space for classification is defined by the three
spectral bands of the SPOT image. In addition, the texture infor-
mation has been taken into account by using the variance of the
near infrared (NIR) through a 3 × 3 sliding window. The num-
ber of the clusters is automatically determined by minimizing
the validity index of a credal partition as the average normalized
specificity proposed in [30], and both the SPOT images are
clustered into k = 4 groups using ECM as defined in Table I.
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TABLE II
TRANSITION DESCRIPTION OF THE GLOUCESTER SPOT IMAGES

Remark: The number of the clusters can be automatically
determined by the method in [30] or directly given by the user
according to the prior experience. If the number of the clusters
is too high, the same object (content) whose pixel values may
be only slightly different in one image could be in a different
cluster, which will generate problems for the definitions of the
state transitions, including the change occurrences. Moreover,
the high number of clusters will induce an increase of the
algorithm complexity.

The other tuning parameters to be defined in ECM are
the following: α = 1, β = 2, σ2 = 20, termination threshold
ε = 1, and the maximum number of iterations T = 10. The
normalized membership is used as the mass functions (bbas).

According to our prior knowledge that a flood happened
between the two images, the change occurrences mainly
focus on the flood, which corresponds to the transitions
from θ1 = {Red area} to θ3 = {Green area} in the images
as t1,3. Therefore, the constrained model can be applied
here. The available transitions are given by the set TΘ

n=2 =
{t1,1, t2,2, t3,3, t4,4, t1,3}, and all the other transitions are con-
sidered as empty transitions in ∅M as shown in Table II.

Remark: The labels of each class in each image are possibly
different when using the unsupervised classification methods
(i.e., ECM). Nevertheless, once the corresponding relationship
between the label and the class is given, the state transitions in-
cluding the change occurrences can be defined (tuned) accord-
ingly. Therefore, the labels do not affect the change detection
process at all. In this paper, we denoted the same class in each
image with the same label for the convenience of the notations
and representations.

The maximum of pignistic probability has been used in the
decision making. The consequence is that DERDS and DERY

yield the same decision. Their fused image with all the allowed
transitions of TΘ

n=2 is presented in Fig. 3(a). In this example,
we consider that the flood area is characterized by the transition
t1,3. Fig. 3(b) focuses on this transition and, by using the ground
truth of Fig. 2(c), shows in false color the correct, missed, and
false detections.

Correct detections, missed detections, and false alarms have
been described by the Kappa index, which is often used to
demonstrate the quality of classifications for change detection
[10], [11], [36]. With the DER approach, we get a Kappa index
of 0.82, which indicates that the output is mainly consistent
with the ground truth, so the total results are satisfying for
change detection applications.

Fig. 3. (a) Fusion results of the pair of SPOT images. (b) Fusion results
with all transitions. The comparison of the change detections with ground truth
(Kappa = 0.82).

One can see that the results of the fusion of images not
only accurately detect the change occurrences due to the flood
but also produce accurate classifications in the unchanged ar-
eas. However, there remain some missed detections and false
alarms. As we can see, some regions along the river were
displayed in green color before the flood, and they are still
in green color after the flood. Therefore, they have not been
considered as change occurrences, and this mainly leads to
the missed detections, when the detection is focused on the
radiometry only. The false alarms are mainly due to the change
of land cover in some small areas which are similar to the
changes in the flooded areas in the second image. If better prior
information about the location of the river is known, the prior
probability about the transitions can be given accordingly, and
the false alarms could be reduced.

B. Change Detection in a Three-Image Time Series

This section focuses on the event of the 2003 earthquake in
the region of Boumerdes, Algeria. Three QuickBird images
have been acquired before and after the earthquake. They
have been corrected geometrically by using Shuttle Radar
Topography Mission elevation data and resampled by a P+Xs
pan-sharpening technique to yield 60-cm resolution color
images (see Fig. 4) for operational use during this event on
behalf of the “Space and Major Disaster” charter [37].

This case study is used to illustrate the ability of DER in
dealing with more than two images which are classified with
different numbers of classes. The automatic determination of
the number of clusters in [30] is still applied here, and the
number of clusters in the first image has been evaluated to C =
4 groups (see details in Table III); we still take into account the
texture information defined by the variance of the NIR by a 3 ×
3 window and the pixel values as the features for classifications
in this application. The classified image is shown in Fig. 4(a).
The second and third images are clustered in C = 5 groups as
defined in Table IV and shown in Fig. 4(b) and (c). The other
tuning parameters of the ECM are defined by the following: the
maximum number of iterations T = 20, the weighting exponent
for cardinality α = 2, the weighting exponent β = 2, and the
termination threshold ε = 1. The maximum of BetP is used for
decision making.
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Fig. 4. Multitemporal QuickBird satellite images acquired before and after
an earthquake. (a) Before image: 04/22/2002. (b) After image: 05/13/2003.
(c) Latter acquisition: 06/13/2003. Data set Boumerdes Copyright SERTIT,
2009, distribution CNES.

TABLE III
CLASS DESCRIPTIONOF THE QUICKBIRD 04/22/2002 IMAGE

The classification labels are not very specific since the clas-
sification is based on the radiometry only. Different objects in
the same image may share similar pixel values. For example,
in Fig. 4(a), buildings and roads are confused in θ3 since the

TABLE IV
CLASS DESCRIPTION OF THE QUICKBIRD

05/13/2003 AND 06/13/2003 IMAGES

TABLE V
TRANSITION DESCRIPTIONOF THE BOUMERDES QUICKBIRD IMAGES

radiometry is similar. On the contrary, a class may appear
differently along the time series: For instance, roads around
the new building areas, in different images of Fig. 4(a) and (b),
appear with a different hue which causes a change in the image
classification.

The time series analysis is considered for abrupt change de-
tection (ignoring shade in the evolution) in order to focus on the
affected area. Then, a constrained model of DER is applied. The
state transitions considered from the image in Fig. 4(a) to (b)
include the change occurrences from the farmland to temporary
building as t2,5 (for the notation ti,j = tθi,θj ) and from normal
buildings to the destroyed buildings as t3,5 and all unchanged
transitions as t1,1, t2,2, t3,3, and t4,4. The change occurrences
from normal buildings to destroyed buildings as t3,5 and the
unchanged transitions as t1,1, t2,2, t3,3, t4,4, and t5,5 occur from
the images in Fig. 4(b) to (c). Therefore, the constrained avail-
able transitions in the three images are given by t1,1,1, t2,2,2,
t3,3,3, t4,4,4, t2,5,5, t3,5,5, and t3,3,5 as detailed in Table V.

All the other possible transitions which are considered not
applicable are defined as empty sets through constrained model
in DER.

Remark: Some specific transitions cannot exist in the tem-
poral behavior of some classes. For instance, building roof,
road, and destroyed or temporary building may be considered
as similar from the radiometric point of view. Even if the
transitions t2,5 and t3,5 may involve many kinds of possible
change occurrences, some of them are impossible according
to our prior knowledge: Farmland cannot become destroyed
building in t2,5, and only the specific transition from farmland
to temporary building is possible. In t3,5, only the change
occurrence from normal building to destroyed building may
occur, and the other combinations are impossible according to
the prior knowledge that one has on the problem. Therefore, it
yields the temporal interpretation of Table VI.

The combination results are shown in Fig. 5. Change oc-
currences are considered more important than the invariable
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TABLE VI
MEANING OF THE TRANSITION

Fig. 5. Fusion results of classified images by DERDS (same results are
obtained by DERY ). (a) Fusion of the first and the second image. (b) Fusion of
the second and the third image. (c) Fusion of the first, second, and third images.

transitions for the evaluation of the disaster, and they have been
extracted in Fig. 6. The transitions t2,5 and t3,5 between the first
and the second images correspond to actual changes, and they
are linked to damage mapping; see Fig. 5(a). Fig. 6(a) focuses

Fig. 6. Significant damage map extracted from DER decision of Fig. 5.
(a) Changes from the first to the second classified image. (b) Changes from
the second to the third classified image. (c) Changes through the first, second,
and third classified images.

on those changes. As we can see, part of the farmland has
been converted to temporary building which may be a refuge
after the earthquake or new constructions represented by purple
color. On the contrary, in the middle of the image, a normal
building became a destroyed building represented by the red
area in Fig. 6(a). What is interesting in the focus on the t3,5
transition is the ability to show a misalignment in the building in
the center of the image. It highlights the fact that the buildings
(at least one of them) have been affected by the earthquake (up
to a grade 3 or 4 in the masonry building damage classification
of EMS-98 [38]) but did not collapse. In the ground truth
available from Centre National d’Etudes Spaciales and Service
Régional de Traitement d’Image et de Télédétection, the level
of destruction is not given, but we know that those buildings
have been affected.

The transitions t3,5 from the second to the third image in
Fig. 5(b) correspond to changes that occurred after the earth-
quake. A building collapsed later after the earthquake while the
first collapsed building had been excavated. Fig. 6(b) focuses on
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this transition only. It shows that there are some change occur-
rences in front of those buildings which is evident because there
was no path along these buildings before the third image was
taken, but the path emerged on the third image. The emergence
of the path could not be distinguished from the change of the
building to the destroyed building since the path had the same
white pixel values as the destroyed building. Fig. 6(c) shows the
sequential transitions of the three images. These fusion results
will be helpful for the disaster evaluation in real applications.

In the fusion process of DER, some change occurrences are
possibly caused by the differences in the geometry of the acqui-
sitions. These changes associated with the geometry errors (i.e.,
from building to shadow) can be defined with prior experience
in a similar way as in [39], and they will be considered as
noisy changes in the fusion results. These noisy changes would
be removed to reduce the influence of geometric errors. Of
course, if some ancillary information about the sensor geometry
and elevation models is available for postprocessing, the noisy
changes can be significantly reduced.

V. CONCLUSION

A DER approach has been proposed in this paper for state-
transition estimation and has been applied for change detection
purpose on real multiple temporal remote sensing images. The
DER approach is a postclassification-based change detection
technique that starts with the sequential construction of the
power set of admissible state transitions taking into account, if
necessary, some integrity constraints representing some known
unacceptable (impossible) transitions. When the prior knowl-
edge of the constraints of the space of transitions is unknown,
the free dynamical rule DERf can be used to compute the mass
of belief of the state transitions with a greater computation
burden. If some change occurrence constraints are known, the
corresponding constrained model must be chosen for better
fusion results with less computational complexity. Based on a
particular rule-based algebra, the mass of belief of the change
occurrences can be acquired using two different rules of combi-
nations in red, with the constrained model depending on the de-
gree of conflict between sources: the DERDS rule or the DERY

rule, which are direct extensions of the Dempster–Shafer’s or
Yager’s rule in the particular context of state-transition esti-
mation. We have also shown in this paper how DER can be
improved for taking into account the prior probability of the
state transitions. Several simple numerical examples were given
to show how to use DER and to show its difference from the
classical fusion approaches. Finally, two experiments on the
fusion of multitemporal satellite images illustrate the suitability
and the efficiency of DER for change detection and estimation.
The DER fusion of images can detect accurately the change
occurrences and characterize the unchanged areas. The possible
extension of this work will concern the redefinition of DER for
working with heterogeneous data.
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